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Abstract— This paper provides a new and efficient method
for the computation of an arbitrarily close outer robust pos-
itively invariant (RPI) approximation to the minimal robust
positively invariant (mRPI) set for linear difference inclusions.
It is assumed that the linear difference inclusion is absolutely
asymptotically stable (AAS) in the absence of an additive state
disturbance, which is the case for parametrically uncertain or
switching linear discrete-time systems controlled by a stabilizing
linear state feedback controller.

I. I NTRODUCTION

One of the fundamental tools employed in robust control
of constrained dynamical systems is set invariance theory [1].
Set invariance is used in the design of reference governors [2]
and predictive controllers [3]–[5] to guarantee constraint sat-
isfaction, stability and convergence properties. One technique
for robust control of constrained discrete-time systems is
robust time-optimal control [6]–[9] that is based on the com-
putation of a sequence of robust control (positively) invariant
sets when the target set is also a robust control (positively)
invariant set. A suitable target set in robust time-optimal
control is the minimal robust positively invariant set [10].
The relevance of the minimal (in an appropriate sense) robust
control (positively) invariant set is demonstrated by the novel
robust predictive controllers, recently proposed in [11]–[13].

Computational issues and algorithmic procedures for the
calculation of the robust control (positively) invariant sets
and application of these sets in robust control for constrained
systems are also discussed by a number of researchers [10],
[14]–[22]. One of the outstanding problems for autonomous
linear discrete-time systems is exact characterization ofthe
minimal robustly positively invariant set [1], [10], [23].Sev-
eral authors have developed procedures for the computation
of the so–called outer, RPIε-approximation, of the minimal
robust positively invariant (mRPI) set; see, for instance,a
procedure proposed in [24] and an alternative, simpler and
improved, procedure in [25]. However, these approximate
techniques are developed for autonomous linear discrete-time
invariant systems.

In this paper we address the issue of the computation
of the outer, RPIε-approximation, of the mRPI set for
linear difference inclusions. Linear Difference Inclusions
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(LDI) are used for modeling linear systems with parametric
uncertainty; see, for example, [26], [27], and linear systems
with switching dynamics [28]. This paper extends the results
reported in [18], [20], [21], [25].

This paper is organized as follows. Section II is concerned
with preliminaries. Section III establishes existence of the
mRPI set for linear difference inclusions and provides a
characterization of a family of robust positively invariant sets
for linear difference inclusions that are outer approximations
of the mRPI set. Section IV considers the limiting behaviour
of these RPI approximations and provides a condition for
characterization of a family of outer, RPIε-approximations
of the mRPI set for linear difference inclusions. Section V
presents efficient computational procedures when the distur-
bance set is a polytope. Section VI gives an illustrative ex-
ample. Finally, Section VII presents conclusions. All proofs
for the results stated in this paper can be found in [29].

BASIC NOTATION: Let N , {0, 1, 2, . . .}, N
+ ,

{1, 2, . . .}; for q ∈ N
+ let Nq , {0, . . . , q} and N

+
q ,

{1, . . . , q}. Let B
n
p (γ) , {x ∈ R

n| ||x||p ≤ γ}, where|| · ||p
denotes the vectorp-norm. Given an integers ∈ N

+ and the
setsΩi ⊂ R

n, i ∈ N
+
s , the Minkowski set addition is defined

as
⊕s

i=1
Ωi , Ω1 ⊕Ω2 ⊕ . . .⊕Ωs = {

∑s

i=1
ωi | ωi ∈ Ωi}.

Given the setΩ ⊂ R
n, interior(Ω) denotes its interior,

closure(Ω) its closure andco(Ω) its convex hull.Rn
+ denotes

the set of non–negative vectors inRn, i.e. R
n
+ , {x ∈

R
n | x ≥ 0}. A polyhedronis the (convex) intersection of a

finite number of open and/or closed half-spaces, apolytope
is a closed and bounded polyhedron. A setΩ ⊂ R

n is a
C-set if it is a convex, compact, set containing the origin in
its non-empty interior.

