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Abstract— In this paper we consider the problem of control-
ling linear discrete-time systems subject to unknown distur-
bances and mixed constraints on the states and inputs, using
a class of affine state-feedback control policies implemented
in a receding horizon fashion. By defining a quadratic cost
function in the disturbance-free sequence of states and controls,
we demonstrate that this parameterization can be used in the
synthesis of a nonlinear time-invariant receding horizon control
law that is robustly invariant, unique and continuous in the
initial state, and with guaranteed input-to-state (ISS) stability.
Our method relies in part on the exploitation of an equivalent
control policy parameterized as an affine function of the past
disturbance sequence, and we show that this parameterization
has the added benefit of enabling calculation of the control law
at each stage using a single tractable quadratic program (QP)
when the disturbance set is a polytope or affine map of a 1- or
∞-norm bounded set.

I. INTRODUCTION

The problem of finding a nonlinear state feedback control
law which guarantees that a set of state and input constraints
are satisfied for all time, despite the presence of a persistent
state disturbance, has been the subject of study for many
authors [4], [5], [21], [22], [24]. However, the problem is that
the solutions offered to date are exponentially complex or in-
tractable for online implementation. As a consequence, many
researchers have proposed compromise solutions, which,
though not able to guarantee the same level of performance,
are computationally tractable [1], [6], [17], [18], [25].

We propose a nonlinear control scheme that is calculated
by optimizing over the set of admissible affine state feed-
back policies at each stage, and implemented in a receding
horizon fashion. By defining a quadratic cost function in the
predicted disturbance-free sequence of states and controls,
we demonstrate that the resulting time-invariant control law
is unique and continuous in the current state, and that the
closed-loop system can be guaranteed to be input-to-state
stable (ISS) given appropriate conditions.

For many of our results, we exploit a recently-proposed
method for solving so-called robust optimization problems
with hard constraints [3], [11]. The authors proposed that,
instead of solving for a general, nonlinear function that
guarantees that the constraints in the optimization problem
are met for all values of the uncertainty, one could aim
to parameterize the solution as an affine function of the
uncertainty.

They proceeded to show that, if the uncertainty set is a
polyhedron and the constraints in the robust optimization
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problem are affine, then a robustly feasible affine function
of the uncertainty can be found by solving a single, compu-
tationally tractable LP. An equivalent parameterization has
also been proposed in in the context of predictive control
with bounded [19] and stochastic [26] disturbances.

We have previously shown that this affine uncertainty
parameterization is equivalent to the class of affine state
feedback policies [9], and thus transforms the non-convex op-
timization problem of finding a constraint-admissible affine
state feedback policy into a convex one, solvable using stan-
dard techniques [9]. For problems with polytopic or 2-norm
bounded disturbances, the proposed scheme requires the
solution of either a single quadratic program (QP) or sec-
ond order cone program (SOCP) in a tractable number of
variables, depending on the disturbance characterization.

This paper is organized as follows. Section II introduces
the control problem considered and some standing assump-
tions. Section III introduces the state-feedback control policy
that we seek to employ in the solution of a finite horizon
robust control problem. Section IV then introduces the alter-
native convex parameterization proposed in [3]. Section V
demonstrates that, using a quadratic cost function, it is pos-
sible to formulate an optimal receding horizon control policy
that is continuous in the current state, and is guaranteed to
be input-to-state stable (ISS). Section VI ends the paper by
drawing some conclusions and making recommendations for
future research.

Notation and definitions: For matrices A and B, A⊗B
is the Kronecker product of A and B, and A ≤ B denotes
element-wise inequality. 1 is a column vector of ones. For
vector x, ‖x‖2

A := xT Ax. Z[k,l] represents the set of integers
{k, k + 1, . . . , l}. A continuous function γ : R≥0 → R≥0 is
a K-function if it is strictly increasing and γ(0) = 0; it
is a K∞-function if, in addition, γ(s) → ∞ as s → ∞. A
continuous function β : R≥0×R≥0 → R≥0 is a KL-function
if for all k ≥ 0, the function β(·, k) is a K-function and
for each s ≥ 0, β(s, ·) is decreasing with β(s, k) → 0 as
k → ∞.

