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Abstract

This paper characterizes the solution to a finite horizon min-max
optimal control problem where the system is linear and discrete-time
with control and state constraints, and the cost quadratic; the dis-
turbance is negatively costed, as in the standard H∞ problem, and
is constrained. The cost is minimized over control policies and maxi-
mized over disturbance sequences so that the solution yields a feedback
control. It is shown that the value function is piecewise quadratic and
the optimal control policy piecewise affine, being quadratic and affine,
respectively, in polytopes that partition the domain of the value func-
tion.
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1 Introduction

Characterizations of solutions to constrained optimal control problems ap-
peared in the papers [1–4] that deal with the constrained linear-quadratic
problem, in the papers [4–7] and thesis [8] that deal with hybrid or piecewise
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affine systems, and in papers that deal with min-max optimal control prob-
lems [9–13]. In these papers it is shown that the value function is piecewise
affine or piecewise quadratic (depending on the nature of the cost function
in the optimal control problem) and the control law is piecewise affine, being
quadratic or affine in polytopes that constitute a polytopic partition of the
domain of the value function. When disturbances are present, it is necessary
to compute the solution sequentially using dynamic programming as in [10].
In this paper, which is motivated by recent research on H∞ model predic-
tive control [14–21], we obtain an explicit characterization of the solution
to a constrained, min-max optimal control problem and consider here the
choice of terminal cost and constraint set to ensure stability of the closed
loop system with receding horizon control. The term H∞ is used somewhat
loosely since we consider the min-max problem with fixed γ. We consider,
therefore, the problem of controlling a linear, discrete-time system described
by

x+ = Ax+Bu+Gw, y = Cx+Du (1.1)

where x ∈ IRn is the state, u ∈ IRm the control and w ∈ IRp an additive
disturbance (the ‘adversary’); x+ is the successor state and y ∈ IRr is the
costed output. We frequently write the system dynamics in (1.1) in the form

x+ = f(x, u, w)

where f(x, u, w) , Ax + Bu + Gw. The system is subject to hard control
and state constraints

u ∈ U, x ∈ X (1.2)

where U ⊆ IRm is a (compact) polytope and X ⊆ IRn a polytope; each
set contains the origin in its interior (the assumption that X is a polytope
rather than a polyhedron1 is made for simplicity). The disturbance w is
constrained to lie in the polytope W ⊆ IRp; W contains the origin in its
interior.

Let π , {µ0(·), µ1(·), . . . , µN−1(·)} denote a control policy (sequence
of control laws) over horizon N and let w , {w0, w1, . . . , wN−1} denote
a sequence of disturbances. Also, let φ(i;x, π,w) denote the solution of
(1.1) when the initial state is x at time 0, the control policy is π and the
disturbance sequence is w, so that φ(i;x, π,w) is the solution, at time i of

xi+1 = Axi +Bµi(xi) +Gwi (1.3)

x0 = x (1.4)

1A polyhedron is a set described by a finite set of inequalities; a polytope is a bounded
polyhedron.
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The cost VN (x, π,w), if the initial state is x, the control policy π and the
disturbance sequence w, is

VN (x, π,w) ,

N−1
∑

i=0

ℓ(xi, ui, wi) + Vf (xN ) (1.5)

where, for all i, xi , φ(i;x, π,w) and ui , µi(xi); Vf (·) is a terminal cost
that may be chosen, together with a terminal constraint set Xf defined
below, to ensure stability of the resultant receding horizon controller (see
§6). The stage cost ℓ(·) is a quadratic function, positive definite in x and u,
and negative definite in w:

ℓ(x, u, w) , (1/2)|x|2Q + (1/2)|u|2R − (γ2/2)|w|2 (1.6)

where γ > 0, |z|2Z , z′Zz, and Q and R are positive definite. The stage cost
may be expressed as

ℓ(x, u, w) , (1/2)|y|2 − (γ2/2)|w|2, y , Hz (1.7)

where z , (x, u) and H is a suitably chosen matrix ((x, u) should be inter-
preted as a column vector (x′, u′)′ in matrix expressions). The terminal cost
Vf (·) is a quadratic function

Vf (x) , (1/2)|x|2Pf
(1.8)

in which Pf is positive definite. The optimal control problem PN (x) that
we consider is

PN (x) : V 0
N (x) = inf

π∈ΠN (x)
max
w∈W

VN (x, π,w) (1.9)

where W , WN , is the set of admissible disturbance sequences, and ΠN (x) is
the set of admissible policies, i.e. those policies that satisfy, for all w ∈ W ,

WN , the state and control constraints (1.2), and the terminal constraint

xN ∈ Xf . (1.10)

Inclusion of the hard disturbance constraint w ∈ W is necessary when state
constraints are present since, otherwise, for any policy π chosen by the
controller, we can expect that there exists a disturbance sequence w that
transgresses the state constraint. The terminal constraint set is a polytope,
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containing the origin in its interior, that satisfies Xf ⊆ X, ensuring satisfac-
tion of the state constraint at time N . Hence the set of admissible policies
is

ΠN (x) , {π | φ(i;x, π,w) ∈ X, µi(φ(i;x, π,w)) ∈ U, i = 0, 1, . . . , N − 1,

φ(N ;x, π,w) ∈ Xf , ∀w ∈ W} (1.11)

Let XN denote the set of initial states for which a solution to PN (x) exists
(the domain of V 0

N (·), the controllability set), i.e.

XN , {x | ΠN (x) 6= ∅}. (1.12)

In addition to characterizing the solution to a min-max optimal control
problem that has not previously been characterized, this paper provides an
improvement of the transformation procedure used in [4, 7, 8] to obtain a
parametric solution to the optimal control problem; the improvement sim-
plifies the determination of the polytopes in which the control law and value
function are affine and quadratic respectively and avoids unnecessary sub-
partitioning of overlapping polytopes required in [4, 8].

2 Dynamic Programming for Constrained Prob-

lems

The solution to PN (x) may be obtained as follows. For all j ∈ IN+ ,

{1, 2, . . .}, let problem Pj , the partial return function V 0
j (·), and the con-

trollability set Xj be defined as in (1.5)–(1.9) with j replacing N ; j denotes
“time-to-go”. Then the sequences {V 0

j (·), κj(·), Xj}, where κj(·) denotes the

optimal control law µ0
N−j(·) at time i = N−j, may be calculated recursively

as follows [10,22]:

V 0
j (x) = min

u∈U
max
w∈W

{ℓ(x, u, w) + V 0
j−1(f(x, u, w)) | f(x, u,W ) ⊆ Xj−1} (2.1)

κj(x) = arg min
u∈U

max
w∈W

{ℓ(x, u, w) + V 0
j−1(f(x, u, w)) |

f(x, u,W ) ⊆ Xj−1} (2.2)

Xj = X ∩ {x | ∃u ∈ U such that f(x, u,W ) ⊆ Xj−1} (2.3)

with boundary conditions

V 0
0 (x) = Vf (x), X0 = Xf . (2.4)
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The condition f(x, u,W ) ⊆ Xj−1 in (2.2) and (2.3) may be expressed as

Ax+Bu ∈ Xj−1 ⊖GW (2.5)

where ⊖ denotes Pontryagin set difference defined by A⊖B , {x | {x}⊕B ⊆
A} (⊕ denotes set addition). For each integer j let Zj ⊆ IRn×IRm be defined
by

Zj , {(x, u) ∈ X × U | f(x, u,W ) ⊆ Xj} (2.6)

so that, from (2.3),
Xj = ProjXZj−1.

Here, and in the sequel, if a set Z, say, lies in a product space IRn ×
IRm, ProjX : IRn × IRm → IRn denotes the projection operator defined
by ProjXZ = {x | ∃u ∈ IRm such that (x, u) ∈ Z} (IRn is regarded as x-
space). Similarly, if Φ is a set in the product space IRn × IRm × IRp, ProjZΦ
denotes the set {z | ∃w ∈ IRp such that (z, w) ∈ Φ}. We can now establish
some preliminary properties of the solution to PN . To analyze PN (x) it is
convenient to introduce the functions J0

j (·), j = 1, 2, . . ., defined by

J0
j (x, u) , max

w∈W
{ℓ(x, u, w) + V 0

j (f(x, u, w))} (2.7)

The recursive equations (2.1)-(2.3) may therefore be rewritten as

V 0
j (x) = min

u∈U
{J0

j−1(x, u) | f(x, u,W ) ⊆ Xj−1} (2.8)

J0
j−1(x, u) , max

w∈W
{ℓ(x, u, w) + V 0

j−1(f(x, u, w))} (2.9)

κj(x) = arg min
u∈U

{J0
j−1(x, u) | f(x, u,W ) ⊆ Xj−1} (2.10)

Xj = X ∩ {x | ∃u ∈ U st f(x, u,W ) ⊆ Xj−1} (2.11)

for j = 1, . . . , N with endpoint conditions V0(·) = Vf (·), X0 = Xf . Under
our assumptions the sets Xj and Zj are compact. If X0 = Xf is robust
control invariant, the sets Xj are nested (Xj ⊇ Xj−1 for all j ≥ 1). For each
j, the domain of V 0

j (·) includes Xj but we are only interested in its values

on Xj ; similarly, the domain of J0
j (·) includes Zj but we are only interested

in its values on Zj .