II. PRELIMINARIES

We consider the following linear difference inclusion:

x+ ∈ D(x, A, W)

D(x, A, W) , {Ax + w | A ∈ co(A), w ∈ W}

A , {Ai ∈ R
n×n | i ∈ N

+
q } (1)

wherex ∈ R
n is the current state,x+ is the successor state,

w ∈ R
n is an unknown disturbance andq ∈ N

+ is a finite
integer. The system is subject to an external additive state
disturbancew that is contained in aC-set W ⊂ R

n. The
system transition matrixA is uncertain and is known only
to the extent that it belongs to the convex hull of a finite
set A of known matricesAi; furthermore,A is in principle
time-varying and differentA from the setco(A) can occur



at different times. Letλ , (λ1, λ2, . . . , λq) and

Λ , {λ ∈ R
q
+ |

q
∑

i=1

λi ≤ 1} (2)

The system transition matrixA can take any arbitrary value
in the setco(A) so that:

A =

q
∑

i=1

λiAi, λ ∈ Λ (3)

where λ can vary with time. In this paper we adapt the
following standing assumption:

Assumption 1:(i) The setW is a C-set inR
n and

(ii) The matrix A at any point in time is given by (3) for
some (possibly time-varying)λ = (λ1, . . . , λq) ∈ Λ.

We refer toD(x, A, {0}) (i.e. when W = {0}) as the
nominal part of the linear difference inclusion (1).

The main motivation for considering linear difference
inclusions of the form (1) lies in the fact that a broad class of
systems can be modeled by this form. For example, consider
the following uncertain, linear discrete-time system:

x+ = Fx + Gu + w , (F,G) ∈ co(C)

C , {(Fi, Gi) ∈ R
n×n × R

n×m | i ∈ N
+
q } (4)

where,w ∈ W. It is well known that the system (4) with
W = {0} can be stabilized if there exists a solution to
the following, possibly conservative, linear matrix inequality
problem [27]:

(Fi+GiK)T P (Fi+GiK)−P < 0, P = PT > 0, ∀i ∈ N
+
q

(5)
WhenW = {0} and (5) has a solution, the stabilizing state
feedback controller takes the formu = Kx, the closed loop
system is then of the form (1) withAi = Fi + GiK and the
corresponding Lyapunov function isV (x) , ||x||2P .

In view of (5) we assume, without loss of generality, that:
Assumption 2:There exists a pair(P,ψ) ∈ R

n×n× (0, 1)
such thatP = PT > 0 and

AT
i PAi − P ≤ −ψP, ∀i ∈ N

+
q (6)

Recalling a set of relevant results in [28, Section 3] on
stability of linear difference inclusions whenW = {0},
it follows that if (6) holds then the linear difference in-
clusion (1), whenW = {0}, is Absolutely Asymptotically
Stable (AAS)[28] so that limk→∞ x(k) → 0, wherex(k)
is any particular solution, at timek, of the nominal part of
the linear difference inclusion (x+ ∈ D(x, A, {0})) given
the initial conditionx(0) and a particular realization of the
matrix sequence{A(0), A(1), . . .} with A(i) ∈ A. It is also
known that, if (6) holds then the nominal part of the linear
difference inclusions (1) (withW = {0}) is AAS for all
A ∈ co(A) [27, Section 5.1.3].

Given a non-empty setX ⊂ R
n, a finite set of matrices

A, and a setW we use, as is standard, the following notation
for the one step forward reachable set for the difference
inclusion (1):

D(X, A, W) , {Ax+w | x ∈ X, A ∈ co(A), w ∈ W} (7)

The following two definitions are standard definitions in
set invariance theory (see [1, Section 2] and [10, Section 4]):

Definition 1: A setΩ is a robust positively invariant (RPI)
set of the difference inclusion (1) ifD(Ω, A, W) ⊆ Ω.

Definition 2: A set D∞ is the minimal robust positively
invariant (mRPI) set for the difference inclusion (1), ifD∞

is an RPI set andD∞ is contained in every closed RPI set
for the difference inclusion (1).

