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Abstract

This paper proposes an efficient computational technique for the optimal control of linear
discrete-time systems subject to bounded disturbances with mixed polytopic constraints on
the states and inputs. The problem of computing an optimal state feedback control policy,
given the current state, is non-convex. A recent breakthrough has been the application of
robust optimization techniques to reparameterise this problem as a convex program. While
the reparameterised problem is theoretically tractable, the number of variables is quadratic in
the number of stages or horizon length N and has no apparent exploitable structure, leading to
computational time of O(N6) per iteration of an interior-point method. We focus on the case
when the disturbance set is ∞-norm bounded or the linear map of a hypercube, and the cost
function involves the minimization of a quadratic cost. Here we make use of state variables
to regain a sparse problem structure that is related to the structure of the original problem,
that is, the policy optimization problem may be decomposed into a set of coupled finite
horizon control problems. This decomposition can then be formulated as a highly structured
quadratic program, solvable by primal-dual interior-point methods in which each iteration
requires O(N3) time. This cubic iteration time can be guaranteed using a Riccati-based block
factorization technique, which is standard in discrete-time optimal control. Numerical results
are presented, using a standard sparse primal-dual interior point solver, which illustrate the
efficiency of this approach.

Keywords: Constrained control, robust optimization, optimal control, robust control, reced-
ing horizon control, predictive control.
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1 Introduction

Robust and predictive control

This paper is concerned with the efficient computation of optimal control policies for constrained
discrete-time linear systems subject to bounded disturbances on the state. In particular, we
consider the problem of finding, over a finite horizon of length N , a feedback policy

π := {µ0(·), . . . , µN−1(·)} (1)

for a discrete-time linear dynamical system of the form

xi+1 = Axi + Bui + wi (2)

ui = µi(x0, . . . , xi) (3)

which guarantees satisfaction of a set of mixed constraints on the states and inputs at each time,
for all possible realizations of the disturbances wi, while minimizing a given cost function.

The states xi and inputs ui are constrained to lie in a compact and convex set Z , i.e.

(xi, ui) ∈ Z , ∀i ∈ {0, 1, . . . , N − 1} (4)

with an additional terminal constraint xN ∈ Xf . We assume nothing about the disturbances but
that they lie in a given compact set W .

The above, rather abstract problem is motivated by the fact that for many real-life control ap-
plications, optimal operation nearly always occurs on or close to some constraints [36]. These
constraints typically arise, for example, due to actuator limitations, safe regions of operation, or
performance specifications. For safety-critical applications, in particular, it is crucial that some
or all of these constraints are met, despite the presence of unknown disturbances.

Because of its importance, the above problem and derivations of it have been studied for some
time now, with a large body of literature that falls under the broad banner of “robust control”
(see [5, 49] for some seminal work on the subject). The field of linear robust control, which is
mainly motivated by frequency-domain performance criteria [52] and does not explicitly consider
time-domain constraints as in the above problem formulation, is considered to be mature and a
number of excellent references are available on the subject [16, 23, 53]. In contrast, there are few
tractable, non-conservative solutions to the above, constrained problem, even if all the constraint
sets are considered to be polytopes or ellipsoids; see, for example, the literature on set invariance
theory [7] or `1 optimal control [12, 17, 44, 46].

A control design method that is particularly suitable for the synthesis of controllers for systems
with constraints, is predictive control [10, 36]. Predictive control is a family of optimal control
techniques where, at each time instant, a finite-horizon constrained optimal control problem is
solved using tools from mathematical programming. The solution to this optimization problem
is usually implemented in a receding horizon fashion, i.e. at each time instant, a measurement of
the system is obtained, the associated optimization problem is solved and only the first control
input in the optimal policy is implemented. Because of this ability to solve a sequence of compli-
cated, constrained optimal control problems in real-time, predictive control is synonymous with
“advanced control” in the chemical process industries [40].

The theory on predictive control without disturbances is relatively mature and most of the fun-
damental problems are well-understood. However, despite recent advances, there are many open
questions remaining in the area of robust predictive control [3, 37, 38]. In particular, efficient op-
timization methods have to be developed for solving the above problem before robust predictive
control methods can be applied to unstable or safety-critical applications in areas such as aerospace
and automotive applications [45].
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Robust control models

The core difficulty with the problem (1)–(4) is that optimizing the feedback policy π over arbitrary
nonlinear functions is extremely difficult, in general. Proposals which take this approach, such
as [43], are intractable for all but the smallest problems, since they generally require enumeration of
all possible disturbance realizations generated from the set W . Conversely, optimization over open-
loop control sequences, while tractable, is considered unacceptable since problems of infeasibility
or instability may easily arise [38].

An obvious sub-optimal proposal is to parameterize the control policy π in terms of affine functions
of the sequence of states, i.e. to parameterize the control sequence as

ui =

i
∑

j=0

Li,jxj + gi (5)

where the matrices Li,j and vectors gi are decision variables. However, the set of constraint
admissible policies of this form is easily shown to be non-convex in general. As a result, most pro-
posals that take this approach [2,11,29,32,39] fix a stabilising feedback gain K, then parameterize
the control sequence as ui = Kxi + gi and optimize the design parameters gi. This approach,
though tractable, is problematic, as it is unclear how one should select the gain K to minimize
conservativeness.

A recent breakthrough [22] showed that the problem of optimizing over state feedback policies of
the form (5) is equivalent to a convex optimization problem using disturbance feedback policies
of the form

ui =

i−1
∑

j=0

Mi,jwj + vi. (6)

Robust optimization modelling techniques [4,24] are used to eliminate the unknown disturbances wj

and formulate the admissable set of control policies with O(N 2mn) variables, where N is the hori-
zon length as above, and m and n are the respective dimensions of the controls ui and states xi at
each stage. This implies that, given a suitable objective function, an optimal affine state feedback
policy policy (5) can be found in time that is polynomially bounded in the size of the problem
data.

Efficient computational in robust optimal control

In the present paper we demonstrate that an optimal policy of the form (6), equivalently (5),
can be efficiently calculated in practise, given suitable polytopic assumptions on the constraint
sets W , Z and Xf . This result is critical for practical applications, since one would generally
implement a controller in a receding horizon fashion by calculating, on-line and at each time
instant, an admissible control policy (5), given the current state x. Such a control strategy has
been shown to allow for the synthesis of stabilizing, nonlinear time-invariant control laws that
guarantee satisfaction of the constraints Z for all time, for all possible disturbance sequences
generated from W [22].

While convexity of the robust optimal problem arising out of (6) is key, the resulting optimization
problem is a dense convex quadratic program with O(N 2) variables (see Section 4, cf. [22]),
assuming N dominates the dimension of controls m and states n at each stage. Hence each
iteration of an interior-point method will require solving a dense linear system and thus require
O(N6) time. This situation is common, for example, in the rapidly growing number of aerospace
and automotive applications of predictive control [36, Sec. 3.3] [40]. We show that when the
disturbance set is ∞-norm bounded or the linear map of a hypercube, the special structure of the
robust optimal control problem can be exploited to devise a sparse formulation of the problem,
thereby realizing a substantial reduction in computational effort to O(N 3) work per interior-point
iteration.
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We demonstrate that the cubic-time performance of interior-point algorithms at each step can be
guaranteed when using a factorization technique based on Riccati recursion and block elimination.
Numerical results are presented that demonstrate that the technique is computationally feasible
for systems of appreciable complexity using the standard sparse linear system solver MA27 [26]
within the primal-dual interior-point solver OOQP [19]. We compare this primal-dual interior-
point approach to the sparse active-set method PATH [14] on both the dense and sparse problem
formulations. Our results suggest that the interior-point method applied to the sparse formulation
is the most practical method for solving robust optimal control problems, at least in the “cold
start” situation when optimal active set information is unavailable.

A final remark is that the sparse formulation of robust optimal control results from a decomposition
technique that can be used to separate the problem into a set of coupled finite horizon control
problems. This reduction of effort is the analogue, for robust control, to the situation in classical
unconstrained optimal control in which Linear Quadratic Regulator (LQR) problems can be solved
in O(N) time, using a Riccati [1, Sec. 2.4] or Differential Dynamic Programming [27] technique in
which the state feedback equation x+ = Ax + Bu is explicit in every stage, compared to O(N 3)
time for the more compact formulation in which states are eliminated from the system. More
direct motivation for our work comes from [6,13, 41, 50], which describe efficient implementations
of optimization methods for solving optimal control problems with state and control constraints,
though without disturbances.

Contents

The paper is organized as follows: Sections 2 and 3 introduce the optimal control problem consid-
ered throughout the paper. Sections 4 and 5 describe the equivalent affine disturbance feedback
policy employed to solve the optimal control problem, as well as an equivalent formulation which
can be decomposed into a highly structured, singly-bordered block-diagonal quadratic program
through reintroduction of appropriate state variables. Section 6 demonstrates that, when using a
primal-dual interior-point solution technique, the decomposed quadratic program can always be
solved in time cubic in the horizon length at each interior-point iteration. Section 7 demonstrates
through numerical examples that the proposed decomposition can be solved much more efficiently
than the equivalent original formulation, and the paper concludes in Section 8 with suggestions
for further research.