3 Parametric Optimization

We seek a parametric solution to problem PN (x), i.e. a solution for all values
of the parameter which, in this case, is the state x. More precisely, since we
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employ constrained dynamic programming, we seek a parametric solution
to problems Pj(x) for all j ∈ {1, . . . , N}. First, we introduce a few useful
definitions.

Definition 1 For any positive integer J , IJ , {1, 2, . . . , J}; for any set X ,
J X denotes an index set associated with a partition of X .

Definition 2 A set P = {Pi | i ∈ J }, for some index set J , is called a
polyhedral (polytopic) partition of a closed (compact) set X if X = ∪i∈JPi,
and the sets Pi, i ∈ J are polyhedrons (polytopes) with non-empty interiors
which are non-intersecting (interior(Pi)∩interior(Pj) = ∅ for all i, j ∈ J , i 6=
j).

Definition 3 A function V : X → IR is said to be continuous piecewise
quadratic on a polyhedral (polytopic) partition P = {Pi | i ∈ J } of X if it
is continuous and satisfies

V (x) = (1/2)|x|2Qi
+ q′ix+ ri, ∀x ∈ Pi, i ∈ J

for some Qi, qi, ri, i ∈ J . Similarly, a function κ : X → U is said to be
piecewise affine on a polyhedral partition P = {Pi | i ∈ J } of X if it is
continuous and satisfies

κ(x) = Kix+ ki, ∀x ∈ Pi, i ∈ J ,

for some Ki, ki, i ∈ J , where P has the properties specified above.

The dynamic programming recursion (2.8)-(2.11) requires the repeated
solution of two prototype problems Pmin and Pmax defined next:

Pmin(x) : V 0(x) = min
u

{J(x, u) | (x, u) ∈ Z} (3.1)

Pmax(z) : J0(z) = max
w

{V (z, w) | w ∈W} (3.2)

The minimizer in Pmin(x) and the maximizer in Pmax(z) are defined, respec-
tively, by

κ(x) , arg min
u

{J(x, u) | (x, u) ∈ Z} (3.3)

ν(z) , arg max
w

{V (z, w) | w ∈W}. (3.4)

Problem Pmin(x) is the prototype for Problem (2.8) with V 0(x) replacing
V 0

j (x), J(x, u) replacing J0
j−1(x, u), and (x, u) ∈ Z replacing the constraints

f(x, u,W ) ⊆ Xj−1 (Ax+Bu ∈ Xj−1 ⊖GW ) and u ∈ U . Similarly Problem
Pmax(z) is the prototype for Problem (2.9) with J0(z) replacing J0

j−1(z),

V (z, w) replacing ℓ(x, u, w) + V 0
j−1(f(x, u, w)), and z replacing (x, u). We

first obtain the parametric solution of Pmin.
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3.1 The minimization problem Pmin

The solution to Pmin(x) has properties given in Proposition 1 that has a
simpler hypothesis than previous versions of this result. For completeness,
continuity of the control law is also proven.

Proposition 1 Suppose J : Z → IR is a strictly convex, continuous func-
tion and that Z is a polytope. Then, for all x ∈ X = ProjXZ, the solution
κ(x) to Pmin(x) exists and is unique. The value function V 0(·) is strictly
convex and continuous with domain X , and the control law κ(·) is continuous
on X .

Proof: For all x ∈ X , U(x) , {u | (x, u) ∈ Z} is convex and compact.
Let Λ := {(λ1, λ2) | λ1 ≥ 0, λ2 ≥ 0, λ1 + λ2 = 1}. For all x1, x2 in X , all
λ = (λ1, λ2) ∈ Λ:

V 0(λ1x1 + λ2x2) = min
u

{J(λ1x1 + λ2x2, u) | (λ1x1 + λ2x2, u) ∈ Z}

≤ J(λ1x1 + λ2x2, λ1u1 + λ2u2}, ui , κ(xi), i = 1, 2

= J(λ1(x1, u1) + λ2(x2, u2))

But λ1(x1, u1) + λ2(x2, u2) ∈ Z since Z is convex and (xi, ui) ∈ Z, i = 1, 2.
Since J(·) is strictly convex

V 0(λ1x1 + λ2x2) ≤ λ1J(x1, u1) + λ2J(x2, u2)

= λ1V
0(x1) + λ2V

0(x2) ∀λ1, λ2 ∈ Λ

where the last inequality is strict if λ1 6∈ {0, 1} so that V 0(·) is strictly
convex. Since J(·) is strictly convex, κ(x) is unique at each x ∈ ProjXZ.

The constraint (x, u) ∈ Z imposes an implicit state-dependent constraint
u ∈ U(x) on u where the set-valued function U(·) is defined by

U(x) , {u | (x, u) ∈ Z}.

We claim that U(·) is continuous (both outer and inner semi-continuous on
X = ProjXZ, the domain of U(·). By definition [23], the set-valued map
U(·) is outer semi-continuous at x ∈ X if U(x) is closed and if, for any
compact set G such that U(x) ∩ G = ∅ there exists an ε > 0 such that
U(x)∩G = ∅ for all x′ ∈ B(x, ε)∩X . The set-valued map U(·) is inner semi-
continuous at x ∈ X if, for any open set G ⊆ IRm such that G ∩ U(x) 6= ∅,
there exists an ε > 0 such that G ∩ U(x′) 6= ∅ for all x′ ∈ B(x, ε) ∩ X .
Here Bj(x, ε) , {x′ ∈ IRj | |x′ − x| ≤ ε}. The set-valued map U(·) is outer
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semi-continuous because its graph, Z, is closed so that, given any sequence
{(xi, ui)} in Z (ui ∈ U(xi) for all i) such that (xi, ui) → (x̄, ū), we have
(x̄, ū) ∈ Z so that ū ∈ U(x̄). Hence U(·) is outer semi-continuous [23].
We can establish inner semi-continuity using the following result [24] whose
proof is given in the appendix.

Lemma 1 (Clarke). Suppose Z is a polytope in IRn×IRm and let X denote
its projection on IRn (X = {x | ∃u ∈ IRm such that (x, u) ∈ Z}). Let
U(x) , {u | (x, u) ∈ Z}. Then there exists a K > 0 such that, for all x, x′ ∈
X , for all u ∈ U(x), there exists a u′ ∈ U(x′) such that |u′ − u| ≤ K|x′ − x|.

Let x, x′ be arbitrary points in X and U(x) and U(x′) the associated sets
(Figure 1 illustrates the proof for two cases: x = x1 and x = x2). Let
G be an open set such that U(x) ∩ G 6= ∅ and let u be an arbitrary
point in U(x) ∩ G. Because G is open, there exist an ε > 0 such that
B(u, ε) , {v | |v− u| ≤ ε} ⊂ G. Let ε′ , ε/K. From Lemma 1, there exists
a u′ ∈ U(x′) ∩G for all x′ ∈ B(x, ε′) ∩X . This implies U(x′) ∩G 6= ∅ for all
x′ ∈ B(x, ε′) ∩ X , so that U(·) is inner semi-continuous.

