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Abstract— This paper provides a new and efficient method (LDI) are used for modeling linear systems with parametric
for the computation of an arbitrarily close outer robust pos-  yncertainty; see, for example, [26], [27], and linear syste

itively invariant (RPI) approximation to the minimal erb.USt with switching dynamics [28]. This paper extends the result
positively invariant (mRPI) set for linear difference inclusions. reported in [18], [20], [21], [25].

It is assumed that the linear difference inclusion is absolutely ] ) ) ) )
asymptotically stable (AAS) in the absence of an additive state ~ This paper is organized as follows. Section Il is concerned

disturbance, which is the case for parametrically uncertain or  with preliminaries. Section Ill establishes existence luf t
s_witching linear discrete-time systems controlled by a stabilizing mRP| set for linear difference inclusions and provides a
linear state feedback controller. characterization of a family of robust positively invarisets
for linear difference inclusions that are outer approxiors
of the mRPI set. Section 1V considers the limiting behaviour
One of the fundamental tools employed in robust contradf these RPI approximations and provides a condition for
of constrained dynamical systems is set invariance thedry [ characterization of a family of outer, RRtapproximations
Set invariance is used in the design of reference goverprs [of the mRPI set for linear difference inclusions. Section V
and predictive controllers [3]-[5] to guarantee constraat- presents efficient computational procedures when therdistu
isfaction, stability and convergence properties. Oneriggle  bance set is a polytope. Section VI gives an illustrative ex-
for robust control of constrained discrete-time systems iample. Finally, Section VII presents conclusions. All oo
robust time-optimal control [6]-[9] that is based on the eomfor the results stated in this paper can be found in [29].
putation of a sequence of robust control (positively) ireair BAsiC NOTATION: Let N £ {0,1,2,...}, N*
sets when the target set is also a robust control (posijively1,2,...}; for ¢ € N* let N, £ {0,...,q} and N7
invariant set. A suitable target set in robust time—optima{lv.”?q}, Let B (v) 2 {r e R l|z||, < ~}, where]|-]|,

control is the minimal robust positively invariant set [10] denotes the vectgr-norm. Given an integes € N* and the
The relevance of the minimal (in an appropriate sense) tobusets); c R”, i € N1, the Minkowski set addition is defined
control (positively) invariant set is demonstrated by toeel a5 D;_, L20HONLD... 00, = {0 wi | wi € U}
robust predictive controllers, recently proposed in [{13}.  Given the set? C R, interior((2) denotes its interior,

Computational issues and algorithmic procedures for th@osure(() its closure ando(£2) its convex hullR” denotes
calculation of the robust control (positively) invariaréts the set of non—negative vectors &, i.e. R? 2 {re
and application of these sets in robust control for constéhi R~ | z > 0}. A polyhedronis the (convex) intersection of a
systems are also discussed by a number of researchers [¥ite number of open and/or closed half-spacepplytope
[14]-[22]. One of the outstanding problems for autonomoug a closed and bounded polyhedron. A §etc R™ is a
linear discrete-time systems is exact characterizatiothef (-set if it is a convex, compact, set containing the origin in
minimal robustly positively invariant set [1], [10], [23ev- its non-empty interior.
eral authors have developed procedures for the computation
of the so—called outer, RRlapproximation, of the minimal Il. PRELIMINARIES
robust positively invariant (mRPI) set; see, for instanae, ] o . ] ]
procedure proposed in [24] and an alternative, simpler and We consider the following linear difference inclusion:
improved, procedure in [25]. However, these approximate t e Dir AW
techniques are developed for autonomous linear disdrate-t 7" €D(@, A W)
invariant systems. D(z,A,W) = {Az +w | A€ co(h), we W}

In this paper we address the issue of the computation AS{A;, eR™™ |ic Nj} (1)
of the outer, RPle-approximation, of the mRPI set for
linear difference inclusions. Linear Difference Inclusso wherez € R™ is the current state;™ is the successor state,

w € R™ is an unknown disturbance ande N* is a finite
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at different times. Let\ £ (A1, A2,...,A) and The following two definitions are standard definitions in
set invariance theory (see [1, Section 2] and [10, Sectipn 4]
AE{)e RY | Z A\ <1} ) Definition 1: A set(2 is a robust positively invariant (RPI)
set of the difference inclusion (1) P(2, A, W) C Q.