2 Definitions and Standing Assumptions

Consider the following discrete-time linear time-invariant system:

x+ = Ax + Bu + w, (7)

where x ∈ R
n is the system state at the current time instant, x+ is the state at the next time

instant, u ∈ R
m is the control input and w ∈ R

n is the disturbance. It is assumed that (A, B) is
stabilizable and that at each sample instant a measurement of the state is available. It is further
assumed that the current and future values of the disturbance are unknown and may change
unpredictably from one time instant to the next, but are contained in a convex and compact
(closed and bounded) set W , which contains the origin. Initially, we make no further assumptions
on the set W .

The system is subject to mixed constraints on the state and input:

Z := {(x, u) ∈ R
n × R

m | Cx + Du ≤ b} , (8)

where the matrices C ∈ R
s×n, D ∈ R

s×m and the vector b ∈ R
s; s is the number of affine inequality

constraints that define Z . It is assumed that Z is bounded and contains the origin in its interior.
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A design goal is to guarantee that the state and input of the closed-loop system remain in Z for
all time and for all allowable disturbance sequences.

In addition to Z , a target/terminal constraint set Xf is given by

Xf := {x ∈ R
n | Y x ≤ z } , (9)

where the matrix Y ∈ R
r×n and the vector z ∈ R

r; r is the number of affine inequality constraints
that define Xf . It is assumed that Xf is bounded and contains the origin in its interior. The
set Xf can, for example, be used as a target set in time-optimal control or, if defined to be
robust positively invariant, to design a receding horizon controller with guaranteed invariance and
stability properties [22].

Before proceeding, we define some additional notation. In the sequel, predictions of the system’s
evolution over a finite control/planning horizon will be used to define a number of suitable control
policies. Let the length N of this planning horizon be a positive integer and define stacked versions
of the predicted input, state and disturbance vectors u ∈ R

mN , x ∈ R
n(N+1) and w ∈ R

nN ,
respectively, as

x := vec(x0, . . . , xN−1, xN ),

u := vec(u0, . . . , uN−1),

w := vec(w0, . . . , wN−1),

where x0 = x denotes the current measured value of the state and xi+1 := Axi + Bui + wi,
i = 0, . . . , N − 1 denotes the prediction of the state after i time instants into the future. Finally,
let the set W := W N := W × · · · × W , so that w ∈ W .

3 An Affine State Feedback Parameterization

One natural approach to controlling the system in (7), while ensuring the satisfaction of the
constraints (8)–(9), is to search over the set of time-varying affine state feedback control policies.
We thus consider policies of the form:

ui =

i
∑

j=0

Li,jxj + gi, ∀i ∈ Z[0,N−1], (11)

where each Li,j ∈ R
m×n and gi ∈ R

m. For notational convenience, we also define the block lower
triangular matrix L ∈ R

mN×n(N+1) and stacked vector g ∈ R
mN as

L :=

2

6

4

L0,0 0 · · · 0
...

. . .
. . .

...
LN−1,0 · · · LN−1,N−1 0

3

7

5
, g :=

2

6

4

g0

...
gN−1,

3

7

5
, (12)

so that the control input sequence can be written as u = Lx + g. For a given initial state x
(since the system is time-invariant, the current time can always be taken as zero), we say that
the pair (L,g) is admissible if the control policy (11) guarantees that for all allowable disturbance
sequences of length N , the constraints (8) are satisfied over the horizon i = 0, . . . , N − 1 and that
the state is in the target set (9) at the end of the horizon. More precisely, the set of admissible
(L,g) is defined as

Πsf
N (x) :=























(L,g)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

(L,g) satisfies (12), x = x0

xi+1 = Axi + Bui + wi

ui =
∑i

j=0 Li,jxj + gi

(xi, ui) ∈ Z , xN ∈ Xf

∀i ∈ Z[0,N−1], ∀w ∈ W























(13)

5



and the set of initial states x for which an admissible control policy of the form (11) exists is
defined as

Xsf
N :=

{

x ∈ R
n
∣

∣

∣
Πsf

N (x) 6= ∅
}

. (14)

It is critical to note that, in general, it is not possible to select a single pair (L,g) such that

(L,g) ∈ Πsf
N (x) for all x ∈ Xsf

N . Indeed, it is possible that for some pair (x, x̃) ∈ Xsf
N × Xsf

N ,

Πsf
N (x)

⋂

Πsf
N (x̃) = ∅.

For problems of non-trivial size, it is therefore necessary to calculate an admissible pair (L,g)
on-line, given a measurement of the current state x, rather than fixing (L,g) off-line. Once an
admissible control policy is computed for the current state, it can be implemented either in a
classical time-varying, time-optimal or receding-horizon fashion.

In particular, we define an optimal policy pair (L∗(x),g∗(x)) ∈ Πsf
N (x) to be one which minimizes

the value of a cost function that is quadratic in the disturbance-free state and input sequence. We
thus define:

VN (x,L,g,w) :=

N−1
∑

i=0

1

2
(‖x̃i‖

2
Q+‖ũi‖

2
R)+

1

2
‖x̃N‖2

P (15)

where x̃0 = x, x̃i+1 = Ax̃i +Bũi +wi and ũi =
∑i

j=0 Li,j x̃j + gi for i = 0, . . . , N − 1; the matrices
Q and P are positive semidefinite, and R is positive definite. We define an optimal policy pair as

(L∗(x),g∗(x)) := argmin
(L,g)∈Πsf

N (x)

VN (x,L,g,0). (16)

Before proceeding, we also define the value function V ∗
N : Xsf

N → R≥0 to be

V ∗
N (x) := min

(L,g)∈Πsf

N
(x)

VN (x,L,g, 0). (17)

For the receding-horizon control case, a time-invariant control law µN : Xsf
N → R

m can be
implemented by using the first part of this optimal control policy at each time instant, i.e.

µN (x) := L∗
0,0(x)x + g∗0(x). (18)

We emphasize that, due to the dependence of (13) on the current state x, the control law µN (·)
will, in general, be a nonlinear function with respect to the current state, even though it may have
been defined in terms of the class of affine state feedback policies (11).

Remark 1. Note that the state feedback policy (11) includes the well-known class of “pre-stabilizing”
control policies [11,29,32,39], in which the control policy takes the form ui = Kxi + ci, where K
is computed off-line and only ci is computed on-line.

The control law µN (·) has many attractive geometric and system-theoretic properties. In partic-

ular, implementation of the control law µN (·) renders the set Xsf
N robust positively invariant, i.e.

if x ∈ Xsf
N , then it can be shown that Ax + BµN (x) + w ∈ Xsf

N for all w ∈ W , subject to certain
technical conditions on the terminal set Xf . Furthermore, the closed-loop system is guaranteed to
be input-to-state (ISS) stable when W is a polytope, under suitable assumptions on Q, P , R, and
Xf . The reader is referred to [22] for a proof of these results and a review of other system-theoretic
properties of this parameterization.

Unfortunately, such a control policy is seemingly very difficult to compute, since the set Πsf
N (x)

and cost function VN (x, ·, ·, 0) are non-convex; however, it is possible to convert this non-convex
optimization problem to an equivalent convex problem through an appropriate reparameterization.
This parameterization is introduced in the following section.
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4 Affine Disturbance Feedback Control Policies

An alternative to (11) is to parameterize the control policy as an affine function of the sequence
of past disturbances, so that

ui =

i−1
∑

j=0

Mi,jwj + vi, ∀i ∈ Z[0,N−1], (19)

where each Mi,j ∈ R
m×n and vi ∈ R

m. It should be noted that, since full state feedback is
assumed, the past disturbance sequence is easily calculated as the difference between the predicted
and actual states at each step, i.e.

wi = xi+1 − Axi − Bui, ∀i ∈ Z[0,N−1]. (20)

The above parameterization appears to have originally been suggested some time ago within the
context of stochastic programs with recourse [18]. More recently, it has been revisited as as a means
for finding solutions to a class of robust optimization problems, called affinely adjustable robust
counterpart (AARC) problems [4,24], and robust model predictive control problems [33,34,47,48].

Define the variable v ∈ R
mN and the block lower triangular matrix M ∈ R

mN×nN such that

M :=

2

6

6

4

0 · · · · · · 0
M1,0 0 · · · 0...

. . .
. . .