Z

G1

G2

x

u

U(x1)

z1

z2

B(x1, ε
′
1) ∩ X

B(x2, ε
′
2) ∩ X

Figure 1: Inner semi-continuity of U(x)

To solve the parametric problem Pmin, we develop further the reverse
transformation procedures proposed in [25] and utilized in [4, 7, 8]. We as-
sume that J(·) is strictly convex and continuous piecewise quadratic on a
polytopic partition PZ = {PZ

i | i ∈ J Z} (for some index set J Z) of Z. For
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each z = (x, u) ∈ Z, let SZ(z), the index set of active polytopes at z, be
defined by

SZ(z) , {i ∈ J Z | z ∈ PZ
i } (3.5)

so that SZ(z) is the set of indices of active polytopes at z. Similarly, for
each x ∈ X , ProjX(Z), let S0

Z(x) be defined by

S0
Z(x) , SZ(x, κ(x)) (3.6)

where κ(x), the solution of Pmin(x), is defined by

κ(x) , arg min
u

{J(x, u) | (x, u) ∈ Z} (3.7)

so that S0
Z(x) is the index set of polytopes active at the solution κ(x) of

Pmin(x). For each i ∈ J Z we consider the simpler problem Pi(x) defined by

Pi(x) : V 0
i (x) = min

u
{Ji(x, u) | (x, u) ∈ PZ

i } (3.8)

κi(x) = arg min
u

{Ji(x, u) | (x, u) ∈ PZ
i } (3.9)

where J(z) = Ji(z) on PZ
i and

Ji(z) = (1/2)z′Qiz + q′iz + si (3.10)

for some Qi, qi, si, all z = (x, u) ∈ PZ
i . For each i, problem Pi(x) is a

quadratic program since J(·) is quadratic on the polytope PZ
i .

Proposition 2 Suppose J : Z → IR is strictly convex and continuous and
that Z is a polytope with a polytopic partition {PZ

i | i ∈ J Z}. Then, for
all x ∈ PX

i , ProjXP
Z
i , all i ∈ J Z , the solution κi(x) to Pi(x) exists

and is unique. Moreover, the value function V 0
i (·) is strictly convex and

continuous, and κi(·) is continuous, in PX
i .

The proof of Proposition 2 is almost identical to the proof of Proposition
1 noting that, for each i ∈ J Z , PZ

i is a polytope. Problem Pi(x), al-
though simpler, is an artificial problem since the constraint (x, u) ∈ PZ

i

does not appear in the original problem Pmin(x), so that it is not obvious
how best to relate the solutions to problems Pi(x), i ∈ J Z , to the solution
of Pmin(x). This difficulty was not totally satisfactorily dealt with in the
literature quoted above but is resolved in the following result.

Proposition 3 Suppose J : Z → IR is continuous piecewise quadratic and
strictly convex on a polytopic partition PZ of Z. Then u is optimal for the
minimization problem Pmin(x) if and only if u is optimal for the problems
Pi(x) (i.e. if and only if κ(x) = κi(x)) for all i ∈ S0

Z(x).
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Proof: Suppose u = κ(x) is optimal for Pmin(x) but that, contrary to what
is to be proven, there exists an i ∈ S0

Z(x) such that u is not optimal for Pi(x).
Let ui = κi(x) denote the solution of Pi(x). By definition, (x, ui) ∈ PZ

i and
(x, u) ∈ PZ

i (since (x, u) ∈ PZ
j for all j ∈ S0

Z(x)). Hence ui = κi(x) satisfies

V 0
i (x) = Ji(x, ui) = J(x, ui) < Ji(x, u) = J(x, u) = V 0(x) where we have

made use of the fact that J(x, v) = Ji(x, v) if (x, v) ∈ PZ
i . Hence J(x, ui) <

V 0(x) which contradicts the optimality of u for Pmin(x). Suppose, next, that
u is optimal for Pi(x) for all i ∈ S0

Z(x) (so that κi(x) = u for all i ∈ S0
Z(x))

but that, contrary to what is to be proved, u is not optimal for Pmin(x) so
that there there exists a u∗ satisfying (x, u∗) ∈ Z and J(x, u∗) < J(x, u).
Because u ∈ PZ

i for all i ∈ S0
Z(x) and d(u, PZ

j ) > 0 for all j ∈ J Z \ S0
Z(x),

there exists a λ ∈ (0, 1] and an i ∈ S0
Z(x) such that uλ , u+λ(u∗−u) satisfies

(x, uλ) ∈ PZ
i . Since u 7→ J(x, u) is convex and J(x, u∗) < J(x, u) it follows

that J(x, uλ) < J(x, u). But J(x, uλ) = Ji(x, uλ) (since (x, uλ) ∈ PZ
i )

and J(x, u) = Ji(x, u) (since (x, u) ∈ PZ
i ) so that Ji(x, uλ) < Ji(x, u), a

contradiction of the optimality of u for Pi(x) for all i ∈ S0
Z(x).

Proposition 3 shows that the solution to Pmin(x) is also the solution to a
set of quadratic programs, namely Pi(x) for i ∈ S0

Z(x). We now analyse
problem Pi(x) in more detail. Suppose that, for each i ∈ J Z , polytope PZ

i

is defined by
PZ

i , {z = (x, u) |Miu ≤ Nix+ pi} (3.11)

where Mi, Ni, pi each have ri rows, so that

Pi(x) : V 0
i (x) = min

u
{Ji(x, u) |Miu ≤ Nix+ pi}

κi(x) = arg min
u

{Ji(x, u) |Miu ≤ Nix+ pi}. (3.12)

The jth constraint M j
i u ≤ N j

i x+ pj
i is said to be active at (x, u) if M j

i u =

N j
i x + pj

i . The set of active constraints for Pi(x) is I0
i (x), the set of con-

straints active at (x, κi(x)), so that

I0
i (x) , {j ∈ Iri

|M j
i κi(x) = N j

i x+ pj
i}. (3.13)

where the superscript j on a matrix (or vector) denotes the jth row of the
matrix (or vector). It follows from the definition of κi,I(x) = Ki,Ix+ki,I that
I0
i (x) = I for all x ∈ interior{X}i,I and that I0

i (x) ⊆ I on the boundary of
Xi,I . The solution to Pi(x) is simple if the set of active constraints I0

i (x) for
the problem is known in advance [3,26]. Suppose therefore the set of active
constraints for Pi(x) at (x, κi(x)) (κi(x) is the solution of Pi(x)) is known,
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apriori, to be I, i.e. I0(x) = I. Then Pi(x) is replaced by the simpler,
equality constrained, problem

Pi,I(x) : V 0
i,I(x) = min

u
{Ji(x, u) |M

j
i u = N j

i x+ pj
i , j ∈ I} (3.14)

This is a quadratic optimization problem with affine equality constraints;
the solution to this problem has, as is well known, the form

V 0
i,I(x) = (1/2)x′Qi,Ix+ q′i,Ix+ si,I (3.15)

κi,I(x) = Ki,Ix+ ki,I (3.16)

for some Qi,I , si,I , Ki,I and ki,I . Let M I
i denote the matrix with rows M j

i ,
j ∈ I. Let PCi,I , {(M I

i )′λ | λ ≥ 0} ⊆ IRm denote the polar cone at

0 to the cone Fi,I = {h | M j
i h ≤ 0, j ∈ I} of feasible directions h for

problem Pi(x) at u = κi,I(x). The polar cone depends solely on I, the
set of active constraints; it does not depend on the parameter x; also [4]
−∇uJi(x, κi,I(x)) ∈ PCi,I if and only if 〈∇uJi(x, κi,I(x)), h〉 ≥ 0 for all
feasible directions h (h ∈ Fi,I), i.e. if and only if κi,I(x) is optimal for the

problem minu{Ji(x, u) | M j
i u = N j

i x + pj
i , j ∈ I,M j

i u ≤ N j
i x + pj

i , j ∈
Iri

\ I}. For each i ∈ J Z , let PX
i denote the polytope defined by

PX
i , {x | ∃u s.t. (x, u) ∈ PZ

i } = ProjX(PZ
i ) (3.17)

The polytope PX
i is the domain of V 0

i (·). The following result holds [4]:

Proposition 4 The affine control law κi,I(·) is optimal for problem Pi(x),
at all x in the polytope Xi,I ⊆ PX

i defined by

Xi,I ,

{

x ∈ X

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

M j
i (Ki,Ix+ ki,I) ≤ N j

i x+ pj
i , j ∈ Iri

\ I
−∇uJi(x, κi,I(x)) ∈ PCi,I

}

(3.18)

The restriction x ∈ X is included in the definition of Xi,I since it is
not included as a constraint in Pi(x)). Since the affine control law κi,I(·)
is such that the equality constraint Miκi,I(x) = Nix + pi is satisfied for all
x, and since the last inequality in (3.18) ensures that κi,I(x) is optimal for

minu{Ji(x, u) | M j
i u = N j

i x + pj
i , j ∈ I,M j

i u ≤ N j
i x + pj

i , j ∈ Iri
\ I}, it

follows that κi,I(x) is optimal for Pi(x) in the polytope Xi,I . Thus [3, 4, 26]
the solution to Pi(x) is affine, and the value function quadratic, in each
polytope Xi,I ; the set of all such non-empty polytopes (as I ranges over
the subsets of {1, 2, . . . , ri} constitute a polytopic partition of ProjX(PZ

i )
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so that the solution κi(·) to Pi(x) is piecewise affine, and the value function
V 0

i (·) is piecewise quadratic, on this polytopic partition.
However, in our case, since we have to ‘marry’ a set of polytopes Xi,Ii

for all i such that polytope PZ
i is active (i.e. i ∈ S0

Z(x)), is active, it is
preferable to parameterize the polytopes in which the solution to Pi(x) is
affine by the state x̄, say, at which Ii is active rather than by the set Ii
of active constraints. Also, for each x̄ ∈ X = ProjX(Z), let the polytope
Xi(x̄) ⊆ PX

i be defined by

Xi(x̄) , Xi,I0

i (x̄) (3.19)

where, for each set I ⊆ J Z , Xi,I is defined by (3.18). It follows from
(3.18), with I replaced by I0

i (x̄), that x̄ ∈ Xi(x̄). It was shown above that
I0
i (x) = I0

i (x̄) for all x in the interior of Xi(x̄); it follows from (3.19) that
Xi(x) = Xi(x̄) for all x in the interior of Xi(x̄).