The system transition matriX can take any arbitrary value  Definition 2: A set D, is the minimal robust positively

in the setco(A) so that: invariant (mRPI) set for the difference inclusion (1),[%,
. is an RPI set and,, is contained in every closed RPI set
A - Z)"Ai’ e A 3) for the difference inclusion (1).

In this paper, following the abstract results developed
in [30] and used in [10], [18], [20]-[22], we establish thaet
setD,, exists and is unique over the class of closed RPI sets
for the difference inclusion (1), provided that Assumptidn
holds. Moreover, we provide an appropriate charactednati
of a family of RPI sets for the difference inclusion (1)
We refer toD(z, A, {0}) (iL.e. whenW — {01) as the and provide a method for the computation in finite time

e S of the so called outer, RRI-approximation [25, Section II]

no_rlphmal pa}rt of t?e I;pearfdlﬁerengg |nclusl!on (1)d.ﬁ of the mRPI setD,, — this is an RPI setD that satisfies
e main motivation for considering linear di erenceD cD CDOO@IB%”( ).

inclusions of the form (1) lies in the fact that a broad clalss o]
In order to discuss the convergence of the set sequences

&aken in the Hausdorff metric sense) and to clarify our use
of the term outer, RP¢-approximation of the sets we recall
=Fr+Gu+w, (F,G) € co(C) the following two definitions:
C2 {(F,G,;) e RV x R™™ | j e Nj} 4) Definition 3: If 2 and® are two non-empty, compact sets
in R™, then the Hausdorff metric is defined as
where,w € W. It is well known that the system (4) with
W = {0} can be stabilized if there exists a solution to 5(Q, ®) £ max{sup d(w,Q), sup d(¢, )} (8)
the following, possibly conservative, linear matrix inedjty wed PeQ
problem [27]:

i=1
where A can vary with time. In this paper we adapt the
following standing assumption:
Assumption 1:(i) The setW is aC-set inR™ and
(i) The matrix A at any point in time is given by (3) for
some (possibly time-varying) = (A1,..., ;) € A.

the following uncertain, linear discrete-time system:

. . o whered(z, Z) £ infycz ||z — |-
(Fi+GiK)" P(F+GK) =P <0, P=P" >0, Vic N, Definition 4: Given a scalae > 0 and a non-empty set
) Qc R, the setd c R is anouter e- -approximationof €2

WhenW = {0} and (5) has a solution, the stabilizing states  c ¢ c 0 @ Br () and an innek-approximation of¢)
feedback controller takes the form= Kz, the closed loop it ¢ c O c d @ En( ).

system is then of the form (1) witl; = F + G;K and the
corresponding Lyapunov function 18(z) £ ||z||%.
In view of (5) we assume, without loss of generality, that;
Assumption 2:There exists a paifP, ¢) € R"*™ x (0,1)
such thatP = P > 0 and

We also need the following definition in Section V,
where computational issues for the approximationing,
are discussed:

Definition 5: The support functiom(-) of a setX C
R”™, evaluated at a vector € R", is defined by:

ATPA; — P < —yP, Vi e N} (6) R .
Recalling a set of relevant results in [28, Section 3] on hx(n) = bup{?? z|xe X}
Stablllty of linear difference inclusions wheW = {0} Note that if X is a po'ytope then thsupremum|n

it follows that if (6) holds then the linear difference in- pefinition 5 is in factmaximum furthermore, the evaluation
clusion (1), whenW = {0}, is Absolutely Asymptotically of . (y) is a linear programmmg problem.
Stable (AAS)28] so thatlimy_.., (k) — 0, wherez(k) Let, for anyk € N, iy £ {io,41,...,4,} denote a sequence

is any particular solution, at time, of the nominal part of ¢ integer variables such that € N for eachj € N, and
the linear difference inclusionz( € D(z,A,{0})) given . & !

I -, ip =49 € NJr We denote the set of all integer sequences
the initial conditionz(0) and a particular real|zat|on of the , L .