II. STANDING ASSUMPTIONS

Consider the following discrete-time LTI system:

x+ = Ax + Bu + w, (1)

where x ∈ R
n is the system state at the current time instant,

x+ is the state at the next time instant, u ∈ R
m is the

control input and w ∈ R
n is the disturbance. The current

and future values of the disturbance are unknown and may
change unpredictably from one time instant to the next, but



are contained in a convex and compact (closed and bounded)
set W , which contains the origin. The actual values of the
state, input and disturbance at time instant k are denoted by
x(k), u(k) and w(k), respectively; where it is clear from
the context, x, u and w will be used to denote the current
value of the state, input and disturbance (note that, since the
system is time-invariant, the current time can always be taken
as zero). It is assumed that (A,B) is stabilizable and that at
each sample instant a measurement of the state is available.
We also assume that a linear state feedback gain matrix
K ∈ R

m×n is given, such that A+BK is strictly stable.
The system is subject to mixed polyhedral constraints on

the state and input:

Z := {(x, u) ∈ R
n × R

m | Cx + Du ≤ b} , (2)

where the matrices C ∈ R
s×n, D ∈ R

s×m and the vector
b ∈ R

s; s is the number of affine inequality constraints that
define Z. It is assumed that Z is bounded and contains the
origin in its interior. A primary design goal is to guarantee
that the state and input of the closed-loop system remain in
Z for all time and for all allowable disturbance sequences.

In addition to Z, a target/terminal constraint set Xf is
given by

Xf := {x ∈ R
n | Y x ≤ z } , (3)

where the matrix Y ∈ R
r×n and the vector z ∈ R

r; r is
the number of affine inequality constraints that define Xf .
It is assumed that Xf is bounded and contains the origin in
its interior. As will be seen in Section V, the set Xf can
be used as terminal constraint in the design of a receding
horizon controller with guaranteed invariance and stability
properties.

Before proceeding, we define some additional notation. In
the sequel, predictions of the system’s evolution over a finite
control/planning horizon will be used to define a number of
suitable control policies. Let the length N of this planning
horizon be a positive integer and define stacked versions of
the predicted input, state and disturbance vectors u ∈ R

mN ,
x ∈ R

n(N+1) and w ∈ R
nN , respectively, as

x :=
[
xT

0 , . . . , xT
N

]T
, (4a)

u :=
[
uT

0 , . . . , uT
N−1

]T
, (4b)

w :=
[
wT

0 , . . . , wT
N−1

]T
, (4c)

where x0 = x denotes the current measured value of the state
and xi+1 := Axi + Bui + wi, i = 0, . . . , N − 1 denote the
prediction of the state after i time instants into the future.
Finally, let the set W := WN := W × · · · × W , so that
w ∈ W .

III. STATE FEEDBACK PARAMETERIZATION

One natural approach to controlling the system in (1),
while ensuring the satisfaction of the constraints, is to search
over the set of time-varying affine state feedback control
policies with knowledge of prior states:

ui =
i∑

j=0

Li,jxj + gi, ∀i ∈ Z[0,N−1], (5)

where each Li,j ∈ R
m×n and gi ∈ R

m. For notational
convenience, we also define the block lower triangular matrix
L ∈ R

mN×n(N+1) and stacked vector g ∈ R
mN as

L :=




L0,0 0 · · · 0
...

. . .
. . .

...
LN−1,0 · · · LN−1,N−1 0


, g :=




g0

...
gN−1,


, (6)

so that the control input sequence can be written
as u = Lx + g. For a given initial state x, we say that the
pair (L,g) is admissible if the control policy (5) guarantees
that, for all allowable disturbance sequences of length N , the
constraints (2) are satisfied over the horizon i = 0, . . . , N−1
and that the state is in the target set (3) at the end of
the horizon. More precisely, the set of admissible (L,g) is
defined as

Πsf
N (x) :=




(L,g)

∣∣∣∣∣∣∣∣∣∣

(L,g) satisfies (6), x = x0

xi+1 = Axi + Bui + wi

ui =
∑i

j=0 Li,jxj + gi

(xi, ui) ∈ Z, xN ∈ Xf

∀i ∈ Z[0,N−1], ∀w ∈ W




(7)

The set of initial states x for which an admissible control
policy of the form (5) exists is defined as

Xsf
N :=

{
x ∈ R

n
∣∣∣ Πsf

N (x) 	= ∅
}

. (8)

It is critical to note that it may not be possible to select a
single (L,g) such that it is admissible for all x ∈ Xsf

N .
Indeed, it is easy to find examples where there exists a
pair (x, x̃) ∈ Xsf

N × Xsf
N such that Πsf

N (x)
⋂

Πsf
N (x̃) = ∅.