The polytope X(x̄) that figures in the parametric solution of Pmin(x) is
defined, for each x̄ ∈ X , by

X(x̄) ,
⋂

{Xi(x̄) | i ∈ S0
Z(x̄)} (3.20)

Clearly x̄ ∈ X(x̄) and X(x′) = X(x̄) for all x′ ∈ X(x̄). For each x̄ ∈ X , let
the functions V 0

x̄ (·) and κx̄(·) be defined on X(x̄) by

V 0
x̄ (x) , V 0

i (x), ∀i ∈ S0
Z(x̄) (3.21)

κx̄(x) , κi(x), ∀i ∈ S0
Z(x̄) (3.22)

The domain of each function is X(x̄); that the functions are well defined
follows from Proposition 3 and equations (3.19) and (3.20) which show that
κi(x) = κj(x) for all i, j ∈ S0

Z(x̄), all x ∈ X(x̄). Summarizing, we have:

Theorem 1 Suppose J : Z → IR is continuous piecewise quadratic and
strictly convex on a polytopic partition PZ = {PZ

i | i ∈ J Z} of Z and that,
for each i ∈ J Z , PZ

i has a non-empty interior. Then the value function
V 0(·) is continuous piecewise quadratic and strictly convex on a polytopic
partition PX = {PX

i | i ∈ J X } of X= ProjX(Z). The minimizer κ(·) is
piecewise affine on PX . The polytopes PX

i are each of the form X(x̄) for
some x̄ ∈ X ; the value function and optimal control law satisfy V 0(x) =
V 0

x̄ (x) and κ(x) = κx̄(x) for all x ∈ X(x̄) and some x̄ ∈ X .

The proof of this result follows from Propositions 3 and 4 and the discussion
above. The result is illustrated in Figure 2 for the simple case when Z =

12



PZ
1 ∪ PZ

2 has two partitions PZ
1 and PZ

2 in each of which J(·) is quadratic.
Problem PZ

1 (x) is, therefore, a parametric quadratic program; its solution
κ1(x) is known to be piecewise affine on a polytopic partition of PX

1 ; in
Figure 2, PX

1 = X and the polytopic partition is {X11, X12, X13}. The
solution to PZ

1 (x) is κ1(x) which is affine in each of the polytopes X11, X12

and X13. Similarly the solution to the quadratic program PZ
1 (x) is κ2(x)

that is piecewise affine on a polytopic partition {X21, X22, X23} of PX
2 = X .

The sets Xij and the optimal control laws κ1(·) and κ2(·) are shown in the
Figure. At each x ∈ X , there are two candidates κ1(x) and κ2(x) for the
optimal control κ(x) for the original problem Pmin(x). Theorem 1 resolves
this difficulty; at all z on the boundary between PZ

1 and PZ
2 , SZ(z) = {1, 2}

since both polytopes are active. Hence on the boundary, a control u is
optimal for the original problem Pmin(x) if and only if it is optimal for
both problems PZ

1 (x) and PZ
2 (x). At all x ∈ X11 ∪ X12 (except at its

intersection with X13), only (x, κ2(x)) lies on the boundary between PZ
1

and PZ
2 ((x, κ1(x)) does not lie on this boundary). Thus, in X11 ∪X12, the

optimal control is not κ2(x)); it is κ(x) = κ1(x). At all x ∈X13 ∩X21 both
(x, κ1(x)) and (x, κ2(x)) lie on the boundary between PZ

1 and PZ
2 so that the

optimal control here is κ(x) = κ1(x) = κ2(x). Finally, at all x ∈ X22 ∪X23

(except at its intersection with X21), only (x, κ1(x)) lies on the boundary
between PZ

1 and PZ
2 ((x, κ2(x)) does not lie on this boundary); thus, in

X22 ∪ X23, the optimal control is κ(x) = κ2(x). Hence κ(·) is completely
defined on X . This procedure avoids the overlapping of sets that results in
previous analysis of this problem.

PZ
1

PZ
2

x

u

κ1(x)

κ2(x)

U

X11 X12 X13

X21 X22X23

(a) Solutions of Pi(x), i = 1, 2

PZ
1

PZ
2

x

u

κ(x) U

X11 X12 X13

X21 X22X23

(b) Solution of Pmin(x)

Figure 2: Problem P(x)
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3.2 The maximization subproblem Pmax

In the minimization subproblem (3.1), the function V (·) being minimized
is convex in both x and u. In contrast, in the maximization subproblem
(3.2), the function V (·) being maximized is convex in z and (under suitable
conditions) concave in w. Hence we proceed somewhat differently.

Proposition 5 Suppose V : Φ → IR is such that z 7→ V (z, w) is strictly
convex and continuous for each w ∈ W , w 7→ V (z, w) is strictly concave
and continuous for each z in Z , ProjZ(Φ), and that Φ is a polytope with
a non-empty interior. Then, for all (z, w) ∈ Φ, the solution ν(z) to Pmax(z)
exists and is unique. Moreover, the value function J0(·) is strictly convex
and continuous with domain Z, and ν(·) is continuous in Z.

Proof: Since J0(·) is the maximum of a set of strictly convex and con-
tinuous functions, it is also strictly convex and continuous. The existence
and uniqueness of ν(z) for each z ∈ Z follows from the strict concavity and
continuity of w 7→ V (z, w) and the compactness of W . The continuity of
ν(·) follows from the uniqueness of ν(z) at each z (Theorem 5.4.3 in [23]).

To obtain a parametric solution to Pmax, we assume that V (·) is continu-
ous piecewise quadratic on a polytopic partition PΦ = {PΦ

i | i ∈ J Φ} of
Φ , Z ×W (in the absence of additional restrictions, Z = X × U so both
Z and Φ are polytopic). For each (z, w) ∈ Φ, let SΦ(z, w), the index set of
active polytopes at (z, w), be defined by

SΦ(z, w) , {i ∈ J Φ | (z, w) ∈ PΦ
i } (3.23)

so that SΦ(z, w) is the set of indices of active polytopes at (z, w). Similarly,
for each z ∈ Z , ProjZ(Φ), let S0

Φ(z) be defined by

S0
Φ(z) , SΦ(z, ν(z)) (3.24)

where
ν(z) , arg max

w
{V (z, w) | w ∈W} (3.25)

so that S0
Φ(z) is the index set of polytopes active at the solution ν(z) of

Pmax(z). For each i ∈ J Φ, each z ∈ Z, we define the simpler problem Pi(z)
defined by

Pi(z) : J0
i (z) = max

w
{Vi(z, w) | (z, w) ∈ PΦ

i } (3.26)

νi(z) = arg max
w

{Vi(z, w) | (z, w) ∈ PΦ
i } (3.27)
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where V (z, w) = Vi(z, w) on PΦ
i and Vi(·) is quadratic. For each i, problem

P
Φ
i (z) is a quadratic program.

Proposition 6 Suppose V : Φ → IR is strictly concave (hence continuous)
in w for each z ∈ ProjZΦ, and that Φ is a polytope with a polytopic partition
{PΦ

i | i ∈ J Φ} such that, for each i ∈ J Φ, PΦ
i has a non-empty interior.

Then, for all z ∈ PZ
i = ProjZP

Φ
i , all i ∈ J Φ, the solution νi(z) to Pi(z)

exists and is unique. Moreover, the value function J0
i (·) is strictly convex

(hence continuous) with domain PZ
i , and νi(·) is continuous at any z ∈ PZ

i .

The proof of Proposition 6 is similar to the proof of Proposition 5. The
relation between the solution to Pmax and the solutions to the subproblems
P

Φ
i , i ∈ J Φ is given in the next result.