. kbyIk_{1k|zjeN,jeNk},VkeN.Wedefme
matrix sequence A(0), A(1),...} with A(i) € A. It is also h tricesA. Ak hi 7. and
known that, if (6) holds then the nominal part of the Iinea{‘le mz; ncr(]a y; _th ”d t;l to tor ea;l 15 EA | an
difference inclusions (1) (witfW = {0}) is AAS for all — 4 wherel 1S he identity matrix an <
A € co(A) [27, Section 5.1.3]. It is easily shown that the set sequer{dék} defined by:

Given a non-empty sek C R", a finite set of matrices
A, and a setV we use, as is standard, the following notation

for the one step forward reachable set for the difference -
inclusion (1): IS the set sequence describing the forward reachable

tube [30]-[32] starting from the origin for the difference
D(X,A,W) 2 {Az+w |z € X, A€ co(A), we W} (7) inclusion (1). An alternative form for the set sequerida, }

Dk-‘rl éD(Dk5A7W)7 k€N+a DOZ{O} (9)



is given by: In going from the first line of (11) to the second line of (11)
. we have used a result from [34, Theorem 1.1.2], which states
thatco(X @ Y) = co(X) @ co(Y) for setsx’, ) C R™.
= . + _ _ ; _
D1 = @CO U A, W, ke N7, Do = {0} (10) The setR;, is the set of states that can be reached at time
3=0 \iie k, with respect to the nominal part of the difference inclu-
It follows from (9) and (10) that, for any finite integére  sion (1), i.e. D(z, A, {0}), starting from an initial condition
N, the setD; is a convex and compact set, since it is thdhat belongs to the se#/. The set sequencgR;} has an
Minkowski addition of a finite number of convex sets, eactplternative expression given by the following set recursio

of which is the convex hull of a finite union of compact N + A

, , R 2 D(Ry_1,A,{0}), ke NT, Rgy2W (13
sets. Moreover, sincé € interior(W) it follows that 0 € ¥ (B, 4, {0}), k € 0 (13)
interior(Dy,) for all k € N*. whereD(X, W, {0}) is defined by (7). It follows from (11)—

In the following section we show that there exists g12) that for allk € N we have:
compact RPI seD, satisfyingd(Duo, Di) — 0 ask — oo,
where{D;} is the set sequence defined in (9) ((10)). More- Di € Dip1 = Di © Ry, (14)

over, we characterize a family of RPI self«, s) for the The properties of the sequen¢®, } are summarized in
difference inclusion (1) that are outer, RPI approximagiof ¢ following theorem:

Do for a given pair(a; s) € (0,1) x N, i.e the setd)(a, s) Theorem 1:Suppose Assumptions 1 and 2 hold. Then the
su_ch tha}t they are RPI a}ridoo C D(a, s)..We also show that gat sequencéD; } defined by (9) ((10)) satisfies :

this family of sets contains another family of the sBXsv, s) () p, D1 C Dy @ 0B () for all k € N with 6 ¢
that are outer, RP4-approximation of the mRPI séd, i.e. (0,1) aﬁdu < o0, P

the sets satisfyDo, C D(a,s) © Doo © Bjj(c), fore > 0. (i) there exists a compact sél,, such thad (D, D) — 0
Additionally we establish an appropriate condition allogi o7 ., o

the computa_tion of a suitable pa@a.,s) € (0,1) x Nsuch  gjnce (D} is a Cauchy sequence of compact sdls, is
that D(«, 5) is an RPI set and safisfiéB.. C D(a,5) & he limit of this sequence and is given by:
Do, @ B} (e) for ana—priori given value ofe > 0.

I1l. THE MRPISET D, FOR THE LINEAR DIFFERENCE D, = closure @co U A, W (15)
INCLUSION D(z, A, W) j=0 i€,

In this section we discuss the existence of the mRPI s&obust positive invariance of the set,, in (15) is obvious. It
D., and a characterization of a collection of the RPI setts difficult to obtain an explicit characterization of the £&,,
that are RPI approximations of the mRPI get.. even for the simple case when= 1 (so thatA is singleton)
and the linear difference inclusion (1) is simply a lineand
A. Existence of a compact RPI seb,, satisfying invariant system, except maybe in some restrictive cases. W
0(Doo, Dy,) — 0 @ask — oo proceed to exploit linearity of the difference inclusion),(1

A collection of non-empty compact sets Rf*, equipped Ass_u.mpti.ons 1 and 2 and bgsic properties of MFnkowski
with the Hausdorff Metric, form a complete metric addition in _ordgr to characterize a sBX(«, s) that is an
space [33]. Hence, every convergent or Cauchy sequen@g! @Pproximation of the mRPI sél...