Additionally, note that direct on-line computation of an
admissible pair (L,g) is problematic, since the set Πsf

N (x)
is non-convex in general.

Remark 1. Note that the state feedback policy (5) sub-
sumes the well-known class of “pre-stabilizing” control
policies [6], [18], in which the control policy takes the
form ui = Kxi + ci, where K is computed off-line and on-
line computation is limited to finding an admissible offset
sequence {ci}N−1

i=0 .

IV. DISTURBANCE FEEDBACK PARAMETERIZATION

An alternative to (5) is to parameterize the control policy
as an affine function of the sequence of past disturbances,
so that

ui =
i−1∑
j=0

Mi,jwj + vi, ∀i ∈ Z[0,N−1], (9)

where each Mi,j ∈ R
m×n and vi ∈ R

m. It should be noted
that, since full state feedback is assumed, the past disturbance
sequence is easily calculated as the difference between the
predicted and actual states at each step, i.e.

wi = xi+1 − Axi − Bui, ∀i ∈ Z[0,N−1]. (10)

The above parameterization appears to have originally
been suggested some time ago within the context of stochas-
tic programs with recourse [7]. More recently, it has been



revisited as as a means for finding solutions to a class
of robust optimization problems, called affinely adjustable
robust counterpart (AARC) problems [3], [11], and robust
model predictive control problems [19], [26].

For notational convenience, we define the vector v ∈ R
mN

and the strictly block lower triangular matrix M ∈ R
mN×nN

such that

M :=




0 · · · · · · 0
M1,0 0 · · · 0

...
. . .

. . .
...

MN−1,0 · · · MN−1,N−2 0


, v :=




v0
...
...

vN−1


, (11)

so that the control input sequence can be written
as u = Mw + v. In a manner similar to (7), we define the
set of admissible (M,v) as

Πdf
N (x) :=




(M,v)

∣∣∣∣∣∣∣∣∣∣

(M,v) satisfies (11), x=x0

xi+1 = Axi + Bui + wi

ui =
∑i−1

j=0 Mi,jwj + vi

(xi, ui) ∈ Z, xN ∈ Xf

∀i ∈ Z[0,N−1], ∀w ∈ W




(12)

The set of initial states x for which an admissible control
policy of the form (9) exists is defined as

Xdf
N :=

{
x ∈ R

n
∣∣∣ Πdf

N (x) 	= ∅
}

. (13)

Before proceeding, it is important to note that one can
find matrices F ∈ R

t×mN , G ∈ R
t×nN , H ∈ R

t×n and a
vector c ∈ R

t, where t := sN + r (for completeness, the
matrices and vectors are given in the Appendix), such that
the expression for Πdf

N (x) can be rewritten more compactly
as

Πdf
N (x)=




(M,v)

∣∣∣∣∣∣∣

(M,v) satisfies (11)

Fv+(FM+G)w≤c+Hx

∀w ∈ W




. (14)

which is easily shown to be convex and closed.

A. Convexity and Equivalence

The main advantage of the disturbance feedback param-
eterization in (9) over the state feedback parameterization
in (5) is formalized in the following statements, proof of
which may be found in [10]:

Theorem 1 (Convexity). For a given state x ∈ Xdf
N , the set

of admissible affine disturbance feedback parameters Πdf
N (x)

is convex and closed. Furthermore, the set of states Xdf
N , for

which at least one admissible affine disturbance feedback
parameter exists, is convex.

Theorem 2 (Equivalence). The set of admissible states
Xdf

N = Xsf
N . Additionally, for any admissible (L,g) an

admissible (M,v) can be found that yields the same input
and state sequence for all allowable disturbance sequences,
and vice-versa.