In this paper, following the abstract results developed
in [30] and used in [10], [18], [20]–[22], we establish that the
setD∞ exists and is unique over the class of closed RPI sets
for the difference inclusion (1), provided that Assumption2
holds. Moreover, we provide an appropriate characterization
of a family of RPI sets for the difference inclusion (1)
and provide a method for the computation in finite time
of the so called outer, RPIε-approximation [25, Section II]
of the mRPI setD∞ – this is an RPI setD that satisfies
D∞ ⊆ D ⊆ D∞ ⊕ B

n
p (ε).

In order to discuss the convergence of the set sequences
(taken in the Hausdorff metric sense) and to clarify our use
of the term outer, RPIε-approximation of the sets we recall
the following two definitions:

Definition 3: If Ω andΦ are two non-empty, compact sets
in R

n, then the Hausdorff metric is defined as

δ(Ω,Φ) , max{sup
ω∈Φ

d(ω,Ω), sup
φ∈Ω

d(φ,Φ)} (8)

whered(z,Z) , infy∈Z ||z − y||p.
Definition 4: Given a scalarε > 0 and a non-empty set

Ω ⊂ R
n, the setΦ ⊂ R

n is an outer ε-approximationof Ω
if Ω ⊆ Φ ⊆ Ω ⊕ B

n
p (ε) and an innerε-approximation ofΩ

if Φ ⊆ Ω ⊆ Φ ⊕ B
n
p (ε).

We also need the following definition in Section V,
where computational issues for the approximation ofD∞

are discussed:
Definition 5: The support functionhX (·) of a setX ⊂

R
n, evaluated at a vectorη ∈ R

n, is defined by:

hX (η) , sup
x

{ηT x | x ∈ X}.

Note that if X is a polytope then thesupremumin
Definition 5 is in factmaximum; furthermore, the evaluation
of hX (η) is a linear programming problem.

Let, for anyk ∈ N, ik , {i0, i1, . . . , ik} denote a sequence
of integer variables such thatij ∈ N

+
q for eachj ∈ Nk and

i0 , i0 ∈ N
+
q . We denote the set of all integer sequences

ik by Ik , {ik | ij ∈ N
+
q , j ∈ Nk}, ∀k ∈ N. We define

the matricesAik
, Aik

. . . Ai1Ai0 for each ik ∈ Ik and
Ai0

, I whereI is the identity matrix andAij
∈ A.

It is easily shown that the set sequence{Dk} defined by:

Dk+1 , D(Dk, A, W), k ∈ N
+, D0 = {0} (9)

is the set sequence describing the forward reachable
tube [30]–[32] starting from the origin for the difference
inclusion (1). An alternative form for the set sequence{Dk}



is given by:

Dk+1 =

k
⊕

j=0

co





⋃

ij∈Ij

Aij
W



 , k ∈ N
+,D0 = {0} (10)

It follows from (9) and (10) that, for any finite integerk ∈
N, the setDk is a convex and compact set, since it is the
Minkowski addition of a finite number of convex sets, each
of which is the convex hull of a finite union of compact
sets. Moreover, since0 ∈ interior(W) it follows that 0 ∈
interior(Dk) for all k ∈ N

+.
In the following section we show that there exists a

compact RPI setD∞ satisfyingδ(D∞,Dk) → 0 ask → ∞,
where{Dk} is the set sequence defined in (9) ((10)). More-
over, we characterize a family of RPI setsD(α, s) for the
difference inclusion (1) that are outer, RPI approximations of
D∞ for a given pair(α, s) ∈ (0, 1)×N, i.e the setsD(α, s)
such that they are RPI andD∞ ⊆ D(α, s). We also show that
this family of sets contains another family of the setsD(α, s)
that are outer, RPIε-approximation of the mRPI setD∞, i.e.
the sets satisfyD∞ ⊆ D(α, s) ⊆ D∞ ⊕ B

n
p (ε), for ε > 0.

Additionally we establish an appropriate condition allowing
the computation of a suitable pair(α, s) ∈ (0, 1) × N such
that D(α, s) is an RPI set and satisfiesD∞ ⊆ D(α, s) ⊆
D∞ ⊕ B

n
p (ε) for an a–priori given value ofε > 0.

III. T HE MRPI SETD∞ FOR THE LINEAR DIFFERENCE

INCLUSION D(x, A, W)

In this section we discuss the existence of the mRPI set
D∞ and a characterization of a collection of the RPI sets
that are RPI approximations of the mRPI setD∞.