(whose elements belong to this collection) converges .to # An RPI approximation of the s, — the setD(a, s)
element of the space. It can be shown by exploiting ideas

from [10], [18], [20]-[22] that since each sé, is compact The discussion in the previous subsection motivates furthe
the set séquehc{eDk} is a Cauchy sequence. " investigation regarding robust positive invariance of ket

It follows from (10) that eachD,, k € N*, can be tion of sets for the difference inclusion (1). The following
expressed as: ’ ' result, established in [18], [21], allows one to compute an
RPI outer approximation of the mRPI set for the difference

k inclusion (1):
Diy1=Eco | |J AW Theorem 2:Suppose Assumptions 1 and 2 hold, then
§=0 i,€7; there exists a finite integer € N and a scalan € [0,1)

such that

k—1
= co ( U AikW> oo | |J AW R, C aW (16)
Jj=0

i €L 1 €L whereR; is defined in (12) ((13)). Moreover, given any pair
= Ry, ® Dy, (1) (a,s) € [0,1) x N* such that (16) is true, the s@(a, s)

where the set$:;, are defined by: defined by D(a, s) A (1 )—1D 17)
a,s) =(1l -« s

R £ co ( U AikW> ,keNt, Ry2W (12) s aconvex, compact RPI set for the difference inclusion (1)

i €Th such thatD., C D(«, s).



Theorem 2 can be used to develop and implement dtkence, an upper bound far can be obtained by using (21).
algorithm for the approximation ab,. Clearly, from The- Note also that (16) gives a lower bound far such that
orem 2, the setD(a, s) is an outer RPI approximation of D(«,s) is a RPI set that contain® ..

D.,. However, the former can be a poor approximation
of the latter, hence we proceed to present an extension of
the results for the LTI systems case, reported in [25], in The first computational issue is checking the set inclusion

V. COMPUTATIONAL |ISSUES

order to provide a way to obtain a sé(«,s) such that
Do € D(a,s) € Do, @ Bj(e) for ana-priori givene > 0.

IV. LIMITING BEHAVIOR OF THERPISET D(a, s)
In order to be able to evaluate how “wellD(q, s)

in (16). Given anx € [0,1) we proceed as follows:

Rs CaW & co(Uj,er, A, W) CaW &

Ui,ez, AW C oW & A4, W CaW, Vi, € Z, (22)

approximatesD.., we have to study the limiting behaviour Where we have used Assumption 1(i) and the fact Wais

of D(a, s) ass — oo anda \, 0. Given anya € (0, 1), the
smallest value of such that (16) holds is:

s%(a) £ inf{s e NT | R, C aW} (18)

The smallesty such that (16) holds for a givenc N7 is:

a®(s) £ inf{a € Ry | Ry C aW} (19)

Note that, for anya € (0,1) the s°(«) in (18) is finite

and thata'(s) satisfiesa’(s) € [0,1) if and only if s is
sufficiently large.

The following two theorems extend the results establish
in [20], [22] for switching systems and in [25] for linear

systems to the class of linear difference inclusions (1).

The first theorem addresses the issue of the limitin

behaviour ofD(a, s):

Theorem 3:Suppose Assumptions 1 and 2 hold, then

i) D(a’(s),s) — Do @Ss — o0

i) D(a,s%a)) = Dy asa \, 0

Theorem 3 implies thatD(«, s) converges toD., as
s — oo or a \, 0. Thus, by increasing and calculatingx
from (19), or by decreasing and calculatings from (18),
one can obtain a better approximation bf,,. However,

e

a convex set. The equivalence between the second and the
third term holds since for any compact $etand a convex
setW, the inclusionco(2) € W holds if and only ifQ C W.
In order to ensure satisfaction of the set inclusion (16) we
need to choose a sufficiently largesuch that a finite set of
simple and convex inclusions hold.