...
MN−1,0 · · · MN−1,N−2 0

3

7

7

5

, v :=

2

6

6

4

v0......
vN−1

3

7

7

5

, (21)

so that the control input sequence can be written as u = Mw + v. Define the set of admissible
(M,v), for which the constraints (8) and (9) are satisfied, as:

Πdf
N (x) :=























(M,v)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

(M,v) satisfies (21), x = x0

xi+1 = Axi + Bui + wi

ui =
∑i−1

j=0 Mi,jwj + vi

(xi, ui) ∈ Z , xN ∈ Xf

∀i ∈ Z[0,N−1], ∀w ∈ W























, (22)

and define the set of initial states x for which an admissible control policy of the form (19) exists
as

Xdf
N := {x ∈ R

n | Πdf
N (x) 6= ∅}. (23)

As shown in [30], it is possible to eliminate the universal quantifier in (22) and construct matrices
F ∈ R

(sN+r)×mN , G ∈ R
(sN+r)×nN and T ∈ R

(sN+r)×n, and vector c ∈ R
sN+r (defined in

Appendix A) such that the set of feasible pairs (M,v) can be written as:

Πdf
N (x) =

{

(M,v)

∣

∣

∣

∣

∣

(M,v) satisfies (21),

Fv + vec max
w∈W

(FM + G)w ≤ c + Tx

}

, (24)

where vecmaxw∈W(FM + G)w denotes row-wise maximization, i.e. if (FM + G)i denotes the ith

row of the matrix FM + G, then

vec max
w∈W

(FM + G)w := vec

(

max
w∈W

(FM + G)1w, . . . , max
w∈W

(FM + G)sN+rw

)

. (25)

Note that these maxima always exist when the set W is compact.

We are interested in this control policy parameterization primarily due to the following two prop-
erties, proof of which may be found in [22]:
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Theorem 1 (Convexity). For a given state x ∈ Xdf
N , the set of admissible affine disturbance

feedback parameters Πdf
N (x) is convex. Furthermore, the set of states Xdf

N , for which at least one
admissible affine disturbance feedback parameter exists, is also convex.

Theorem 2 (Equivalence). The set of admissible states Xdf
N = Xsf

N . Additionally, given any

x ∈ Xsf
N , for any admissible (L,g) an admissible (M,v) can be constructed that yields the same

input and state sequence for all allowable disturbances, and vice-versa.

Together, these results enable efficient implementation of the control law u = µN (x) in (18) by re-
placing the non-convex optimization problem (16) with an equivalent convex problem. If we define
the nominal states x̂i ∈ R

n to be the states when no disturbances occur, i.e. x̂i+1 = Ax̂i + Bvi.
and define x̂ ∈ R

nN as
x̂ := vec(x, x̂1, . . . , x̂N ) = Ax + Bv. (26)

where A ∈ R
n(N+1)×n and B ∈ R

n(N+1)×mN are defined in Appendix A, then a quadratic cost
function similar to that in (15) can be written as

V df
N (x,v) :=

N−1
∑

i=0

1

2
(‖x̂i‖

2
Q + ‖vi‖

2
R) +

1

2
‖x̂N‖2

P , (27)

or, in vectorized form, as

V df
N (x,v) =

1

2
‖Ax + Bv‖2

Q +
1

2
‖v‖2

R (28)

where Q := [ I⊗Q
P

] and R := I ⊗ R. This cost can then be optimized over allowable policies in
(24), forming a convex optimization problem in the variables M and v:

min
M,v

V df
N (x,v) s.t. (M,v) ∈ Πdf

N (x) (29)

As a direct result of the equivalence of the two parameterizations, the minimum of V df
N (x, ·)

evaluated over the admissible policies Πdf
N (x) is equal to the minimum of VN (x, ·, ·, 0) in (16), i.e.

min
(M,v)∈Πdf

N
(x)
V df

N (x,v) = min
(L,g)∈Πsf

N
(x)
VN (x,L,g,0) (30)

The control law µN (·) in (18) can then be implemented using the first part of the optimal v∗(·)
at each step, i.e.

µN (x) = v∗0(x) = L∗
0,0(x)x + g∗0(x) (31)

where

(M∗(x),v∗(x)) := argmin
(M,v)∈Πdf

N (x)

V df
N (x,v) (32)

v∗(x) =: vec(v∗
0(x), . . . , v∗N−1(x)) (33)

which requires the minimization of a convex function over a convex set. The receding horizon
control law µN (·) in (18) is thus practically realizable. Note that since the cost function (27) is
strictly convex in v, both the minimizer v∗(x) and the resulting control law (31) are uniquely
defined for each x [42, Thm 2.6], and the value function V ∗

N (·) is convex and continuous on the

interior of Xsf
N [42, Thm. 2.35, Cor. 3.32].

Until this point, no constraints have been imposed on the disturbance set W other than the
requirement that it be compact; Theorems 1 and 2 hold even for non-convex disturbance sets. In
the remainder of this section, we consider the special cases where W is a polytopic or ∞-norm
bounded set.
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4.1 Optimization Over Polytopic Disturbance Sets

We consider the special case where the constraint set describes a polytope (closed and bounded
polyhedron). In this case the disturbance set may be written as

W =
{

w ∈ R
nN | Sw ≤ h

}

(34)

where S ∈ R
t×n and h ∈ R

t (note that this includes cases where the disturbance set is time
varying). Note that both 1- and ∞-norm disturbance sets W can be characterized in this manner.

In this case, we can write the dual problem for each row of vec maxw∈W(FM + G)w, and solve
the convex control policy optimization problem (29) as a single quadratic program.

4.1.1 Introduction of Dual Variables to the Robust Problem

With a slight abuse of notation, we recall that for a general LP in the form

min
z

cT z, s.t. Az = b, z ≥ 0 (35)

the same problem can be solved in dual form by solving the dual problem

max
w

bT w, s.t. AT w ≤ c (36)

where, for each feasible pair (z, w), it is always true that bT w ≤ cT z. Using this idea, if we define
the ith row of (FM + G) as (FM + G)i, then the dual of each row of (25) can be written as

max
w∈W

(FM + G)iw = min
zi

hT zi, s.t. ST zi = (FM + G)T
i , zi ≥ 0, (37)

where the vectors zi ∈ R
t represents the dual variables associated with the ith row. By combining

these dual variables into a matrix
Z :=

[

z1 . . . zN

]

(38)

the set Πdf
N (x) can be written in terms of purely linear constraints:

Πdf
N (x) =











(M,v)

∣

∣

∣

∣

∣

∣

∣

(M,v) satisfies (21), ∃Z s.t.

Fv + ZT h ≤ c + Tx

FM + G = ZT S, Z ≥ 0











, (39)

where all inequalities are element-wise.

Note that the convex optimization problem (29) now requires optimization over the polytopic set
(39), leading to a quadratic programming problem in the variables M, Z and v.

Remark 2. When the disturbance set is polytopic, it can be shown that the value function V ∗
N (·)

is piecewise quadratic on XN , and the resulting control law µN (·) is piecewise affine [22].

4.2 Optimization Over ∞-Norm Bounded Disturbance Sets

In the remainder of this paper, we consider the particular case where W is generated as the linear
map of a hypercube. Define

W = {w ∈ R
n | w = Ed, ‖d‖∞ ≤ 1}, (40)

where E ∈ R
n×l, so that the stacked generating disturbance sequence d ∈ R

lN is

d = vec(d0, . . . , dN−1), (41)
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and define the matrix J := IN ⊗ E ∈ R
Nn×Nl, so that w = Jd. As shown in [30], an analytical

solution to the row-wise maximization in (24) is easily found. From the definition of the dual
norm [25], when the generating disturbance d is any p-norm bounded signal given as in (40), then

max
w∈W

aT w = ‖ET a‖q (42)

for any vector a ∈ Rn, where 1/p + 1/q = 1.

Straightforward application of (42) to the row wise-maximization in (24) (with q = 1) yields

Πdf
N (x) =

{

(M,v)
(M,v) satisfies (21)

Fv + abs(FMJ + GJ)1 ≤ c + Tx

}

, (43)

where abs(FMJ + GJ)1 is a vector formed from the 1-norms of the rows of (FMJ + GJ). This
can be written as a set of purely affine constraints by introducing slack variables and rewriting as

Πdf
N (x) =







(M,v)
(M,v) satisfies (21), ∃Λ s.t.

Fv + Λ1 ≤ c + Tx
−Λ ≤ (FMJ + GJ) ≤ Λ







. (44)

As in the case for general polytopic disturbance sets, the cost function (27) can then be minimized
over allowable policies in (44) by forming a quadratic program in the variables M, Λ, and v, i.e.

min
M,Λ,v

1

2
‖Ax + Bv‖2

Q +
1

2
‖v‖2

R (45a)

subject to:

Fv + Λ1 ≤ c + Tx (45b)

−Λ ≤ (FMJ + GJ) ≤ Λ. (45c)

Remark 3. The total number of decisions variables in (45) is mN in v, mnN 2 in M, and
(slN2 + rlN) in Λ, with a number of constraints equal to (sN + r) + 2(slN 2 + rlN)), or O(N2)
overall. For a naive interior-point computational approach using a dense factorization method,
the resulting quadratic program would thus require computation time of O(N 6) at each iteration.