Remark 2. If W is convex and compact, then it is concep-
tually possible to compute a pair (M,v) ∈ Πdf

N (x) in a
computationally tractable way, given the current state x. For

example, if the set W is a polytope (or the affine map of a
1- or ∞-norm bounded ball), then an admissible pair (M,v)
can be found by solving a single LP in a tractable number
of variables [3], [11]. If W is 2-norm bounded (e.g. if W
is the affine map of a Euclidean ball or an ellipsoid), an
admissible pair may be found via the solution of a tractable
second order cone program (SOCP) [10].

Before proceeding, we introduce the following standard
assumption (cf. [21]):

Assumption 1 (Terminal constraint). The state feedback
gain matrix K and terminal constraint Xf have been chosen
such that:

• Xf is contained inside the set of states for which the
constraints (2) are satisfied under the control u = Kx,
i.e. Xf ⊆ {x | (x,Kx) ∈ Z } = {x | (C + DK)x ≤ b}.

• Xf is robust positively invariant for the closed-loop
system x+ = (A+BK)x+w, i.e. (A+BK)x+w ∈ Xf ,
for all x ∈ Xf and all w ∈ W .

Under some additional, mild technical assumptions, it is
easy to compute a K and a polytopic Xf that satisfies
Assumption 1 if W is a polytope, an ellipsoid or the affine
map of a p-norm ball. The reader is referred to [5], [16],
[18], [23] and the references therein for details.

Proposition 1 (Size of Xsf
N ). If Assumption 1 holds, then

the following set inclusion holds:

Xf ⊆ Xsf
1 ⊆ · · · ⊆ Xsf

N−1 ⊆ Xsf
N ⊆ Xsf

N+1 ⊆ · · · , (15)

where each Xsf
i is defined as in (8) with N = i.

Proof. Proof of this is straightforward, and can be found
in [10]. Recall that since Xdf

N (x) = Xsf
N (x), an identical set

inclusion result also holds for the sets Xdf
i (x).

V. UNIQUENESS, CONTINUITY AND STABILITY OF RHC
LAWS

We consider the important problem of how to synthesize
an RHC law such that the closed-loop system is robustly
stable. We choose to minimize the value of a cost function
that is quadratic in the disturbance-free states and control
inputs and demonstrate that this allows for the synthesis of
a continuous RHC law, which guarantees that the closed-
loop system is input-to-state stable (ISS). We rely heavily
on Theorem 2 in order to derive these results, moving freely
between the two parameterizations and using whichever is
most natural in each context.

We first note that alternative cost functions are certainly
possible; the reader is referred to [13] where a worst-
case quadratic cost function, in which the disturbance is
negatively weighted as in H∞ control, is used.

A. Cost Function

We define an optimal policy to be one that minimizes the
value of a cost function that is quadratic in the disturbance-
free state and input sequences. We thus define:

VN (x,L,g,w) :=
N−1∑
i=0

1
2

(‖x̃i‖2
Q+‖ũi‖2

R

)
+

1
2
‖x̃N‖2

P (16)



where x̃0 = x, x̃i+1 = Ax̃i + Bũi + wi and ũi =∑i
j=0 Li,j x̃j +gi for i = 0, . . . , N −1, and P , Q and R are

positive definite; and define an optimal policy pair as

(L∗(x),g∗(x)) := argmin
(L,g)∈Πsf

N (x)

VN (x,L,g, 0). (17)

The time-invariant receding horizon control law
µN : Xsf

N → R
m is defined by the first part of the

optimal affine state feedback control policy, i.e.

µN (x) := L∗
0,0(x)x + g∗0(x) (18)

which is nonlinear, in general. The closed-loop system
becomes

x+ = Ax + BµN (x) + w. (19)

We also define the value function V ∗
N : Xsf

N → R≥0 to be

V ∗
N (x) := min

(L,g)∈Πsf
N (x)

VN (x,L,g, 0). (20)

The problem with the control law in (18) is that an
optimal pair (L∗(x),g∗(x)) is difficult to find due to non-
convexity of the admissible set Πsf

N (x) and of the func-
tion (L,g) �→ VN (x,L,g, 0). However, by exploiting the
equivalent affine disturbance feedback parameterization (9),
we will show that the resulting control law can be calculated
using convex optimization techniques.