A. Existence of a compact RPI setD∞ satisfying
δ(D∞,Dk) → 0 as k → ∞

A collection of non-empty compact sets inRn, equipped
with the Hausdorff Metric, form a complete metric
space [33]. Hence, every convergent or Cauchy sequence
(whose elements belong to this collection) converges to an
element of the space. It can be shown by exploiting ideas
from [10], [18], [20]–[22] that since each setDk is compact,
the set sequence{Dk} is a Cauchy sequence.

It follows from (10) that eachDk, k ∈ N
+, can be

expressed as:

Dk+1 =

k
⊕

j=0

co





⋃

ij∈Ij

Aij
W





= co

(

⋃

ik∈Ik

Aik
W

)

⊕
k−1
⊕

j=0

co





⋃

ij∈Ij

Aij
W





= Rk ⊕ Dk (11)

where the setsRk are defined by:

Rk , co

(

⋃

ik∈Ik

Aik
W

)

, k ∈ N
+, R0 , W (12)

In going from the first line of (11) to the second line of (11)
we have used a result from [34, Theorem 1.1.2], which states
that co(X ⊕ Y) = co(X ) ⊕ co(Y) for setsX ,Y ⊂ R

n.
The setRk is the set of states that can be reached at time

k, with respect to the nominal part of the difference inclu-
sion (1), i.e. D(x, A, {0}), starting from an initial condition
that belongs to the setW. The set sequence{Rk} has an
alternative expression given by the following set recursion:

Rk , D(Rk−1, A, {0}), k ∈ N
+, R0 , W (13)

whereD(X, W, {0}) is defined by (7). It follows from (11)–
(12) that for allk ∈ N we have:

Dk ⊆ Dk+1 = Dk ⊕ Rk (14)

The properties of the sequence{Dk} are summarized in
the following theorem:

Theorem 1:Suppose Assumptions 1 and 2 hold. Then the
set sequence{Dk} defined by (9) ((10)) satisfies :
(i) Dk ⊆ Dk+1 ⊆ Dk ⊕ θk

B
n
p (µ) for all k ∈ N with θ ∈

(0, 1) andµ < ∞,
(ii) there exists a compact setD∞ such thatδ(D∞,Dk) → 0
ask → ∞.
Since{Dk} is a Cauchy sequence of compact sets,D∞ is
the limit of this sequence and is given by:

D∞ = closure





∞
⊕

j=0

co





⋃

ij∈Ij

Aij
W







 (15)

Robust positive invariance of the setD∞ in (15) is obvious. It
is difficult to obtain an explicit characterization of the set D∞

even for the simple case whenq = 1 (so thatA is singleton)
and the linear difference inclusion (1) is simply a linear time-
invariant system, except maybe in some restrictive cases. We
proceed to exploit linearity of the difference inclusion (1),
Assumptions 1 and 2 and basic properties of Minkowski
addition in order to characterize a setD(α, s) that is an
RPI approximation of the mRPI setD∞.

B. An RPI approximation of the setD∞ – the setD(α, s)

The discussion in the previous subsection motivates further
investigation regarding robust positive invariance of a collec-
tion of sets for the difference inclusion (1). The following
result, established in [18], [21], allows one to compute an
RPI outer approximation of the mRPI set for the difference
inclusion (1):

Theorem 2:Suppose Assumptions 1 and 2 hold, then
there exists a finite integers ∈ N

+ and a scalarα ∈ [0, 1)
such that

Rs ⊆ αW (16)

whereRs is defined in (12) ((13)). Moreover, given any pair
(α, s) ∈ [0, 1) × N

+ such that (16) is true, the setD(α, s)
defined by

D(α, s) , (1 − α)−1Ds (17)

is a convex, compact RPI set for the difference inclusion (1)
such thatD∞ ⊆ D(α, s).



Theorem 2 can be used to develop and implement an
algorithm for the approximation ofD∞. Clearly, from The-
orem 2, the setD(α, s) is an outer RPI approximation of
D∞. However, the former can be a poor approximation
of the latter, hence we proceed to present an extension of
the results for the LTI systems case, reported in [25], in
order to provide a way to obtain a setD(α, s) such that
D∞ ⊆ D(α, s) ⊆ D∞ ⊕ B

n
p (ε) for an a-priori given ε > 0.