4.2.1 Writing Πdf
N (x) in Separable Form

Next, define the following variable transformation:

U := MJ (46)

such that the matrix U ∈ R
mN×lN has block lower triangular structure similar to that defined in

(21) for M, i.e.

U :=











0 · · · · · · 0
U1,0 0 · · · 0

...
. . .

. . .
...

UN−1,0 · · · UN−1,N−2 0











. (47)

We note that this parameterization is tantamount to parameterizing the control policy directly in
terms of the generating disturbances di, so that ui =

∑i−1
j=0 Ui,jdj + vi, or u = Ud + v. These

generating disturbances are obviously not directly measurable, and must instead be inferred from
the real disturbances wi.

Proposition 1. For each w ∈ W , a generating d such that ‖d‖∞ ≤ 1 and w = Ed can always be
found. If E is full column rank, the generating disturbance is unique1.

1Note that if E is not full column rank, an admissible d can still always be chosen.
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We define the set of admissible (U,v) as

Πuf
N (x) :=







(U,v)
(U) satisfies (47), ∃Λ s.t.

Fv + Λ1 ≤ c + Tx
−Λ ≤ (FU + GJ) ≤ Λ







, (48)

and the set of states for which such a controller exists as

Xuf
N := {x ∈ R

n | Πuf
N (x) 6= ∅}. (49)

Proposition 2. Xdf
N ⊆ Xuf

N . If E is full column rank, then Xdf
N = Xuf

N = Xsf
N . Additionally,

given any x ∈ Xsf
N , for any admissible pair (U,v) an admissible (L,g) can be constructed that

yields the same input and and state sequence for all allowable disturbances, and vice-versa.

Proof. It is easy to verify that Xdf
N ⊆ Xuf

N , by noting that if x ∈ Xdf
N with admissible control

policy (M,v), then, from (44), the control sequence u can be written as u = MJd + v, and the

constraints in (48) satisfied by selecting U = MJ so that x ∈ Xdf
N ⇒ x ∈ Xuf

N .

If E has full column rank, then J = IN ⊗ E also has full column rank, and therefore has a left
inverse J† satisfying J†J = I . If x ∈ Xuf

N , then there exists an admissible policy (U,v) that
results in a control sequence u = Ud + v, and the constraints in (44) are satisfied by selecting

M = UJ†, so that x ∈ Xuf
N ⇒ x ∈ Xdf

N . The remainder of the proof follows directly from
Theorem 2. The reader is referred to [22] for a method of constructing such an (L,g) given an
admissible (M,v).

Optimization of the cost function (27) over the set (48) thus yields a quadratic program in the
variables U, Λ and v:

min
U,Λ,v

1

2
‖Ax + Bv‖2

Q +
1

2
‖v‖2

R (50a)

subject to:

Fv + Λ1 ≤ c + Tx (50b)

−Λ ≤ (FU + GJ) ≤ Λ. (50c)

Remark 4. The critical feature of the quadratic program (50) is that the columns of the vari-
ables U and Λ are decoupled in the constraint (50c). This allows column-wise separation of the
constraint into a number of subproblems, subject to the coupling constraint (50b).

5 Recovering Structure in the Robust Control Problem

The quadratic program (QP) defined in (50) can be rewritten in a more computationally attractive
form by re-introducing the eliminated state variables to achieve greater structure. The re-modelling
process separates the original problem into subproblems; a nominal problem, consisting of that
part of the state resulting from the nominal control vector v, and a set of perturbation problems,
each representing those components of the state resulting from each of the columns of (50c) in
turn.

Nominal States and Inputs

We first define a constraint contraction vector δc ∈ R
sN+r such that

δc := vec(δc0, . . . , δcN) = Λ1, (51)
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so that the constraint (50b) becomes

Fv + δc ≤ c + Tx. (52)

Recalling that the nominal states x̂i are defined in (26) as the expected states given no distur-
bances, it is easy to show that the constraint (52) can be written explicitly in terms of the nominal
controls vi and states x̂i as

x̂0 = x, (53a)

x̂i+1 − Ax̂i − Bvi = 0, ∀i ∈ Z[0,N−1] (53b)

Cx̂i + Dvi + δci ≤ b, ∀i ∈ Z[0,N−1] (53c)

Y x̂N + δcN ≤ z, (53d)

which is in a form that is exactly the same as that in conventional receding horizon control
problem with no disturbances, but with the right-hand-sides of the state and input constraints at
each stage i modified by δci; compare (53b)–(53d) and (7)–(9) respectively.

Perturbed States and Inputs

We next consider the effects of each of the columns of (FU + GJ) in turn, and seek to construct
a set of problems similar to that in (53). We treat each column as the output of a system subject
to a unit impulse in a single element of d, and construct a subproblem that calculates the effect of
that disturbance on the nominal problem constraints (53c)–(53d) by determining its contribution
to the total constraint contraction vector δc.

From the original QP constraint (50c), the constraint contraction vector δc can be written as

abs(FU + GJ)1 ≤ Λ1 = δc, (54)

the left hand side of which can be rewritten as

abs(FU + GJ)1 =
lN
∑

p=1

abs((FU + GJ)ep). (55)

Define yp ∈ R
sN+r and δcp ∈ R

sN+r as

yp := (FU + GJ)ep (56)

δcp := abs(yp). (57)

The unit vector ep represents a unit disturbance in some element j of the generating disturbance
dk at some time step k, with no disturbances at any other step2. If we denote the jth column of
E as E(j), then it is easy to recognize yp as the stacked output vector of the system

(up
i , x

p
i , y

p
i ) = 0, ∀i ∈ Z[0,k] (58a)

xp
k+1 = E(j), (58b)

xp
i+1−Axp

i −Bup
i = 0, ∀i ∈ Z[k+1,N−1] (58c)

yp
i −Cxp

i −Dup
i = 0, ∀i ∈ Z[k+1,N−1] (58d)

yp
N − Y xp

N = 0, (58e)

where yp = vec(yp
0 , . . . , yp

N ). The inputs up
i of this system come directly from the pth column of

the matrix U, and thus represent columns of the sub-matrices Ui,k. If the constraint terms δcp

2Note that this implies p = lk + j, k = (p − j)/l and j = 1 + (p − 1) mod l.
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for each subproblem are similarly written as δcp = vec(δcp
0, . . . , δc

p
N ), then each component must

satisfy δcp
i = abs(yp

i ), or in linear inequality constraint form

−δcp
i ≤ yp

i ≤ δcp
i . (59)

It is of course important to note that the terminal output and constraint terms are not of the same
dimension as the other terms in general, i.e. yi, δci ∈ R

s ∀i ∈ Z[0,N−1], and yN , δcN ∈ R
r. Note

also that for the pth subproblem, representing a disturbance at stage k, the constraint contraction
terms are zero prior to stage (k + 1).

By further defining

C̄ :=

[

+C
−C

]

D̄ :=

[

+D
−D

]

Ȳ :=

[

+Y
−Y

]

H :=

[

−Is

−Is

]

Hf :=

[

−Ir

−Ir

]

, (60)

equations (58d) and (58e) can be combined with (59) to give

C̄xp
i + D̄up

i + Hδcp
i ≤ 0, ∀i ∈ Z[k+1,N−1] (61a)

Ȳ xp
N + Hfδcp

N ≤ 0. (61b)

5.1 Complete Robust Control Problem

We can now restate the complete robust optimization problem (50) as:

min
x̂1,...,x̂N ,v0,...vN−1,δc0,...,δcN ,

x1
0,...,x1

N ,u1
0,...u1

N−1,δc1
0,...,δc1

N ,
...,

xlN
0 ,...,xlN

N ,ulN
0 ,...ulN

N−1,δclN
0 ,...,δclN

N

N−1
∑

i=0

(

1

2
‖x̂i‖

2
Q +

1

2
‖vi‖

2
R

)

+
1

2
‖x̂N‖2

P (62)

subject to (53), (58a)–(58c) and (61), which we restate here for convenience:

x̂0 = x, (63a)

x̂i+1 − Ax̂i − Bvi = 0, ∀i ∈ Z[0,N−1] (63b)

Cx̂i + Dvi + δci ≤ b, ∀i ∈ Z[0,N−1] (63c)

Y x̂N + δcN ≤ z, (63d)

where

δci =

lN
∑

p=1

δcp
i , ∀i ∈ Z[0,N ], (64)

and, for each p ∈ Z[1,lN ]:

(up
i , x

p
i , δc

p
i ) = 0, ∀i ∈ Z[0,k] (65a)

xp
k+1 = E(j), (65b)

xp
i+1 − Axp

i − Bup
i = 0, ∀i ∈ Z[k+1,N−1] (65c)

C̄xp
i + D̄up

i + Hδcp
i ≤ 0, ∀i ∈ Z[k+1,N−1] (65d)

Ȳ xp
N + Hfδcp

N ≤ 0. (65e)

where k = (p − j)/l and j = 1 + (p − 1) mod l.