Proposition 7 Suppose V : Φ → IR is continuous piecewise quadratic,
strictly convex in z and strictly concave in w and is continuous piecewise
quadratic in a polytopic partition PΦ = {PΦ

i | i ∈ J Φ} of the polytope Φ.
Then w is optimal for the maximization problem Pmax(z) if and only if w is
optimal for the problems Pi(z) (ν(z) = νi(z)) for all i ∈ S0

Φ(z).

The proof of Proposition 7 is similar to the proof of Proposition 3. We now
exploit the continuous piecewise quadratic nature of V (·). For each i ∈ J Φ,
subproblem Pi(z) may be expressed as:

Pi(z) : J0
i (z) = max

w
{Vi(z, w) |Miw ≤ Niz + pi} (3.28)

(Vi(·) is quadratic) for some Mi, Ni, pi, each matrix (vector) having ri rows.
If we assume that the constraints indexed by I ⊆ Iri

are active, then Pi(z)
is replaced by the simpler, equality constrained, problem

Pi,I(z) : J0
i (z) = max

w
{Vi(z, w) |M j

i w = N j
i z + pj

i , j ∈ I} (3.29)

where the superscript j on matrix (or vector) denotes the jth row of the
matrix (or vector). The solution to this problem is

J0
i,I(z) = (1/2)z′Qi,Iz + q′i,Iz + si,I (3.30)

νi,I(z) = Ki,Iz + ki,I (3.31)

Let M I
i denote the matrix the rows of which are M j

i , j ∈ I. Let PCi,I ,

{(M I
i )′λ | λ ≥ 0} ⊆ IRp denote the polar cone at 0 to the cone Fi,I = {h |

M j
i h ≤ 0, j ∈ I} of feasible directions h for problem Pi(z) at w = νi,I(z);

the polar cone depends solely on I, the set of active constraints; it does not
depend on the parameter z. The following result holds [4]:
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Proposition 8 The affine control law νi,I(·) is optimal for problem Pi(z)
at all z in the polytope Zi,I defined by

Zi,I ,

{

z ∈ Z

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

M j
i (Ki,Iz + ki,I) ≤ N j

i z + pj
i , j ∈ Iri

\ I
∇wVi(z, νi,I(z)) ∈ PCi,I

}

(3.32)

(the restriction z ∈ Z = X × U is included in the definition of Zi,I since it
is not included as a constraint in Pi(z)). As before, we have to ‘marry’ a
set of polytopes Zi,I for all i such that polytope PΦ

i is active. Suppose, for
each i ∈ J Φ, polytope PΦ

i is defined by

PΦ
i , {(z, w) |Miw ≤ Niz + pi} (3.33)

for some Mi, Ni, pi each having ri rows. For each i ∈ J Φ, let PZ
i denote the

polytope defined by

PZ
i , {z | ∃ w s.t. (z, w) ∈ PΦ

i } = ProjZ(PΦ
i ) (3.34)

For each z ∈ PZ
i , each i ∈ J Φ, the set of active constraints for Pi(z) is

I0
i (z) , {j ∈ Iri

|M j
i νi(z) = N j

i z + pj
i} (3.35)

where M j
i is the jth row of Mi, N

j
i the jth row of Ni, and pj

i the jth row of
pi. Also, for each z̄ ∈ Z, let the polytope Zi(z̄) ⊆ PZ

i be defined by

Zi(z̄) , Zi,I0

i (z̄) (3.36)

where, for each index set I ⊆ J Φ, Zi,I is defined by (3.32). The polytope
Z(z̄) that figures in the parametric solution of Pmax(z) is defined, for each
z̄ ∈ Z, by

Z(z̄) , ∩{Zi(z̄) | i ∈ S0
Φ(z̄)} (3.37)

Clearly z̄ ∈ Z(z̄) and Z(z′) = Z(z̄) for all z′ ∈ Z(z̄). For each z̄ ∈ Z, let the
functions J0

z̄ (·) and νz̄(·) be defined on Z(z̄) by

J0
z̄ (z) , J0

i (z), ∀i ∈ S0
Φ(z̄) (3.38)

νz̄(z) , νi(z), ∀i ∈ S0
Φ(z̄) (3.39)

The domain of each function is Z(z̄); that the functions are well defined
follows from Proposition 7, (3.35) and (3.36) which show that νi(z) = νj(z)
for all i, j ∈ S0

Φ(z̄), all z ∈ Z(z̄). Summarizing, we have:
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Theorem 2 Suppose V : Φ → IR is continuous piecewise quadratic and
strictly convex on a polytopic partition PΦ = {PΦ

i | i ∈ J Φ} of the poly-
tope Φ and that, for each i ∈ J Φ, PΦ

i has a non-empty interior. Then the
value function J0(·) is continuous piecewise quadratic and strictly convex on
a polytopic partition PZ = {PZ

i | i ∈ J Z} of Z , {z | ∃w ∈W s.t. (z, w) ∈
Φ} = ProjZ(Φ). The maximizer ν(·) is piecewise affine on PZ . The poly-
topes PZ

i are each of the form Z(z̄) for some z̄ ∈ Z; the value function and
optimal control law satisfy J0(z) = J0

z̄ (z) and ν(z) = νz̄(z) for all z ∈ Z(z̄)
and some z̄ ∈ Z.

The proof of this result follows from Propositions 3 and 4 and the discussion
above. As stated above, in the absence of further restrictions, Φ = X ×
U ×W . However, in our use of this result, the cost function V (·) has the
form V (z, w) = ℓ(z, w) + V 0(Fz + Gw) where F , [A,B] and V 0(x) may
be known only on a compact subset X of IRn; in this case Φ = {(z, w) ∈
X × U ×W | Fz +Gw ∈ X}. If A is invertible (which we assume) or X is
compact, then Φ is a (compact) polytope with a polytopic partition.

4 H∞ control; no state constraints

In this section, we consider the H∞ constrained optimal control problem
when the only constraints are u ∈ U and w ∈ W , i.e. X = Xf = IRn. In
this case, the dynamic programming equations (2.1) - (2.4) simplify and are
replaced by the conventional dynamic programming equations:

V 0
j (x) = min

u∈U
max
w∈W

{ℓ(x, u, w) + V 0
j−1(f(x, u, w))} (4.1)

κj(x) = arg min
u∈U

max
w∈W

{ℓ(x, u, w) + V 0
j−1(f(x, u, w))} (4.2)

with boundary condition
V 0

0 (x) = Vf (x) (4.3)

The domain Xj of V 0
j now satisfies Xj = IRn, for all j ≥ 0 so the recur-

sion equation (2.3) for Xj is not required. The recursion equations may be
rewritten in the form

V 0
j (x) = min

u∈U
J0

j−1(x, u) (4.4)

J0
j−1(z) , max

w∈W
{ℓ(z, w) + V 0

j−1(f(z, w))} (4.5)

κj(x) = arg min
u∈U

J0
j−1(x, u) (4.6)

νj(z) = arg max
w∈W

{ℓ(z, w) + V 0
j−1(f(z, w))} (4.7)
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where z = (x, u). The important feature of this problem is that the con-
straint u ∈ U in subproblem (4.4) has the same simple form as the constraint
w ∈W ; this permits us to obtain stronger properties for the value functions
V 0

j (·) and J0
j (·), j ≥ 0. The prototype problems for (4.4) and (4.5) are,

respectively:

Pmin(x) : V 0(x) = min
u

{J(x, u) | u ∈ U} (4.8)

Pmax(z) : J0(z) = max
w

{V (z, w) | w ∈W} (4.9)

in which V 0(·) and J(·) replace, respectively, V 0
j (·) and J0

j−1(·) in (4.4)

and J0(·) and V (·) replace, respectively, J0
j−1(·) and ℓ(·) + Vj−1(f(·)) in

(4.5). Since J(·) is convex in x and V (·) is (under appropriate condi-
tions) concave in w, their respective value functions have identical properties
(minu{J(x, u) | u ∈ U} = −maxu{−J(x, u) | u ∈ U}).

Proposition 9 Suppose that J(·) in Pmin (V (·) in Pmax) is continuously
differentiable, strictly convex in u (strictly concave in w) and that U (W ) is
compact. Then the value function V 0(·) of Pmin (J0(·) of Pmax) is continu-
ously differentiable.