An algorithm for the computation of an RPI sBX(«, s)
satisfying Do C D(a,s) C Do @ By (¢) for a givene > 0
can be formulated from Theorem 4 by observing that the
lower and upper bounds imposed arare specified by (16)
Eclpd (21) respectively. The computation &f(s) depends
on the calculation of4;, W for all i, € Z; with k¥ € N;.
When W is a polytope, the paif«, s) and M (s) can be
calculatedwithout having to explicitly computany of the
gfore—mentioned setB,, and Rj,.

Suppose thatV £ {w € R"|ffw < g;,j € N;}, where
[ € N4. The fact thaD € interior(W) implies that(f;, g;) €
R™x(0,00),Vj € N;. By definition 5 and by basic properties
of the support function it can be shown that (22) is satisfied
if and only if

[ A w < ag;, Yw e W & hw(Alf;) <ag;  (23)

given a pre-specified accuracy, it is not clear yet how to oor &l is € Z, andj € N;. Furthermore,

tain a pair(«, s) such thatD(«, s) efficiently approximates

D, with the given accuracy.

This issue is dealt in the next theorem, which provides
conditions that the paifa, s) has to satisfy in order to guar-

antee that the seb(q, s) is an outer RPE-approximation
of the mRPI setD ..

Theorem 4:Suppose Assumptions 1 and 2 hold, then for
all e > 0 there exists a paif, s) € [0,1)xNT such that (16)

and
a(l—a)"'Dy CB)(e) (20)

hold. Moreover, for any paif«,s) € [0,1) x NT such
that (16) and (20) hold, the sé?(a,s) is an outer RPE-
approximationof D..

Theorem 4 clearly states that given arpriori £ > 0, a

hw (AL f)) < ag;, Vis €T, Vj €N, &
maxijAigwgagj, Vis € I, V5 €Ny &
weWw ;
T .
max max [; A; w < ag;, Vj €N &
iSGIs weW f] 1s — gj’ ] l
maxj, ez, MaXyew ijAisw

max <«
JEN; g;

(24)

Then, equation (24) yields the simple observation thagmiv
ans € N7,

T
maxi, ez, MaxXyew f; Ai,w

a’(s) = max

25
ma o (25)

Equation (25) allows us to calculate®(s) for a givens

without having to explicitly compute the sé&;. Of course,

collection of(«, s) can be found to satisfy (16) and (20). Fol-(16) is satisfied if and only it:°(s) € [0, 1).

lowing this, any sefD(«, s) is an outer RPk-approximation
of Do, i.8. Do € D(a,8) € Doo © B ().

Let M(s) = sup,{|zl, | = € Ds} and M, =
sup {||lzll, | # € Dw}. Since Dy, C D it follows that
M(s) < M and

a<eled+ My) <ele+ M(s)™t (21)

The second issue is the calculation 8f(s) without
having to calculateD,. SinceW (and D) are polytopes,
it is appropriate to use the infinity norm for the calculation
of M(s). Then:

M(s) = Squ |z]]co = mvin{’y | Ds CBZ (v)}. (26)



which is the minimal value ofy for which Dy C BY (y) simply adding max;, ez, , MaXyew e;fAis_lw and
holds. The corresponding value of and hence of/(s), max;, ez, , maxy,ew(—e] )A;,_, w respectively.
can be computed without having to explicitly compube, Algorithm 1 initially setss to a fixed value (usually)
as shown next. and increases it at each step. The valuesxadnd M (s)

By recalling the definition of the set sequended®.} and are calculated in each iteration using (25) and (30). The
{Dy} (see equations (10) and (12), respectively) it followslgorithm stops when the inequality (21) is satisfied, inchihi

that: case the—priori specified accuracy > 0 has been obtained.
D — @R @7) The e-approximationD(«, s) of D, can then be computed
s k as the Minkowski sum of a finite number of sets.