The decision variables in this problem are the nominal states and controls x̂i and vi at each stage
(the initial state x̂0 is known, hence not a decision variable), plus the perturbed states, controls,
and constraint contractions terms xp

i , up
i , and δcp

i for each subproblem at each stage.

We can now state the following key result, proof of which follows directly from Proposition 2 and
the discussion of this section.
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Theorem 3. The convex, tractable QP (62)–(65) is equivalent to the robust optimal control prob-
lems (16) and (29). The receding horizon control law u = µN (x) in (18) can be implemented using
the solution to (62)–(65) as u = v∗

0(x).

It is important to note that the constraints in (63)–(65) can be rewritten in diagonalized form by
interleaving the variables by time index. For the nominal problem, define the stacked vectors of
variables:

x0 := vec(v0, x̂1, v1, . . . , x̂N−1, vN−1, x̂N ). (66)

For the pth perturbation problem in (65), which corresponds to a unit disturbance at some stage k,
define:

xp := vec(up
k+1, δc

p
k+1, x

p
k+2, u

p
k+2, δc

p
k+2, . . . ,

xp
N−1, u

p
N−1, δc

p
N−1, x

p
N , δcp

N ).
(67)

This yields a set of banded matrices A0, Ap, C0, and Cp, and right-hand-side vectors d0, dp, b0,
and bp formed from from the constraints in (63) and (65), and a set of coupling matrices Jp formed
from the constraint coupling constraint (64). The result is a set of constraints in singly-bordered
block-diagonal form with considerable structure and sparsity:











A0

A1

. . .

AlN





















x0

x1

...
xlN











=











b0

b1

...
blN











,











C0 J1 · · · JlN

C1

. . .

ClN





















x0

x1

...
xlN











≤











d0

d1

...
dlN











. (68)

For completeness the matrices A0, Ap, C0, and Cp, and vectors vectors d0 dp, b0, and bp are defined
in Appendix A. The coupling matrices Jp are easily constructed from the coupling equation (64).
Note that only the vectors b0 and d0 are functions of x.

Remark 5. It is possible to define a problem structure similar to that in (62)–(65) for the more
general polytopic disturbance sets discussed in Section 4.1 via introduction of states in a similar
manner. However, in this case the perturbation subproblems (65) contain an additional coupling
constraint for the subproblems associated with each stage.

6 Interior-Point Method for Robust Control

In this section we demonstrate, using a primal-dual interior-point solution technique, that the
quadratic program defined in (62)–(65) is solvable in time cubic in the horizon length N at each
iteration, when n+m is dominated by N ; a situation common, for example, in the rapidly growing
number of aerospace and automotive applications of predictive control [36, Sec. 3.3] [40]. This
is a major improvement on the O(N 6) work per iteration associated with the compact (dense)
formulation (45), or the equivalent problem (50); cf. Remark 3. This computational improvement
comes about due to the improved structure and sparsity of the problem. Indeed, akin to the
situation in [41], we will show that each subproblem in the QP (62)–(65) has the same structure
as that of an unconstrained optimal control problem without disturbances.

We first outline some of the general properties of interior-point solution methods.

6.1 General Interior-Point Methods

With a slight abuse of notation, we consider the general constrained quadratic optimization prob-
lem

min
θ

1

2
θT Qθ subject to Aθ = b, Cθ ≤ d, (69)
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where the matrix Q is positive semidefinite. The Karush-Kuhn-Tucker conditions require that a
solution θ∗ to this system exists if and only if additional vectors π∗, λ∗ and z∗ exist that satisfy
the following conditions:

Qθ + AT π + CT λ = 0 (70a)

Aθ − b = 0 (70b)

−Cθ + d − z = 0 (70c)

λT z = 0 (70d)

(λ, z) ≥ 0 (70e)

The constraint λT z = 0 can be rewritten in a slightly more convenient form by defining diagonal
matrices Λ and Z such that

Λ =







λ1

. . .

λn






, Z =







z1

. . .

zn






, (71)

so that ΛZ1 = 0. Primal-dual interior-point algorithms search for a solution to the KKT conditions
(70) through repeated solutions of a set of Newton-like equations of the form









Q AT CT

A

C I
Λ Z

















∆θ
∆π
∆λ
∆z









= −









rQ

rA

rC

rZ









. (72)

The particular choice of right hand sides for this equation is determined by the particular interior-
point algorithm employed; the reader is referred to [51] for a thorough review. However, all such
methods maintain the strict inequalities (λ, z) > 0 at each iteration. As a result, the matrices Λ
and Z are guaranteed to remain full rank, and the system of equations in (72) can be simplified
through elimination of the slack variables ∆z, to form the reduced system





Q AT CT

A

C −Λ−1Z









∆θ
∆π
∆λ



 = −





rQ

rA
(

rC − Λ−1rZ

)



 (73)

Since the number of interior-point iterations required in practise is only weakly related to the
number of variables [51], the principal consideration is the time required to factor the Jacobian
matrix (i.e., the matrix on the left-hand-side), and solve the linear system in (73).

6.2 Robust Control Formulation

For the robust optimal control problem described in (62)–(65), the system of equations in (73)
can be arranged to yield a highly structured set of linear equations through appropriate ordering
of the primal and dual variables and their Lagrange multipliers at each stage. As will be shown,
this ordering enables the development of an efficient factorization procedure for the linear system
in (73).

We use λi and λN to denote the Lagrange multipliers for the constraints (63c) and (63d) in
the nominal system, and zi and zN for the corresponding slack variables. We similarly use λp

i

and λp
N to denote the multipliers in (65d) and (65e) for the pth perturbation subproblem, with

slack variables zp
i and zp

N . We use πi and πp
i to denote the dual variables for (63) and (65).

The linear system (73) for the robust control problem (62)–(65) can then be reordered to form
a symmetric, block-bordered, banded diagonal set of equations, by interleaving the primal and
dual variables within the nominal and perturbed problems, while keeping the variables from each

15



subproblem separate. If the pth perturbation subproblem corresponds to a unit disturbance at
some stage k, then the components of the system of equations (73) corresponding to the nominal
variables and variables for the pth perturbation subproblem are coupled at all stages after k. For
the first perturbation problem, this yields the coupled set of equations



































































R DT BT

D −Σ0 0

B 0 0 −I

−I Q 0 CT AT

0 R DT BT

C D −Σ1 0 I

A B 0 0 −I

−I Q 0 CT AT

0 R DT BT

C D −Σ2 0 I

A B 0

.
.
.

.
.
.

.
.
. P Y T

Y −ΣN I

0 0 D̄T BT

I 0 0 HT 0

D̄ H −Σ
p
1 0

B 0 0 0 −I

−I 0 0 0 C̄T AT

0 0 0 D̄T BT

I 0 0 0 HT 0

C̄ D̄ H −Σ
p
2

0

A B 0 0

.
.
.

.
.
.

.
.
. 0 0 Ȳ T

I 0 0 HT
f

Ȳ Hf −Σ
p
N





































































































































∆v0

∆λ0

∆π0

∆x1

∆v1

∆λ1

∆π1

∆x2

∆v2

∆λ2.
.
.

∆xN

∆λN

∆u
p
1

∆δc
p
1

∆λ
p
1

∆π
p
1

∆x
p
2

∆u
p
2

∆δc
p
2

∆λ
p
2.

.

.

∆x
p
N

∆δc
p
N

∆λ
p
N
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rv0

rλ0

rπ0

rx1

rv1

rλ1

rπ1

rx2

rv2

rλ2.
.
.

rxN

rλN

r
u

p
1

r
δc

p
1

r
λ

p
1

r
π

p
1

r
x

p
2

r
u

p
2

r
δc

p
2

r
λ

p
2.

.

.

r
x

p
N

r
δc

p
N

r
λ

p
N





































































.

(74)

The diagonal matrices Σi and Σp
i in (74) correspond to the matrix products Λ−1Z in (73), and

are defined as

Σi := (Λi)
−1Zi, ∀i ∈ Z[0,N ] (75)

Σp
i := (Λp

i )
−1Zp

i , ∀i ∈ Z[k+1,N ] (76)

where the matrices Λi, Λp
i , Zi, and Zp

i are diagonal matrices formed from the Lagrange multipliers
and slack variables λi, λp

i , zi and zp
i from the nominal and perturbation subproblems.

This forms a system of equations whose coefficient matrix can be partitioned in block-bordered
form as















A J1 J2 · · · JlN

J T
1 B1

J T
2 B2

...
. . .