Proof: It is only necessary to consider Pmax and establish the continuous
differentiability of J0(·). Since W , being constant, is continuous in z, the
continuity of the value function J0(·) follows from the maximum theorem
(e.g. Theorem 5.4.1 in [23]). Since the function w 7→ V (z, w) is strictly
concave for all z, the maximizer ν(z) is unique (a singleton) for each z;
by the same maximum theorem, ν(·) is continuous. Since V (·) is continu-
ously differentiable and W is compact, and the maximizer ν(z) is unique
and continuous, it follows from the proof of Theorem 5.4.7 in [23] that the
directional derivative of J0(·) satisfies

dJ0(z;h) = (∂/∂z)V (z, ν(z))h (4.10)

at any z, any direction h. Hence J0(·) is Gateau differentiable at any
z ∈ Z with Gateau derivative G(z) = (∂/∂z)V (z, ν(z)). Since G(·) is con-
tinuous, J0(·) is continuously (Frechet) differentiable in Z with derivative
(∂/∂z)J0(z) = (∂/∂z)J(z, ν(z)) [27].

Although the domain of the value functions V 0
j (·) is IRn and that of

the value functions J0
j (·) is IRn+m, we restrict attention in this section to
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polytopic subsets of these domains. With this caveat, we now show that
there exists a γ > 0 such that V (·) in Pmax, which represents V 0

j−1(·) in

(4.5) and therefore has the form V (z, w) = ℓ(z, w) + V 0(Fz + Gw) where
F , [A,B], is strictly concave in w.

Proposition 10 Let X be a polytope in IRn containing the origin in its
interior. Suppose V (·) is defined by V (z, w) , ℓ(z, w)+V 0(Fz+Gw) where
V 0(·) is continuously differentiable and continuous piecewise quadratic on a
polyhedral partition PX = {PX

i | i ∈ J X } of X . Then V (·) is continuously
differentiable and continuous piecewise quadratic on a polyhedral partition
PΦ = {PΦ

i | i ∈ J Φ} of the polyhedron Φ , {(z, w) ∈ IRn × U × W |
Fz +Gw ∈ X} and there exists a γ∗ > 0 such that V (·) is strictly concave
in w for each z in Z , ProjZΦ and all γ ≥ γ∗.

Proof: The continuous differentiability of V (·) follows from the continuous
differentiability of ℓ(·) and V 0(·). Take any two points w1, w2 in W . For
all λ ∈ [0, 1], let wλ , w1 + λ(w2 − w1), and, for each z ∈ Z, let the real
valued function φ(·) be defined on [0, 1] by φ(λ) , V (z, wλ). Suppose that
V 0(x) = (1/2)x′Qix+ q′ix+ ri in PX

i (for each i ∈ J X ). Then

V (z, w) = (1/2)(Fz +Gw)′Qi(Fz +Gw) + q′i(Fz +Gw) + ri + ℓ(z, w)

= −(1/2)w′(γ2I −G′QiG)w + b′iw + ci

on the polyhedron PΦ
i = {(z, w) ∈ IRn × U ×W | Fz + Gw ∈ PX

i }, where
bi and ci depend on z. For any ε > 0, there exists a γ∗ > 0 such that
Ci , γ2I − G′QiG ≥ εI for all γ ≥ γ∗, all i ∈ J X . The function φ(·) is
continuously differentiable and satisfies:

φ(λ) = −(1/2)(h′Cih)λ
2 + biλ+ ci

φ′(λ) = −(h′Cih)λ+ bi

for all λ ∈ [0, 1] such that Fz+Gwλ ∈ PΦ
i . Since φ′(·) is continuous, φ′(·) is

strictly decreasing if γ ≥ γ∗ . It follows, by a trivial modification to the proof
of Theorem 4.4 in [28], that φ(λ) > φ(0) + λ(φ(1) − φ(0)) for all λ ∈ (0, 1)
which establishes the strict concavity of φ(·) and, hence, of w 7→ V (z, w)
if γ ≥ γ∗. That V (·) is piecewise quadratic on a polyhedral partition of
PΦ follows, with minor amendments, from the proofs of Proposition 8 and
Theorem 2.

We can now establish the main result of this section, characterization of
the solution to the constrained H∞ problem when X = Xf = IRn. We
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characterize the value functions V 0
j on polytopic subsets Xj of the true

domain IRn by assuming that the terminal cost function Vf (·) is known only
in a polytopic subset X0 of IRn.

Theorem 3 Suppose Vf (·) is continuously differentiable, strictly convex,
and continuous piecewise quadratic on a polytopic partition PX

0 of a poly-
tope X0 ⊂ IRn. Then, there exists a γ > 0 such that, for each j ≥ 0, there
exists a polyhedron Xj on which the value function V 0

j (·) is continuously
differentiable, strictly convex, and continuous piecewise quadratic on a poly-
hedral partition PX

j of Xj, and the optimal control law κj(·) is continuous

and piecewise affine on the same polyhedral partition PX
j of Xj.

Proof: Suppose V 0
j−1(·) is continuously differentiable, strictly convex, and

continuous piecewise quadratic on a polyhedral partition PX
j−1 of a polyhe-

dron Xj−1 if γ ≥ γj−1. Then, by Proposition 10, there exists a γj ≥ γj−1

such that (z, w) 7→ ℓ(z, w) + V 0
j−1(f(z, w)) is strictly concave in w, con-

tinuously differentiable and continuous piecewise quadratic on a polyhe-
dral partition PΦ

j−1 of a polyhedron Φj−1 = {(z, w) ∈ IRn × U × W |

Fz + Gw ∈ Xj−1}. By Proposition 9, the value function J0
j−1(·) is then

continuously differentiable and, by Theorem 2, J0
j−1(·) is continuous piece-

wise quadratic and strictly convex on a polyhedral partition PZ
j−1 of a poly-

hedron Zj−1 = ProjZΦj−1 (and the disturbance law νj−1(·) is continuous
and piecewise affine on the same polytopic partition). Then, by Proposition
9, V 0

j (·) is continuously differentiable and, by Theorem 1, V 0
j (·) is strictly

convex and continuous piecewise quadratic on a polyhedral partition PX
j

of a polyhedron Xj (and the optimal control law νj−1(·) is continuous and
piecewise affine on the same polyhedral partition).

5 H∞ control; state and control constraints

In this section, we consider the H∞ constrained optimal control problem
when the constraints are u ∈ U , w ∈W , x ∈ X and the terminal constraint
xN ∈ Xf . The dynamic programming solution of the H∞ problem requires
the repeated solution of the two prototype problems Pmin(x) and Pmax(z)
defined in (3.1) and (3.2) which we rewrite in the form:
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Pmin(x) : V 0(x) = min
u

{J(x, u) | u ∈ U(x)} (5.1)

Pmax(z) : J0(z) = max
w

{V (z, w) | w ∈W} (5.2)

where the set-valued function U(·) is defined, for all x ∈ X , ProjX(Z), by

U(x) , {u | (x, u) ∈ Z} (5.3)

The presence of state constraints complicates the solution of the H∞ prob-
lem considerably. The extra complexity arises in the solution of Pmin(x)
since the control constraint u ∈ U(x) is now dependent on the parameter
x in contrast to the simple constraint u ∈ U when no state constraints are
present. The dependency of the constraint on x can cause the gradient of
the value function V 0(·) in problem Pmin(x) to be discontinuous even if the
function J(·) being minimized is continuously differentiable; Proposition 9
is no longer necessarily true for problem Pmin(x). However, there do exist
conditions under which this result is true.

5.1 Particular case

Assume that J(·) in (3.1) is continuously differentiable and continuous piece-
wise quadratic on a polytopic partition PZ = {PZ

i , i ∈ J Z} of Z. We show
below, despite the fact that the constraint set U(x) now depends on the
parameter x, that the value function V 0(·) for Pmin is, under certain further
assumptions, continuously differentiable in X , ProjX(Z). To do this, we
first consider, as in §3.1, the simpler problems Pi(z), i ∈ J Z , defined by
(3.8). For each i, problem Pi(z) is a quadratic program, with a value func-
tion V 0

i (·) that is continuous piecewise quadratic on a polytopic partition of
the polytope PX

i , ProjX(PZ
i ), and may be written in the form

Pi(x) : V 0
i (x) = min

u
{Ji(x, u) | x ∈ Ui(x)} (5.4)

where
Ui(x) , {u | (x, u) ∈ PZ

i } = {u |Miu ≤ Nix+ pi} (5.5)

It is known (see Proposition 4 and Theorem 1) that the value function V 0
i (·)

is continuous piecewise quadratic, being quadratic on polytopes Xi,I , each
polytope characterized by a set I ⊆ Iri

of active constraints, where ri is
the number of rows of Mi; the sets Xi,I , I ⊆ Iri

(excluding sets with no
interior) constitute a polytopic partition of the polytope PX

i . We require
the following result which is proved in the appendix.
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Proposition 11 Suppose (i), Ji(·) is continuously differentiable, (ii) PZ
i

has an interior, and, (iii) for any two adjacent polytopes, Xi,I1 and Xi,I2

say, in the polytopic partition of PX
i , either I1 ⊆ I2 or I2 ⊆ I1. Then, V 0

i (·)
is continuously differentiable in PX

i .