B. Using Equivalence to Compute the Value of the RHC Law

For the equivalent affine disturbance feedback parameter-
ization (9), we define a cost function JN (·) analogous to the
one defined in (16), i.e.

JN (x,M,v,w) :=
1
2

N−1∑
i=0

(‖x̄i‖2
Q + ‖ūi‖2

R) +
1
2
‖x̄N‖2

P

where x̄0 = x, x̄i+1 = Ax̄i + Būi + wi and ūi =∑i−1
j=0 Mi,jwj + vi for i = 0, . . . , N − 1. If we define

(M∗(x),v∗(x)) := argmin
(M,v)∈Πdf

N (x)

JN (x,M,v, 0) (21)

then the proof of the following result follows by a straight-
forward application of Theorem 2.

Proposition 2 (Equivalence for computation of RHC law).
The RHC law µN (·), defined in (18), is given by the first part
of the optimal control sequence v∗(·), i.e.

µN (x) = v∗
0(x) = L∗

0,0(x)x + g∗0(x), ∀x ∈ Xsf
N . (22)

The minimum value of JN (x, ·, ·, 0) taken over the set of
admissible affine disturbance feedback parameters is equal
to V ∗

N (x), defined in (20), i.e.

V ∗
N (x) = min

(M,v)∈Πdf
N (x)

JN (x,M,v, 0). (23)

Together with Theorem 1 and the remarks immediately
thereafter, the above result implies that, for a given x ∈ Xsf

N ,
the value of the RHC law u = µN (x) can be computed via
the minimization of a convex function over a convex set.
In particular, we remark that if W is a polytope, then the

optimization problem in (21) can be written as a convex
quadratic program (QP) in a tractable number of variables
and constraints [8]. If W is an ellipsoid or the affine map
of a Euclidean ball, then the optimization problem in (21)
becomes a tractable SOCP. In all these cases, the number of
decision variables and constraints in the convex optimization
problem is O(N2).

C. Continuity of the RHC Law and Value Function

Proposition 3 (Continuity of µN and V ∗
N ). If W is a

polytope, then the receding horizon control law µN (·) in (18)
is unique and Lipschitz continuous on Xsf

N . Furthermore, the
value function V ∗

N (·) in (20) is strictly convex and Lipschitz
continuous on Xsf

N .

Proof. Note that JN (x,M,v, 0) = JN (x, 0,v, 0) for all M.
Hence, if we define the set

VN (x) :=
{
v

∣∣∣ ∃M s.t. (M,v) ∈ Πdf
N (x)

}
,

then, from (21) and Proposition 2 respectively,

v∗(x) = argmin
v∈VN (x)

JN (x, 0,v, 0) (24)

V ∗
N (x) = min

v∈VN (x)
JN (x, 0,v, 0). (25)

Recalling the discussion in Section IV-A, it can be shown
that if W is a polytope, then Πdf

N (x) in (14) is a polyhedron,
and VN (x) is also a polyhedron since it is the projection
of Πdf

N (x) onto a subspace. It is also easy to verify that
(x,v) �→ JN (x, 0,v, 0) is a strictly convex quadratic func-
tion, and thus that (25) is a strictly convex QP. By applying
the results in [2], it follows that v∗(·) and hence µN (·)
are continuous, piecewise affine functions on Xsf

N , and that
V ∗

N (·) is a strictly convex, piecewise quadratic function on
Xsf

N . Lipschitz continuity follows from the assumption that
Z is compact, hence Xsf

N is also compact.

Finally, we present the following result, which will be
useful in proving stability in the next section:

Lemma 1 (Values at the origin). If Assumption 1 holds,
then V ∗

N (0) = 0 and µN (0) = 0.

Proof. Proposition 1 implies that the origin is in the interior
of Xsf

N . Note that if x ∈ Xf , then (L,g) is admissible if g =
0, Li,i = K for i = 0, . . . , N − 1 and Li,j = 0 for all i 	= j.
Hence, V ∗

N (0) ≤ VN (0,L, 0, 0) = 0. Since V ∗
N (x) ≥ 0 for all

x ∈ Xsf
N , it follows that V ∗

N (0) = 0, hence µN (0) = 0.