JT
lN BlN





























xA

x1

x2

...
xlN















=















bA

b1

b2

...
blN















, (77)

where the banded matrix A is derived from the coefficients in the nominal problem (63), the
banded matrices Bp are derived from the coefficients from the lN perturbation subproblems (65),
and the matrices Jp represent the coupling between the systems. The vectors bA, bp,xA, and xp

(which should not be confused with the stacked state vectors x) are easily constructed from the
primal and dual variables and residuals using the ordering in (74). The complete sub-matrices A
and Bp in (74) can be written as

A :=



















R DT BT

D −Σ0 0

B 0 0 −I

−I Q 0 CT AT

0 R DT BT

C D −Σ1 0

A B 0

.
.
.

.
.
.

.
.
. P Y T

Y −ΣN



















, (78)
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and

Bp :=





























0 0 D̄T BT

0 0 HT 0

D̄ H −Σ
p
k+1

0

B 0 0 0 −I

−I 0 0 0 C̄T AT

0 0 0 D̄T BT

0 0 0 HT 0

C̄ D̄ H −Σ
p
k+2

0

A B 0 0

.
.
.

.
.
.

.
.
. 0 0 Ȳ T

0 0 HT
f

Ȳ Hf −Σ
p
N





























. (79)

The matrices Jp are easily constructed from identity matrices coupling the rows of A that contain
the Σi terms with the columns of Bp that contain the H terms. It should of course be noted that
for the matrix Bp, corresponding to a unit disturbance at stage k, no terms prior to stage k + 1
are required.

6.3 Solving for an Interior-Point Step

We can now estimate the solution time for robust optimization problem (62)–(65) by demonstrating
that the linear system in (77) can be factored and solved in O(N 3) operations. We recall that,
in practise, the number of interior-point iterations is only weakly dependent on the size of the
problem [51]. Throughout this section, we make the simplifying assumption that the number of
constraints s and r in (8) and (9) are O(m + n) and O(n) respectively, and define β := m + n.

We first require the following standing assumption and preliminary results:

Assumption 1. The constraint matrix D in (8) has full column rank.

Note that this assumption can always be satisfied by introducing additional input constraints
with suitably large bounds. This allows us to derive the following two results, proof of which are
relegated to Appendices B.1 and B.2 respectively.

Lemma 1. For the robust control problem (62)–(65), the Jacobian matrix in (73) to be factored
at each step is full rank.

Lemma 2. The sub-matrices B1, . . . ,BlN arising from the perturbations subproblems in (77) are
full rank, and can be factored in O(β3(N − k + 1)) operations.

Note that each of the blocks on the diagonal of (77) is symmetric indefinite. Efficient algorithms
exists for the stable construction of Cholesky-like decompositions of such a matrix into factors of
the form LDLT . The most common of these methods are the Bunch-Kaufman-Parlett methods [9],
which construct a lower triangular L, and a block-diagonal D consisting of 1× 1 and 2× 2 blocks.
Efficient algorithms for performing this factorization for sparse matrices are freely available [15,26].
Special techniques for the factorization of the matrices Bp based on Riccati recursion [41] could
also be employed — a procedure for reduction of the matrices Bp to Riccati form is presented in
Appendix B.2.

We can now demonstrate that it is always possible to factor and solve the linear system (77) in
O(N3) operations.

Theorem 4. For the robust optimal control problem (62)–(65), each primal-dual interior-point
iteration requires no more than O(β3N3) operations.

Proof. The linear system (77) can be written in block-partitioned form as

[

A J

JT B

] [

xA

xB

]

=

[

bA

bB

]

, (80)
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where the matrix B is block-diagonal with banded blocks Bp, and J :=
[

J1 . . . JlN

]

. A
block-partitioned matrix of this type can be factored and solved as

[

xA

xB

]

=

[

I 0
−B−1JT I

] [

∆−1 0
0 B−1

] [

I −JB−1

0 I

][

bA

bB

]

, (81)

with
∆ := (A− JB−1JT ). (82)

where, by virtue of Lemmas 1 and 2, the matrix ∆ is always full rank [25, Thm. 0.8.5].

The structure of the linear system in (77) is quite common [21, 31, 35], and can be solved using
the following procedure based on Schur complements:

Operation Complexity

factor: Bi = LiDiL
T
i ∀i ∈ Z[1,lN ] lN · O(β3N) (83a)

∆ = A−

(

lN
∑

i=1

JiB
−1
i J T

i

)

lN · O(β3N2) (83b)

= L∆D∆LT
∆ O(β3N3) (83c)

solve: b̃i = L−T
i (D−1

i (L−1
i bi)), ∀i ∈ Z[1,lN ] lN · O(β2N) (83d)

zA = bA −
lN
∑

i=1

(Jib̃i), lN · O(βN) (83e)

xA = L−T
∆ (D−1

∆ (L−1
∆ z)), O(β2N2) (83f)

zi = J T
i xA, ∀i ∈ Z[1,lN ] lN · O(βN) (83g)

xi = b̃i − L−T
i (D−1

i (L−1
i zi)). ∀i ∈ Z[1,lN ] lN · O(β2N) (83h)

Remark 6. It is important to recognize that the order of operations in this solution procedure
has a major influence on its efficiency. In particular, special care is required in forming the
products JiB

−1
i J T

i , particularly when the matrix J T
i is sparse, as many sparse factorization codes

require that the right hand side vectors for a solve of the form B−1
i b be posed as dense columns.

We note that, strictly speaking, the proposed method relies on the Riccati factorization technique
discussed in Appendix B.2 for the factorization of the matrices Bi, rather than factorization into
Bi = LiDiL

T
i , though this distinction is not material to our proof. For the formulation in (77)

it is also important to note that since the coupling matrices Ji have no more than a single 1 on
every row and column, matrix products involving left or right multiplication by Ji or J T

i do not
require any floating point operations to calculate. The reader is referred to [8, App. C] for a more
complete treatment of complexity analysis for matrix operations.

Remark 7. If the factorization procedure (83) is employed, then the robust optimization problem
is an obvious candidate for parallel implementation.

Remark 8. It is not necessary to hand implement the suggested variable interleaving and block
factorization procedure to realize the suggested block-bordered structure in (77) and O(N 3) be-
havior, as any reasonably efficient sparse factorization code may be expected to perform similar
steps automatically; see [15]. Note that the “arrowhead” structure in (77) should be reversed (i.e.
pointing down and to the right) in order for direct LDLT factorization to produce sparse factors.

7 Results

Two sparse QP solvers were used to evaluate the proposed formulation. The first, OOQP [19],
uses a primal-dual interior-point approach configured with the sparse factorization code MA27
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from the HSL library [26] and the OOQP version of the multiple-corrector interior-point method
of Gondzio [20].

The second sparse solver used was the QP interface to the PATH [14] solver. This code solves
mixed complementarity problems using an active-set method, and hence can be applied to the
stationary conditions of any quadratic program. Note we are dealing with convex QPs, hence each
optimization problem and its associated complementarity system have equivalent solution sets.

All results reported in this section were generated on a single processor machine, with a 3Ghz
Pentium 4 processor and 1GB of RAM. We restrict our attention to sparse solvers as the amount of
memory required in the size of the problems considered is prohibitively large for dense factorization
methods.

A set of test cases was generated to compare the performance of the two sparse solvers using the
(M,v) formulation in (45) with the decomposition based method of Section 5. Each test case is
defined by its number of states n and horizon length N . The remaining problem parameters were
chosen using the following rules:

• There are twice as many states as inputs.

• The constraint sets W , Z and Xf represent randomly selected symmetric bounds on the
states and inputs subjected to a random similarity transformation.

• The states space matrices A and B are randomly generated, with (A, B) controllable, and
A stable.

• The dimension l of the generating disturbance is chosen as half the number of states, with
randomly generated E of full column rank.

• All test cases have feasible solutions. The current state is selected such that at least some
of the inequality constraints in (63c) are active at the optimal solution.

The average computational times required by each of the two solvers for the two problem formu-
lations for a range of problem sizes are shown in Table 1. Each entry represents the average of ten
test cases, unless otherwise noted.

It is clear from these results that, as expected, the decomposition-based formulation can be solved
much more efficiently than the original (M,v) formulation for the robust optimal control problem
in every case, and that the difference in solution times increases dramatically with increased
problem size. Additionally, the decomposition formulation seems particularly well suited to the
interior-point solver (OOQP), rather than the active set method (PATH). Nevertheless we expect
the performance of active set methods to improve relative to interior-point methods when solving
a sequence of similar QPs that would occur in predictive control, i.e., when a good estimate of
the optimal active set is available at the start of computation. That is, interior-point methods are
particulary effective in “cold start” situations, while the efficiency of active set methods is likely
to improve given a “warm start”. As is common in interior-point methods, we find that the actual
number of iterations required for solution of each problem type in Table 1 is nearly constant with
increasing horizon length.