The complexity of Algorithm 1 may increase as the

It is easily shown that: dimension of the linear difference inclusion apéhcreases.
s—1 s—1 However, the algorithm involves the solution of a number
D, CBL(y) = @Rk CBL(y) & @Alkw CB" (y) of linear programming problems ((25) and (30)) that can be

k=0 k=0 solved more efficiently than working with set calculatioas (

Vi, € Zp,, Vk € Ny_q (28) in (16) and (17)). It is also very useful to note thafVif =

{Ew | |lw|l« < 1}, whereE is non-singular, then one can
The last inclusion is satisfied if and only if the following computen®(s) and M (s) without having to resort to solving

inequalities hold: linear programs, sincenax,cw e] A, w = |[ET AT e
s—1 s—1
Zefflikw <, Z(—ef)Aikw <~ VI. ILLUSTRATIVE EXAMPLE
k=0 k=0 The proposed procedure is illustrated by considering an
Vw € W, Viy € Iy, Yk € Ny_y, Vj € N (29) uncertain discrete-time (4) with
wheree; is the j standard basis vector R". The smallest F = [ 12 1 ] Py = [ 08 1 } (31)
value fory can be computed by calculating the maximum 0 1 0 1

of the termszk oel Ay w and Y7o (—eT) A w for all

T . .
weW, iy e Th ke Ns L andj € {1 ..,n}. Then andG = le =Gy =[1 1] . The additive dleturbance
set isW = {w € R" | |w|le < 0.1}. The nominal part

1 of the uncertain system (31) can be quadratically stalilize
M(s) = ]e?féx,n}{ f,f?z’i s Ci j A, by the state feedback controlléf = [-1.2 — 1]. Assump-
o tion 2 is satisfied with) = 0.33 and
—e 4.
kzoiglea;i max(—ej ) Ay, w} (30) p_ [ 2.9848 (1) ] . (32)

The values for’(s) and M (s) can be computed from (25) The setsDy,, k = 1,2, 3,4, are shown in Figure 1 together

and (30). The results of the above analysis can now be usggh D(3.07-1072,6) and D(2.0134-10~%, 14). The approx-
to formulate Algorithm 1 for the calculation d(q, s).

D(2.0134-1075,14) D(3.07-1072,6)
Algorithm 1 Computation of an RPI outerapproximation ol \
of the mRPI setD, '
Require: A, W ande >0
1: Choose any € N (ideally, sets < 0).
repeat
Increments by one.
Computea®(s) using (25) and setr — a°(s). s
ComputeM (s) using (30).
until a <e/(e + M(s))
ComputeD; as the Minkowski sum (11) and scale it to
give D(a,s) £ (1 —a)™'D,.

021

0.1r

-0.1f

NoahRwN

In order to reduce the computational effort for  -osf
the calculation of M(s) we observe that it is not ‘ : ‘ ‘ ‘ :

I
-0.15 -0.1 -0.05 0 0.05 0.1 0.15

necessary to calculaté"; — Omaxlkezk max,ew €; As, w 1

and > Omaxlkezk maxyew(—e )Alkw at each Fig. 1. ApproximationsD(3.07 - 10~2,6) and D(2.0134 - 105, 14) of
iteration of Algorithm 1. These sums would havep,,, and the setdy, k = 1,2, 3, 4.

been calculated at a previous iteration; they can be

stored and then been updated in the next iteration bgnations D(3.07 - 1072,6) and D(2.0134 - 10~°,14) have




been computed for the given accuraciessof 10~2 and
10~° respectively.

The sequence Dy} is nondecreasing and(a, s) de-
creases asy decreases or increases. Hence both set
sequences converge ... Moreover, fora, = 2.0134-107°
ands = 14, we have(l — a)~! = 1 and henceD;; =
D(2.0134 - 107°,14). Since D14, C D, C D(2.0134 -
107°,14) then D(2.0134 - 107°,14) = D,

(12]

(23]

[14]

VIlI. CONCLUSIONS [15]

The novel results reported in this paper further extend
the existing research for the computation and approximats]
tion of the mRPI set for autonomous linear discrete-time
systems [25]. The results have been extended to addr
the more general and difficult case tihear difference
inclusions A relevant contribution is a method for the (18]
computation of the outer RRFapproximation, of the mRPI [19]
set for linear difference inclusionsfor an a priori given
e > 0. The proposed method is efficient in that it involves the
computation of a number of linear programming problem
and simple algebraic calculations instead of less tragtabl
calculations with sets. It is in principle possible to fuath
improve computational aspects and this extension is acs!ubj(l:2
of current research.

The results presented in this paper can be exploited in
robust control of linear difference inclusions subject t
constraints and additive but bounded disturbances [5], [7]
[11]. [23]
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