D. Input-to-State Stability (ISS) for RHC

Since the disturbance is non-zero, it is not possible to
guarantee that the origin is asymptotically stable, as in con-
ventional RHC without disturbances [21]. As an alternative,
we use the notion of input-to-state stability (ISS) [12], [14],
which has proven to be effective in the study of RHC laws
with input constraints only [15] and in the analysis and
synthesis of RHC laws with robust constraint satisfaction
guarantees [20].



Consider a nonlinear, time-invariant, discrete-time system
of the form

x+ = f(x,w), (26)

where x ∈ R
n is the state and w ∈ R

l is a disturbance
that takes on values in a compact set W ⊂ R

l containing
the origin. It is assumed that the state is measured at each
time instant, that f : R

n × R
l → R

n is continuous and
that f(0, 0) = 0. Given a disturbance sequence w(·), let
the solution to (26) at time k be denoted by φ(k, x, w(·)),
where w(·) is taken from MW , the set of infinite disturbance
sequences with values in W . For systems of this type, a
useful definition of stability is input-to-state stability (ISS):

Definition 1 (ISS). For system (26), the origin is input-to-
state stable (ISS) with region of attraction X ⊆ R

n, which
contains the origin in its interior, if there exists a KL-function
β(·) and a K-function γ(·) such that for all initial states
x ∈ X and disturbance sequences w(·) ∈ MW , the solution
of the system satisfies φ(k, x, w(·)) ∈ X and for all k ∈ N,

‖φ(k, x, w(·))‖ ≤ β(‖x‖, k)+
γ sup

{‖w(τ)‖∣∣ τ ∈Z[0,k−1]

}
. (27)

Note that ISS implies that the origin is an asymptotically
stable point for the undisturbed system x+ = f(x, 0) with
region of attraction X , and also that all state trajectories
are bounded for all bounded disturbance sequences. Further-
more, every trajectory φ(x, k, w(·)) → 0 if w(k) → 0 as
k → ∞.

In order to be self-contained, we introduce the following
useful result from [12, Lem 3.5]:

Lemma 2 (ISS-Lyapunov function). For the system (26),
the origin is input-to-state stable (ISS) with region of attrac-
tion X ⊆ R

n if the following conditions are satisfied:

• X contains the origin in its interior and Xf is robust
positively invariant for (26), i.e. f(x,w) ∈ X for all
x ∈ X and all w ∈ W .

• There exist K∞ functions α1(·), α2(·) and α3(·), a K-
function σ(·), and a continuous function V : X → R≥0

such that for all x ∈ X ,

α1(‖x‖) ≤ V (x) ≤α2(‖x‖) (28a)

V (f(x,w)) − V (x) ≤− α3(‖x‖) + σ(‖w‖) (28b)

Remark 3. A function V (·) that satisfies the conditions in
Lemma 2 is called an ISS-Lyapunov function.

The above result leads immediately to the following:

Lemma 3 (Lipschitz Lyapunov function for undisturbed
system). Let X ⊆ R

n contain the origin in its interior and
be a robust positively invariant set for (26). Furthermore,
let there exist K∞-functions α1(·), α2(·) and α3(·) and a
function V : X → R≥0 that is Lipschitz continuous on X
such that for all x ∈ X ,

α1(‖x‖) ≤ V (x) ≤α2(‖x‖) (29a)

V (f(x, 0)) − V (x) ≤− α3(‖x‖) (29b)

The function V (·) is an ISS-Lyapunov function and the origin
is ISS for the system (26) with region of attraction X if, in
addition, either of the following conditions are satisfied:

(i) f : X × W → R
n is Lipschitz continuous on X × W .

(ii) f(x,w) := g(x) + w, where g : X → R
n is continuous

on X .

Proof. Let LV be the Lipschitz constant of V (·).
(i) Since ‖V (f(x,w)) − V (f(x, 0))‖ ≤ LV ‖f(x,w) −

f(x, 0)‖ ≤ LV Lf‖w‖, where Lf is the Lipschitz constant
of f(·), it follows that V (f(x,w)) − V (x) = V (f(x, 0)) −
V (x)+V (f(x,w))−V (f(x, 0)) ≤ −α3(‖x‖)+LV Lf‖w‖.
The proof is completed by letting σ(s) := LV Lfs in
Lemma 2.