Figure 1 shows that the interior-point solution time increases cubicly with horizon length for
a randomly generated problem with 4 states. The performance closely matches the predicted
behavior described in Section 5. For the particular problem shown, the number of iterations
required for the OOQP algorithm to converge increased from 9 to 11 over the range of horizon
lengths considered.
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Table 1: Average Solution Times (sec)
(M,v) Decomposition

Problem Size OOQP PATH OOQP PATH
2 states, 4 stages 0.005 0.003 0.005 0.001
2 states, 8 stages 0.023 0.019 0.019 0.016
2 states, 12 stages 0.064 0.060 0.039 0.195
2 states, 16 stages 0.191 0.206 0.079 0.456
2 states, 20 stages 0.444 0.431 0.141 0.702
4 states, 4 stages 0.026 0.047 0.021 0.033
4 states, 8 stages 0.201 0.213 0.089 0.117
4 states, 12 stages 0.977 2.199 0.287 2.926
4 states, 16 stages 3.871 39.83 0.128 10.93
4 states, 20 stages 12.99 76.46 1.128 31.03
8 states, 4 stages 0.886 4.869 0.181 1.130
8 states, 8 stages 7.844 49.15 0.842 19.59
8 states, 12 stages 49.20 303.7 2.949 131.6
8 states, 16 stages 210.5 x 7.219 x
8 states, 20 stages 501.7 x 13.14 x
12 states, 4 stages 4.866 24.66 0.428 6.007
12 states, 8 stages 95.84 697.1† 3.458 230.5†

12 states, 12 stages 672.2 x 11.86 x
12 states, 16 stages x x 33.04 x
12 states, 20 stages x x 79.06 x
x – Solver failed all test cases
† – Based on limited data set due to failures
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Figure 1: Computation time vs. horizon length for a 4 state system, using decomposition method
and OOQP solver
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8 Conclusions and Future Work

We have derived a highly efficient computational method for calculation of affine-state feedback
policies for robust control of constrained systems with bounded disturbances. This is done by
exploiting the structure of the underlying optimization problem and deriving an equivalent problem
with considerable structure and sparsity, resulting in a problem formulation that is particularly
suited to an interior-point solution method. As a result, robustly stabilizing receding horizon
control laws based on optimal state-feedback policies have become practically realizable, even for
systems of significant size or with long horizon lengths.

In Section 6 we proved that, when applying an interior-point solution technique to our robust
optimal control problem, each iteration of the method can be solved using a number of operations
proportional to the cube of the control horizon length. We appeal to the Riccati based factorization
technique in [41] to support this claim. However, we stress that the results in Section 7, which
demonstrate this cubic-time behavior numerically, are based on freely available optimization and
linear algebra packages and do not rely on any special factorization methods.

A number of open research issues remain. It may be possible to possible to further exploit the
structure of our control problem by developing specialized factorization algorithms for the factor-
ization of each interior-point step, e.g. through the parallel block factorization procedure alluded
to in Remark 7. It may also be possible to achieve considerably better performance by placing
further constraints on the structure of the disturbance feedback matrix M, though this appears
difficult to do if the attractive invariance and stability properties of the present formulation are
to be preserved.

Many of the system-theoretic results developed in [22] hold for a fairly broad classes of disturbances
and cost functions. For example, when the disturbance is Guassian the problem may be modified
to require that the state and input constraints hold with a certain pre-specified probability, and the
probabilistic constraints converted to second-order cone constraints [8, pp. 157–8]. Alternatively,
the cost function for the finite horizon control problem may require the minimization of the finite-
horizon `2 gain of a system [28]. In all of these cases, there is a strong possibility that the
underlying problem structure may be exploited to realise a substantial increase in computational
efficiency.
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A Matrix Definitions

Let the matrices A ∈ R
n(N+1)×n and E ∈ R

n(N+1)×nN be defined as

A :=

2

6

6

6

6

6

4

In

A
A2

.

..
AN

3

7

7

7

7

7

5

, E :=

2

6

6

6

6

6

4

0 0 · · · 0
In 0 · · · 0
A In · · · 0
..
.

..

.
. . .

..

.
AN−1 AN−2 · · · In

3

7

7

7

7

7

5

. (84)

We also define the matrices B ∈ R
n(N+1)×mN , C ∈ R

(sN+r)×n(N+1) and D ∈ R
(sN+r)×mN as

B := E(IN ⊗ B), C :=

[

IN ⊗ C 0
0 Y

]

, D :=

[

IN ⊗ D
0

]

. (85)

It is easy to check that the expression in (22) is equivalent to (44) with F := CB + D, G :=
CE, H := −CA, c := [ 1N⊗b

z ]. Writing the nominal constraint equation (63) in matrix form, the
coefficient matrices A0 and C0 in (68) are:

A0 :=







B −I
A B −I

. . .

A B −I






, C0 :=











D
C D

. . .

C D
Y











, (86)

with corresponding right hand sides

b0 := vec(−Ax, 0, 0, . . . , 0), d0 := vec(b − Cx, b, . . . , b, z). (87)

For the pth perturbation problem in (65), which corresponds to a unit disturbance at some stage
k, the coefficient matrices Ap and Cp in (65) become

Ap :=







B 0 −I
A B 0 −I

. . .

A B 0 −I 0






, Cp :=











D̄ H
C̄ D̄ H

. . .

C̄ D̄ H
Ȳ Hf











, (88)

with corresponding right hand sides

bp := vec(−AE(j), 0, . . . , 0), dp := vec(0, 0, . . . , 0, 0). (89)
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B Rank of the Jacobian and Reduction to Riccati Form

B.1 Rank of the Robust Control Problem Jacobian (Proof of Lem. 1)

In this section we demonstrate that, for the robust optimal control problem as defined in (63)-
(65), the interior point Jacobian matrix in (74) is always full rank. Recalling the discussion in
Section 6.1, the Jacobian matrix is full rank if the only solution to the system





Q AT CT

A 0 0
C 0 −ΣT









∆θ
∆π
∆λ



 =





0
0
0



 (90)

satisfies ∆θ = 0, ∆π = 0, and ∆λ = 0, where Σ > 0, Q ≥ 0, and the coefficient matrices A and C

come from the left hand sides of the robust control constraints defined in (68). The matrix Q is
easily constructed from Q and R in (15). It is important to recognize that the coefficient matrix
in (74) is simply a reordering of the left-hand side of (90).

From the first two rows of this system,

∆θT Q∆θ + (∆θT AT )∆π + ∆θT CT ∆λ = ∆θT Q∆θ + ∆θT CT ∆λ = 0. (91)

Incorporating the final block row, C∆θ = Σ∆λ, we have

∆θT Q∆θ + ∆λT Σ∆λ = 0. (92)

Since Σ > 0 for a strictly interior point, we conclude that ∆λ = 0. We also note that for a
general QP, so long as the matrix Q is at least positive semi-definite (possibly 0), then a sufficient
condition for full rank of the coefficient matrix would be for C to be full column rank and A to be
full row rank.

For our particular case, we note that since the term ∆θT Q∆θ is strictly positive definite in the
nominal control variables v (since the control weight R is positive definite by assumption) it is
easy to confirm, using the state update equation, that all of the nominal state and control variables
arising from (63) are zero.

The last two block rows of the system then require A∆θ = 0 and C∆θ = 0, where the coefficient
matrices A and C for the robust control problem originally come from the constraints in (65), i.e.
they require Apxp = 0 and Cpxp = 0 in (68), where the variables xp consist of the perturbed states
xp

i , controls up
i , and constraint contraction vectors δcp

i at each stage. It is easy to verify that the
constraint (65d) becomes

C̄xp
i + D̄up

i + Hδcp
i = 0, (93)

which, recalling the definitions of C̄, D̄, and H̄ in (60), implies δcp
k = 0 at each stage. Additionally,

if the perturbation problem corresponds to a disturbance at some stage k, then the constraint (65c)
requires Dup

k+1 = 0 if the matrix D is full column rank3. Using the state update equation (65c),
one can then conclude that xk+1 = 0 ⇒ uk+1 = 0 ⇒ xk+2 = 0, and so forth, such that each
variable in each perturbed control problem is zero, and thus the vector ∆x = 0.

All that remains from the first block row of the linear system is then AT ∆π = 0. Since the matrix
A is full row rank (because A0, A1, . . . , AlN are), we can conclude that ∆π = 0, and the Jacobian
is thus full rank at every interior point iteration.

B.2 Reduction to Riccati Form (Proof of Lem. 2)

We next demonstrate that the sub-matrices Bp in (74) are also full rank. We do this by performing a
single step of block elimination on the Lagrange multipliers λp

i , and demonstrate that the resulting
matrix is banded and invertible via the Riccati recursion technique of [41] in O(β3N3) operations.