We establish next the continuous differentiability of the value function V 0(·)
for Pmin.

Theorem 4 Suppose that J(·) in (3.1) is continuously differentiable and
continuous piecewise quadratic on a polytopic partition PZ = {PZ

i , i ∈ J Z}
of Z and that hypotheses (ii) and (iii) of Proposition 11 are satisfied (hy-
pothesis (i) is satisfied automatically) for each problem Pi, i ∈ J Z . Then
V 0(·), the value function for Pmin, is continuously differentiable in X .

Proof: It follows from Theorem 1, that, for each i ∈ J Z , V 0(x) = V 0
i (x)

for all x in the interior of each polytopeXi,I in the polytopic partition of PX
i .

It follows from Proposition 11, that V 0(·) is continuously differentiable in
PX

i for each i ∈ J Z . Consider next a point x̄ on the boundary between two
polytopes PX

i and PX
j ; clearly i and j both lie in S0

Z(x̄) and, from Theorem

1, V 0(x) = V 0
i (x) = V 0

j (x) for all x ∈ X(x̄), so that V 0(·) is continuously
differentiable in X(x̄) and, hence, on all boundaries between polytopes in
the polytopic partition of X .

Theorem 5 Suppose Vf (·) is continuously differentiable, strictly convex,
and continuous piecewise quadratic on a polytopic partition PX

0 of a polytope
X0 ⊂ IRn. Then, there exists a γ > 0 such that, for each j ≥ 0, there exists
a polyhedron Xj on which the value function V 0

j (·) is continuously differ-
entiable, strictly convex, and continuous piecewise quadratic on a polytopic
partition PX

j of Xj, and the optimal control law κj(·) is continuous and

piecewise affine on the same polytopic partition PX
j of Xj.

Proof: Suppose V 0
j−1(·) is continuously differentiable, strictly convex, and

continuous piecewise quadratic on a polytopic partition PX
j−1 of a polytope

Xj−1 if γ ≥ γj−1. Then, by Proposition 10, there exists a γj ≥ γj−1 such
that (z, w) 7→ ℓ(z, w) + V 0

j−1(f(z, w)) is strictly concave in w, continuously
differentiable and continuous piecewise quadratic on a polytopic partition
PΦ

j−1 of a polytope Φj−1 = {(z, w) ∈ X × U ×W | Fz + Gw ∈ Xj−1}. By

Proposition 9, the value function J0
j−1(·) is then continuously differentiable
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and, by Theorem 2, J0
j−1(·) is continuous piecewise quadratic and strictly

convex on a polytopic partition PZ
j−1 of a polytope Zj−1 = ProjZΦj−1 (and

the disturbance law νj−1(·) is continuous and piecewise affine on the same
polytopic partition). Then, by Proposition 9, V 0

j (·) is continuously differen-

tiable and, by Theorem 1, V 0
j (·) is strictly convex and continuous piecewise

quadratic on a polytopic partition PX
j of a polytope Xj (and the optimal

control law νj−1(·) is continuous and piecewise affine on the same polytopic
partition).

5.2 General case

A simple characterization for the solution of the H∞ problem with con-
trol and state constraints does not appear possible when the simplifying
assumption of §5.1 is not made. Without this assumption, the value func-
tion V 0(·) for the minimization problem Pmin is not necessarily continuously
differentiable at the boundary between polytopes in the polytopic parti-
tion of X . Consequently, the objective function V (·) (which has the form
V = ℓ + V 0) in the maximization problem is not necessarily concave, no
matter how large γ is chosen. The resultant cost function J(·) in the mini-
mization problem is then piecewise max-quadratic, i.e. it is continuous and
equal to the maximum of a finite number of quadratics in each polytope in
a polytopic partition of its domain. It does not appear possible to obtain a
simple characterization for a problem with this structure.

5.3 Illustrative example

The partial value functions and optimal control laws can be computed by
solving the max and min subproblems associated (for each subproblem)
with each set of potentially active constraints and each set of potentially
active polytopes. Since the number of these sets is combinatorial, a better
procedure, employed in our computations, is to select a state-control pair
z = (x, u) in the max subproblem, determine the active constraint set J
or the active index set of polytopes s, and then compute the corresponding
disturbance law ν(·) and the region Z in which this control law is optimal,
using Theorem 2. The procedure is then repeated for a new value of z
not lying in the union of the sets Z already computed. Once the max
subproblem computations are complete, a similar procedure is applied to
the min subproblem using Theorem 1.
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Our numerical example is optimal min-max control of a constrained sec-
ond order system defined by:

x+ =

[

1 1
0 1

]

x+

[

0.5
1

]

u+ w (5.6)

The state constraints are x ∈ X := {x | |x|∞ ≤ 10}. The control constraint
is u ∈ U := {u | |u| ≤ 1}. The disturbance is bounded: w ∈ W := {w |
|w|∞ ≤ 0.1} The path cost function is quadratic with Q = 10I, R = 1 and
γ = 100. The terminal cost Vf (x) is quadratic (1/2)x′Pfx with

Pf =

[

20.6143 5.9244
5.9244 14.2329

]

The terminal constraint set Xf is defined by the 4 inequalities: (−0.9849 −
0.3155)x ≤ 2.1526; (0.9489 0.3155)x ≤ 2.1526; (0.4369 0.8995)x ≤ 0.7079
and (−0.4369 − 0.8995)x ≤ 0.7079.
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(a) Regions of x space, N = 1
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(b) Regions of x space, N = 2

Figure 3: 2D Example

The polytopic regions for N = 1 and N = 2 are shown in Figure 3. At
N = 2, the state space is partitioned into 17 polytopes in each of which
the optimal control law is piecewise affine; the state control space Z is
partitioned into 5 polytopes in each of which the optimal disturbance law is
piecewise affine.

6 H∞ receding horizon control

6.1 Introduction

Since we make use, in this section, of the solution for infinite horizon, linear
unconstrained H∞ problem, we assume, in the sequel, that (A,B) is stabiliz-
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able and that (C,A,B) has no zeros on the unit circle where Q = C ′C. Since
Q is assumed to be positive definite, (C,A) is detectable. These conditions,
and the fact that R is assumed positive definite, ensure that the conditions
assumed in [29], Appendix B, are satisfied for the full information case.
Hence there exists a γ̃ > 0 such that a positive definite solution Pf to the
associated (generalized) H∞ algebraic Riccati equation for all γ > γ̃ and
associated optimal control and disturbance laws u = Kux and w = Kwx
respectively. It is shown in [29] that, under these assumptions, the state
matrices Af , A+BKu and Ac , A+BKu +GKw are both stable.

The terminal cost function Vf (·) for the constrained H∞ control problem
is defined by

Vf (x) = (1/2)|x|2Pf
. (6.1)

and satisfies
Vf (Acx) − Vf (x) + ℓ(x,Kux,Kwx) = 0. (6.2)

The terminal constraint set Xf is chosen to be a disturbance invariant set (if
it exists) for the system x+ = Afx+Gw, Af , A+BKu. Any disturbance
invariant set Xf satisfies

f(x,Kux,W ) ⊆ Xf ∀ x ∈ Xf (6.3)

We assume that the setW is sufficiently small, and that γ is sufficiently large,
to ensure the existence of a disturbance invariant set Xf which satisfies

Xf ⊆ X, KuXf ⊆ U, KwXf ⊆W. (6.4)

That the last condition in (6.4) can be satisfied follows from the fact [29]
that Kw → 0 as γ → ∞. A suitable Xf may be computed as follows: if
W = {w | Cww ≤ cw}, choose γ such that X̃ = {x | CwKwx ≤ cw} is
reasonably large; clearly KwX̃ ⊆ W . Next, choose Xf to be a disturbance
invariant set for x+ = Afx+Gw satisfying Xf ⊆ X ∩ X̃ and KuXf ⊆ U .