(ii) Note that ‖V (f(x,w))− V (f(x, 0))‖ ≤ LV ‖w‖. The
proof is completed as for (i), but by letting σ(s) := LV s in
Lemma 2.

Remark 4. If X in Lemmas 2 and 3 is compact, then the
condition that α1(·), α2(·) and α3(·) be of class K∞ can be
relaxed to the condition that they only be of class K.

Finally, we add the following assumption, which will allow
the value function defined in (20) to be used as an ISS-
Lyapunov function:

Assumption 2 (Terminal cost). The terminal cost F (x) :=
xT Px is a Lyapunov function in the terminal set Xf for the
undisturbed closed-loop system x+ = (A + BK)x, in the
sense that, for all x ∈ Xf ,

F ((A + BK)x) − F (x) ≤ −xT (Q + KT RK)x. (30)

We can now state our final result:

Theorem 3 (ISS for RHC). Let W be a polytope and the
RHC law µN (·) be defined as in (18). If Assumptions 1 and 2
hold, then the origin is ISS for the closed-loop system (19)
with region of attraction Xsf

N . Furthermore, the input and
state constraints (2) are satisfied for all time and for all
allowable disturbance sequences if and only if the initial
state x(0) ∈ Xsf

N .

Proof. For the system of interest, we of course let f(x,w) :=
Ax + BµN (x) + w. Lemma 1 implies that f(0, 0) = 0.

Combining Proposition 3 with Lemma 1, it follows that
V ∗

N (·) is a continuous, positive definite function. Hence, there
exist K∞-functions α1(·) and α2(·) such that (29a) holds
with V (·) := V ∗

N (·) [14, Lem. 4.3].
Using standard techniques [21], it is easy to show that

V (·) := V ∗
N (·) is a Lyapunov function for the undisturbed

system x+ = Ax + BµN (x). More precisely, the methods
in [21] can be employed to show that (29b) holds with
α3(r) := (1/2)λmin(Q)r2.

It can be shown [10] from Assumption 1 that Xsf
N is

robust positively invariant for the closed-loop system (19).
Proposition 1 implies that the origin is in the interior of Xsf

N .
Finally, recall from Proposition 3 that µN (·) and V ∗

N (·) are
Lipschitz continuous on Xsf

N . By combining all of the above,
it follows from Lemma 3 that V ∗

N (·) is an ISS Lyapunov
function for the closed-loop system (19).



Remark 5. On examination of the proof of Theorem 3, it
is easy to show that the origin is an exponentially stable
equilibrium for the undisturbed system x+ = Ax+BµN (x)
with region of attraction Xsf

N .

VI. CONCLUSIONS

We have demonstrated that the the disturbance feedback
policy defined in Section IV, which is a convex reparam-
eterization of an affine state feedback policy, is useful for
synthesizing robust control laws with guaranteed closed-loop
properties such as robust invariance, continuity and input-to-
state stability. However, there are still a number of issues that
need to be addressed. In particular, the paper only considers
polyhedral uncertainty representations when dealing with
stability, although most of the other results presented here
are true for general compact disturbance sets.

The results in Section V on computational tractability may
be extended to exploit any additional structure inherent in the
robust finite horizon control problem for different classes
of disturbance; some results along these lines are already
available for a class of problems with ∞-norm bounded
disturbances [8]. It would also be interesting to extend
these results to other cost functions, for example worst-case
quadratic cost functions where the disturbance is negatively
weighted, as in H∞ control.
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APPENDIX

Define A ∈ R
n(N+1)×n and E ∈ R

n(N+1)×nN as

A :=




In

A
A2

...
AN


 , E :=




0 0 ··· 0
In 0 ··· 0
A In ··· 0

...
...

. . .
...

AN−1 AN−2 ··· In


 .

The matrices B ∈ R
n(N+1)×mN , C ∈ R

t×n(N+1) and D ∈
R

t×mN are defined as B := E(IN ⊗ B), C :=
[

IN⊗C 0
0 Y

]
,

and D :=
[

IN⊗D
0

]
. It is easy to verify that (12) is equivalent

to (14) with F := CB + D, G := CE, H := −CA, and
c := [ 1N⊗b

z ].