3Note that the full rank column condition on D is not strictly necessary — a less restrictive sufficient condition
is null(D)

T

null(B) = {0}.
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It is straightforward to eliminate the multipliers λp
i and the constraint contraction terms δcp

i from
each of the subproblems. After elimination, the pth perturbation problem, corresponding to a unit
disturbance at stage k, has its variables xp ordered as:

x̃p := vec(up
k+1, π

p
k+1, x

p
k+2, u

p
k+2, π

p
k+2, . . . , x

p
N ) (94)

The corresponding coefficient matrix Bp is:

B̃p :=





















R
p
k+1

BT

B 0 −I

−I Q
p
k+2

M
p
k+2

AT

(M
p
k+2

)T
R

p
k+2

BT

A B 0 −I

−I Q
p
k+3

M
p
k+3

AT

(M
p
k+3

)T R
p
k+3

BT

A B

.
.
.

.
.
.

.
.
. Q

p
N





















(95)

where, for stages i ∈ Z[k+1,N−1] (dropping matrix superscripts p from here forward):

Φi := HT Σ−1
i H (96a)

Θi := Σ−1
i − Σ−1

i HΦ−1
i HT Σ−1

i (96b)

Qi := C̄T ΘiC̄ (96c)

Ri := D̄T ΘiD̄ (96d)

Mi := C̄T ΘiD̄, (96e)

and for stage N ,

ΦN := HT
f Σ−1

N Hf (96f)

ΘN := Σ−1
N − Σ−1

N HfΦ−1
N HT

f Σ−1
N (96g)

QN := Ȳ T ΦN Ȳ . (96h)

The right hand side bp becomes:

b̃p := vec(r̃u
p

k+1 , r̃π
p

k+1 , r̃x
p

k+2 , r̃u
p

k+2 , r̃π
p

k+2 , r̃x
p

k+3 , r̃u
p

k+3 , r̃π
p

k+3 , . . . , r̃x
p

N ), (97)

where, for stages i ∈ Z[k+1,N−1]

r̃x
p
i := rx

p
i + C̄Σ−1

i

(

(I − HΦ−1
i HT Σ−1

i )rλ
p
i − HΦ−1

i rc
p
i

)

(98a)

r̃u
p
i := ru

p
i + D̄Σ−1

i

(

(I − HΦ−1
i HT Σ−1

i )rλ
p
i − HΦ−1

i rc
p
i

)

(98b)

r̃y
p
i := ry

p
i , (98c)

and, for stage N ,

r̃x
p

N := rx
p

N + Ȳ Σ−1
N

(

(I − HfΦ−1
N HT

f Σ−1
N )rλ

p

N − HfΦ−1
N rc

p

N

)

. (98d)

Lemma 3. The matrices Ri and Qi are positive semi-definite. If Assumption 1 holds, then Ri is
positive definite, and the coefficient matrix Bp is equivalent to the KKT matrix obtained from an
unconstrained time-varying optimal control problem.

Proof. Recalling that the matrices Σi are block diagonal, and that the matrix H is defined as
H = − [ I

I ], the matrix Θi can be rewritten as

Θi = Σ−1
i − Σ−1

i HΦ−1
i HT Σ−1

i =

[

I
−I

]

(HT ΣiH)−1
[

I −I
]

. (99)
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This can be verified by partitioning the matrices in (99) into 2 × 2 blocks. If the matrix Σi is

partitioned as Σi :=
[

Σi,1 0
0 Σi,2

]

, then (99) is equivalent to

[

Σ−1
i,1 − Σ−1

i,1 (Σ−1
i,1 + Σ−1

i,2 )−1Σ−1
i,1 −Σ−1

i,1 (Σ−1
i,1 + Σ−1

i,2 )−1Σ−1
i,2

−Σ−1
i,2 (Σ−1

i,1 + Σ−1
i,2 )−1Σ−1

i,1 Σ−1
i,1 − Σ−1

i,2 (Σ−1
i,1 + Σ−1

i,2 )−1Σ−1
i,2

]

=

[

I
−I

]

(Σ−1
i,1 +Σ−1

i,2 )−1
[

I −I
]

which is easily verified using standard matrix identities. It then follows that Ri is positive semi-
definite, since it may be written as

Ri = D̄T

[

I
−I

]

(HT ΣiH)−1
[

I −I
]

D̄ (100)

= 4DT (Σi,1 + Σi,2)
−1D ≥ 0 (101)

which is clearly positive definite if D is full column rank. A similar argument establishes the result
for Qi. We note that it is always possible to force C and D to be full column rank through the
introduction of redundant constraints with very large upper bounds. The matrix B̃p is equivalent
to the KKT matrix for the problem:

min
uk+1,...,uN−1,

xk+1,...,xN

N−1
∑

i=(k+1)

1

2
(‖xi‖

2
Q + ‖ui‖

2
R + 2xiMiui) +

1

2
‖xN‖2

Q (102)

subject to:

xk = E(j), (103a)

xi+1 = Axi + Bui, ∀i ∈ Z[k+1,N−1], (103b)

which can be solved via Riccati recursion in O(N−k+1) operations if the matrices Ri are positive
definite [41].

Remark 9. The coefficient matrix Bp in (95) can be factored in O((N−k+1)(m+n)3) operations
using the Riccati recursion procedure proposed in [41] if the matrices Ri are positive definite. An
additional O((N − k + 1)(m + n)2) operations are required for the solution of each right hand side.
We note that in [41] the Riccati factorization procedure is shown to be numerically stable, and that
similar arguments can be used to show that factorization of (95) is also stable. We omit details
of this for brevity.

B.3 Complete Reduced Problem

Finally, we verify that the variable eliminations of the preceding section have not disrupted the
bordered block diagonal structure of the Jacobian matrix in (74). After elimination in each of the
perturbation subproblems, the coefficient matrix A for the nominal problem becomes:

Ã :=



















R DT BT

D −Σ̂0 0

B 0 0 −I

−I Q 0 CT AT

0 R DT BT

C D −Σ̂1 0

A B 0

.
.
.

.
.
.

.
.
. Qf Y T

Y −Σ̂N



















(104)

with variable ordering and corresponding right hand side:

xA := vec(v0, λ0, y0, x1, v1, λ1, y1, . . . , xN , N) (105)

b̃A := vec(r̃v0 , r̃λ0 , r̃y0 , r̃x1 , r̃v1 , r̃λ1 , r̃y1 , . . . , r̃xN , r̃λN ), (106)
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where (reintroducing matrix superscripts from the perturbation problems):

Σ̂0 := Σ0 (107a)

Σ̂i := Σi +
li
∑

p=1

(Φp
i )

−1, i ∈ Z[1,N−1] (107b)

Σ̂N := ΣN +

lN
∑

p=1

(Φp
N )−1, (107c)

and

r̃λ0 := rλ0 (108a)

r̃λi := rλi −
li
∑

p=1

{

(Φp
i )

−1
(

rc
p
i + HT (Σp

i )
−1rλ

p
i

)}

, i ∈ Z[1,N−1] (108b)

r̃λN := rλN −
lN
∑

p=1

{

(Φp
N )

−1
(

rc
p

N + HT
f (Σp

N )−1rλ
p

N

)}

. (108c)

We note that it is also possible to eliminate the variables λi from the nominal problem, which
would reduce the matrix Ã to a form similar to that of B̃p. However, doing this produces excessive
fill-in in the matrix (77), destroying its block-bordered diagonal structure.

Finally, after elimination, the complete set of equations coupling the nominal problem coefficients
Ã and the reduced matrix B̃1 for the first perturbation problem becomes

















































R DT BT

D −Σ̂0 0

B 0 0 −I

−I Q 0 CT AT

0 R DT BT

C D −Σ̂1 0 JD1
1

A B 0 0 −I

−I Q 0 CT AT

0 R DT BT

C D −Σ̂2 0 JC1
2 JD1

2

A B 0

.
.
.

.
.
.

.
.
. Qf Y T

Y −Σ̂N JY 1
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1 BT

B 0 −I

−I Q1
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r̃π0
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r̃v1

r̃λ1

r̃π1

r̃x2

r̃v2

r̃λ2.
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.

r̃xN
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. (109)

where

JDp

i := −(Φp
i )

−1D̄T (Σp
i )

−1H, ∀i ∈ Z[(k+1),(N−1)] (110a)

JCp

i := −(Φp
i )

−1C̄T (Σp
i )

−1H, ∀i ∈ Z[(k+2),(N−1)] (110b)

JY p

:= −(Φp
N)−1Ȳ T (Σp

N )−1Hf (110c)

The coupling matrices (110) now represent the interaction between the nominal coefficients Ã
and the reduced perturbation problems B̃p, with the terms JDp

i and JCp

i coupling the nominal

sub-matrices Σ̂i with the perturbation sub-matrices Rp
i and Qp

i , and the term JY p

coupling Σ̂N

with Qp
N .
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