IV. L IMITING BEHAVIOR OF THE RPI SETD(α, s)

In order to be able to evaluate how “well”D(α, s)
approximatesD∞, we have to study the limiting behaviour
of D(α, s) ass → ∞ andα ց 0. Given anyα ∈ (0, 1), the
smallest value ofs such that (16) holds is:

s0(α) , inf
s
{s ∈ N

+ | Rs ⊆ αW} (18)

The smallestα such that (16) holds for a givens ∈ N
+ is:

α0(s) , inf
α
{α ∈ R+ | Rs ⊆ αW} (19)

Note that, for anyα ∈ (0, 1) the s0(α) in (18) is finite
and thatα0(s) satisfiesα0(s) ∈ [0, 1) if and only if s is
sufficiently large.

The following two theorems extend the results established
in [20], [22] for switching systems and in [25] for linear
systems to the class of linear difference inclusions (1).

The first theorem addresses the issue of the limiting
behaviour ofD(α, s):

Theorem 3:Suppose Assumptions 1 and 2 hold, then
i) D(α0(s), s) → D∞ ass → ∞

ii) D(α, s0(α)) → D∞ asα ց 0
Theorem 3 implies thatD(α, s) converges toD∞ as

s → ∞ or α ց 0. Thus, by increasings and calculatingα
from (19), or by decreasingα and calculatings from (18),
one can obtain a better approximation ofD∞. However,
given a pre-specified accuracy, it is not clear yet how to ob-
tain a pair(α, s) such thatD(α, s) efficiently approximates
D∞ with the given accuracy.

This issue is dealt in the next theorem, which provides
conditions that the pair(α, s) has to satisfy in order to guar-
antee that the setD(α, s) is an outer RPIε-approximation
of the mRPI setD∞.

Theorem 4:Suppose Assumptions 1 and 2 hold, then for
all ε > 0 there exists a pair(α, s) ∈ [0, 1)×N

+ such that (16)
and

α(1 − α)−1Ds ⊆ B
n
p (ε) (20)

hold. Moreover, for any pair(α, s) ∈ [0, 1) × N
+ such

that (16) and (20) hold, the setD(α, s) is an outer RPIε-
approximationof D∞.

Theorem 4 clearly states that given ana priori ε > 0, a
collection of(α, s) can be found to satisfy (16) and (20). Fol-
lowing this, any setD(α, s) is an outer RPIε-approximation
of D∞, i.e. D∞ ⊆ D(α, s) ⊆ D∞ ⊕ B

n
p (ε).

Let M(s) , supz{‖z‖p | z ∈ Ds} and M∞ ,

supz{‖z‖p | z ∈ D∞}. Since Ds ⊆ D∞ it follows that
M(s) ≤ M∞ and

α ≤ ε(ε + M∞)−1 ≤ ε(ε + M(s))−1 (21)

Hence, an upper bound forα can be obtained by using (21).
Note also that (16) gives a lower bound forα such that
D(α, s) is a RPI set that containsD∞.

V. COMPUTATIONAL ISSUES

The first computational issue is checking the set inclusion
in (16). Given anα ∈ [0, 1) we proceed as follows:

Rs ⊆ αW ⇔ co (∪is∈Is
Ais

W) ⊆ αW ⇔

∪is∈Is
Ais

W ⊆ αW ⇔ Ais
W ⊆ αW, ∀is ∈ Is (22)

where we have used Assumption 1(i) and the fact thatW is
a convex set. The equivalence between the second and the
third term holds since for any compact setΩ and a convex
setW, the inclusionco(Ω) ⊆ W holds if and only ifΩ ⊆ W.
In order to ensure satisfaction of the set inclusion (16) we
need to choose a sufficiently larges such that a finite set of
simple and convex inclusions hold.

An algorithm for the computation of an RPI setD(α, s)
satisfyingD∞ ⊆ D(α, s) ⊆ D∞ ⊕ B

n
p (ε) for a givenε > 0

can be formulated from Theorem 4 by observing that the
lower and upper bounds imposed onα are specified by (16)
and (21) respectively. The computation ofM(s) depends
on the calculation ofAik

W for all ik ∈ Ik with k ∈ Ns.
When W is a polytope, the pair(α, s) and M(s) can be
calculatedwithout having to explicitly computeany of the
afore-mentioned setsDk andRk.

Suppose thatW , {w ∈ R
n|fT

j w ≤ gj , j ∈ Nl}, where
l ∈ N+. The fact that0 ∈ interior(W) implies that(fj , gj) ∈
R

n×(0,∞),∀j ∈ Nl. By definition 5 and by basic properties
of the support function it can be shown that (22) is satisfied
if and only if

fT
j Ais

w ≤ αgj , ∀w ∈ W ⇔ hW(AT
is

fj) ≤ αgj (23)

for all is ∈ Is and j ∈ Nl. Furthermore,

hW(AT
is

fj) ≤ αgj , ∀is ∈ Is, ∀j ∈ Nl ⇔

max
w∈W

fT
j Ais

w ≤ αgj , ∀is ∈ Is, ∀j ∈ Nl ⇔

max
is∈Is

max
w∈W

fT
j Ais

w ≤ αgj , ∀j ∈ Nl ⇔

max
j∈Nl

maxis∈Is
maxw∈W fT

j Ais
w

gj

≤ α (24)

Then, equation (24) yields the simple observation that, given
an s ∈ N

+,

αo(s) = max
j∈Nl

maxis∈Is
maxw∈W fT

j Ais
w

gj

(25)

Equation (25) allows us to calculateαo(s) for a given s
without having to explicitly compute the setRs. Of course,
(16) is satisfied if and only ifαo(s) ∈ [0, 1).

The second issue is the calculation ofM(s) without
having to calculateDs. Since W (and Ds) are polytopes,
it is appropriate to use the infinity norm for the calculation
of M(s). Then:

M(s) = sup
z∈Ds

‖z‖∞ = min
γ

{γ | Ds ⊆ B
n
∞(γ)}. (26)



which is the minimal value ofγ for which Ds ⊆ B
n
∞(γ)

holds. The corresponding value ofγ, and hence ofM(s),
can be computed without having to explicitly computeDs,
as shown next.

By recalling the definition of the set sequences{Rk} and
{Dk} (see equations (10) and (12), respectively) it follows
that:

Ds =

s−1
⊕

k=0

Rk (27)

It is easily shown that:

Ds ⊆ B
n
∞(γ) ⇔

s−1
⊕

k=0

Rk ⊆ B
n
∞(γ) ⇔

s−1
⊕

k=0

Aik
W ⊆ B

n
∞(γ)

∀ik ∈ Ik, ∀k ∈ Ns−1 (28)

The last inclusion is satisfied if and only if the following
inequalities hold:

s−1
∑

k=0

eT
j Aik

w ≤ γ,

s−1
∑

k=0

(−eT
j )Aik

w ≤ γ

∀w ∈ W, ∀ik ∈ Ik, ∀k ∈ Ns−1, ∀j ∈ N
+
n (29)

whereej is thejth standard basis vector inRn. The smallest
value for γ can be computed by calculating the maximum
of the terms

∑s−1

k=0
eT
j Aik

w and
∑s−1

k=0
(−eT

j )Aik
w for all

w ∈ W, ik ∈ Ik, k ∈ Ns−1 and j ∈ {1, . . . , n}. Then

M(s) = max
j∈{1,...,n}

{

s−1
∑

k=0

max
ik∈Ik

max
w∈W

eT
j Aik

w,

s−1
∑

k=0

max
ik∈Ik

max
w∈W

(−eT
j )Aik

w} (30)

The values forαo(s) andM(s) can be computed from (25)
and (30). The results of the above analysis can now be used
to formulate Algorithm 1 for the calculation ofD(α, s).

Algorithm 1 Computation of an RPI outerε-approximation
of the mRPI setD∞

Require: A,W andε > 0
1: Choose anys ∈ N (ideally, sets ← 0).
2: repeat
3: Increments by one.
4: Computeαo(s) using (25) and setα ← αo(s).
5: ComputeM(s) using (30).
6: until α ≤ ε/(ε + M(s))
7: ComputeDs as the Minkowski sum (11) and scale it to

give D(α, s) , (1 − α)−1Ds.

In order to reduce the computational effort for
the calculation of M(s) we observe that it is not
necessary to calculate

∑s−2

k=0
maxik∈Ik

maxw∈W eT
j Aik

w

and
∑s−2

k=0
maxik∈Ik

maxw∈W(−eT
j )Aik

w at each
iteration of Algorithm 1. These sums would have
been calculated at a previous iteration; they can be
stored and then been updated in the next iteration by

simply adding maxis−1∈Is−1
maxw∈W eT

j Ais−1
w and

maxis−1∈Is−1
maxw∈W(−eT

j )Ais−1
w respectively.

Algorithm 1 initially setss to a fixed value (usually0)
and increases it at each step. The values ofα and M(s)
are calculated in each iteration using (25) and (30). The
algorithm stops when the inequality (21) is satisfied, in which
case thea–priori specified accuracyε > 0 has been obtained.
The ε-approximationD(α, s) of D∞ can then be computed
as the Minkowski sum of a finite number of sets.

The complexity of Algorithm 1 may increase as the
dimension of the linear difference inclusion andq increases.
However, the algorithm involves the solution of a number
of linear programming problems ((25) and (30)) that can be
solved more efficiently than working with set calculations (as
in (16) and (17)). It is also very useful to note that ifW =
{Ew | ‖w‖∞ ≤ 1}, whereE is non-singular, then one can
computeα◦(s) andM(s) without having to resort to solving
linear programs, sincemaxw∈W eT

j Aik
w = ‖ETAT

ik
ej‖1.

VI. I LLUSTRATIVE EXAMPLE

The proposed procedure is illustrated by considering an
uncertain discrete-time (4) with

F1 =

[

1.2 1
0 1

]

, F2 =

[

0.8 1
0 1

]

(31)

and G = G1 = G2 =
[

1 1
]T

. The additive disturbance
set is W , {w ∈ R

n | ‖w‖∞ ≤ 0.1}. The nominal part
of the uncertain system (31) can be quadratically stabilized
by the state feedback controllerK = [−1.2 − 1]. Assump-
tion 2 is satisfied withψ = 0.33 and

P =

[

2.9048 0
0 1

]

. (32)

The setsDk, k = 1, 2, 3, 4, are shown in Figure 1 together
with D(3.07·10−2, 6) andD(2.0134·10−5, 14). The approx-
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Fig. 1. ApproximationsD(3.07 · 10−2, 6) andD(2.0134 · 10−5, 14) of
D∞, and the setsDk, k = 1, 2, 3, 4.

imations D(3.07 · 10−2, 6) and D(2.0134 · 10−5, 14) have



been computed for the given accuracies ofε = 10−2 and
10−5 respectively.

The sequence{Dk} is nondecreasing andD(α, s) de-
creases asα decreases ors increases. Hence both set
sequences converge toD∞. Moreover, forα = 2.0134 ·10−5

and s = 14, we have(1 − α)−1 ∼= 1 and hence,D14
∼=

D(2.0134 · 10−5, 14). Since D14 ⊆ D∞ ⊆ D(2.0134 ·
10−5, 14) thenD(2.0134 · 10−5, 14) ∼= D∞.

VII. C ONCLUSIONS

The novel results reported in this paper further extend
the existing research for the computation and approxima-
tion of the mRPI set for autonomous linear discrete-time
systems [25]. The results have been extended to address
the more general and difficult case oflinear difference
inclusions. A relevant contribution is a method for the
computation of the outer RPIε-approximation, of the mRPI
set for linear difference inclusions, for an a priori given
ε > 0. The proposed method is efficient in that it involves the
computation of a number of linear programming problems
and simple algebraic calculations instead of less tractable
calculations with sets. It is in principle possible to further
improve computational aspects and this extension is a subject
of current research.

The results presented in this paper can be exploited in
robust control of linear difference inclusions subject to
constraints and additive but bounded disturbances [5], [7],
[11].
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