Since there does not exist a disturbance w that can steer the system
outside Xf given an initial state in Xf , the optimal policy for w in Xf is
w = Kwx. The closed loop system x+ = Acx, Ac , A + BKu + GKw, is
exponentially stable and the controller u = Kux maintains the state in Xf if
the initial state is in Xf . We observe that the solution of the infinite horizon
constrained H∞ problem (defined by (2.9) with N = ∞) satisfies:

V 0
∞(x) = Vf (x), κ∞(x) = Kux, ∀x ∈ Xf (6.5)

since, by (6.4), the control constraints are satisfied everywhere in Xf so that
the solutions of the constrained and unconstrained problems coincide.
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6.2 H∞ control: control constraints

Since this problem, as stated in §4, has no terminal constraint and since
Vf (·) defined above is a local rather than a global Control Lyapunov Func-
tion (Vf (·) is valid in Xf ), standard stability results [30, 31] (that enforce
the terminal constraint) cannot be employed. However, it is possible to de-
termine a domain of attraction for the H∞ controller characterized in §4.
Consider the following dynamic programming recursion:

V 0
j (x) = min

u∈U
max
w∈W

{ℓ(x, u, w) + V 0
j−1(f(x, u, w))} (6.6)

κj(x) = arg min
u∈U

max
w∈W

{ℓ(x, u, w) + V 0
j−1(f(x, u, w))} (6.7)

X∗
j = {x | f(x, κj(x),W ) ⊆ X∗

j−1} (6.8)

with boundary condition

V 0
0 (x) = Vf (x), X∗

0 = Xf (6.9)

This is identical to the recursion (4.4)–(4.6) except for the inclusion of the
recursion (6.8) that yields the sets X∗

j , j ≥ 0. Whereas the domain of the

value function V 0
j (·) is IRn for all j ≥ 0, the importance of the sets X∗

j

derives from Proposition 12 below.

Proposition 12 For every integer j ≥ 0, every x ∈ X∗
j :

V 0
j (x) = V 0

∞(x) (6.10)

κj(x) = κ∞(x) (6.11)

Proof: Suppose, for some integer j, V 0
j−1(·) = V 0

∞(·) on X∗
j−1. Then, by

(6.6),

V 0
j (x) = min

u∈U
max
w∈W

{ℓ(x, u, w) + V 0
∞(f(x, u, w))} = V 0

∞(x)

for all x ∈ X∗
j . Since Vf (x) = V 0

∞(x) for all x ∈ X0 = Xf , the desired result
follows by induction.

Hence, the solution to the finite horizonH∞ problem in §4 is also the solution
to the infinite horizon problem (in the restricted sets X∗

j ) provided the
terminal cost Vf (·) is chosen as described above. A practical consequence
of this result is that, in computing the value function V 0

j (·) (and κj(·)), it

is only necessary to consider those states lying in X∗
j \X∗

j−1 (since V 0
j (x) =

V 0
j−1(x) = V∞(x) at all x ∈ X∗

j−1).
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Definition 4 A set X is robust control invariant for x+ = f(x, u, w) if, for
every x ∈ X, there exists a u ∈ U such that f(x, u,W ) ⊆ X.

It follows from (6.3) that the set Xf is robust control invariant.

Theorem 6 (i) The sets X∗
j are each robust control invariant and are non-

decreasing (satisfy X∗
j ⊆ X∗

j+1 for all j ≥ 0). (ii) For any N ≥ 0, the set
Xf is finite-time attractive with a domain of attraction X∗

N for the closed-
loop system x+ = f(x, κ∞(x), w). (iii) Suppose that, for some finite integer
j ≤ N , Xf lies in the interior of X∗

j ; then Xf is robustly stable for the
system x+ = f(x, κ∞(x), w).

Proof: (i) Assume X∗
j−1 is robust control invariant. It follows from (6.8)

that X∗
j−1 ⊆ X∗

j so that X∗
j is robust control invariant. Since Xf is robust

control invariant, the desired result follows by induction. (ii) By construc-
tion, for any integer j, and state x ∈ X∗

j is robustly steered into X∗
j−1

by the admissible control κj(x) = κ∞(x). Hence any state x ∈ X∗
N is

robustly steered into Xf in N steps; the controller u = Kux then keeps
the state in Xf , so that Xf is robustly finite-time attractive with a do-
main of attraction X∗

N for the system x+ = f(x, κ∞(x), w). (iii) For any
x ∈ IRn let |x|H , d(x,Xf ) and for any infinite sequence {x(i)} in IRn let
|{x(i)}|H∞ , supi≥0 d(x(i), Xf ). From (ii), the controller κ∞(·) steers any
x ∈ X∗

j into Xf in no more than j steps and, thereafter, keeps the state in

Xf . Hence, with x(i) , φ(i;x, π∞, {w(i)}), w , {w(0), w(1), . . . , w(j − 1)},
let θ : X∗

j ×W j → IR be defined by

θ(x,w) , |x(·)|H∞ = max
i

{φ(i;x, π∞,w} | i ∈ {0, 1, . . . , j − 1}}.

The control law κ∞(·) is continuous since it is equal to κj(·) inX∗
j ; thus θ(·) is

continuous and, hence, uniformly continuous in X∗
j ×W

j . Since θ(x,w) = 0

for all x ∈ Xf ⊂ X∗
j , all w ∈ W j , uniform continuity of θ(·) implies that,

for all ε > 0, there exists a δ > 0 such that θ(x,w) < ε (x(i) ∈ Bε(Xf ) for
all i ≥ 0) for all (x,w) ∈ X∗

j ×W j satisfying |x|H < δ (x ∈ Bε(Xf )). This
establishes robust stability of Xf .

The disadvantage of this approach is that the setsX∗
j are obviously subsets of

IRn, the domain of the value functions V 0
j (·); the sets X∗

j are not necessarily
convex.

27



6.3 H∞ control: state and control constraints

Consider the receding horizon controller u = κN (x). If the terminal condi-
tions and assumptions stated above in §6.1 are adopted, then

C1: Xf is robust control invariant for x+ = (A + BKu)x + Gw, Xf ⊆ X,
KuXf ⊆ U , KwXf ⊆W .

C2: minu∈U maxw∈W {[
∗

V f +ℓ](x, u, w) | f(x, u, w) ∈ Xf} ≤ 0 for all x ∈ Xf .

In C2,
∗

V f (x, u, w) , Vf (f(x, u, w)) − Vf (x). If the recursive dynamic pro-
gramming equations in (2.1) – (2.3) are employed, we obtain, by a minor
modification of the results in [22], §3.3.1, the following results:

(i:) Xi is robust control invariant for all i ∈ {1, . . . , N}
(ii:) XN is robust invariant for x+ = f(x, κN (x), w)
(iii:) V 0

i (x) ≤ V 0
i−1(x) ∀x ∈ Xi−1, i ∈ {1, . . . , N}

(iv:) V 0
N (x) ≤ Vf (x) ∀ x ∈ Xf .

(v:) The value function satisfies:

[(
∗

V 0
N + ℓ) ≤ (V 0

N − V 0
N−1)](f(x, κN (x), w) ≤ 0

for all (x,w) ∈ XN × W . Property (iii) is the monotonicity property of
the value function for the constrained, linear, uncertain system (1.1) with
cost (1.5). Let VN (x, π,w) denote the cost if player u uses the control law
u = κN (x) and the adversary w uses an arbitrary admissible disturbance
sequence w. Then, for any ℓ2 disturbance sequence

VN (x, π,w) =
N−1
∑

i=0

|y(i)|2 − (γ2/2)|w(i)|2 + Vf (x(N))

=

∞
∑

i=0

|y(i)|2 − (γ2/2)|w(i)|2 ≤ V 0
N (x) (6.12)

since w is not optimal; here y(i) = Hz(i), z(i) = (x(i), u(i)) = (x(i), κN (x(i))
and x(i) is the solution of (1.1) due to initial state x, control strategy π and
disturbance sequence w; we make use of the fact that κN (x) = κf (x) for all
x ∈ Xf . It follows that

∞
∑

i=0

|y(i)|2 ≤ (γ2/2)
∞

∑

i=0

|w(i)|2 + V 0
N (x) (6.13)
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which is the finite gain property. Next, if the disturbance is identically zero,

[(
∗

V 0
N + ℓ) ≤ (V 0

N − V 0
N−1)](f(x, κN (x), 0)) ≤ 0

so that

V 0
N (f(x, κN (x), 0)) − V 0

N (x) ≤ −ℓ(x, κN (x), 0) ≤ −(1/2)x′Qx

for all x ∈ XN so that the origin is exponentially stable with a region of
attraction XN . Summarizing we have

Theorem 7 The receding horizon controller u = κN (x) has the following
properties. The controlled system has the finite ℓ2 gain property (6.13) for
every initial state in the interior of XN and, if the disturbance is identically
zero, the origin is exponentially stable with a region of attraction XN .

If the disturbance satisfies w ∈W (z), where, as before, z = (x, u) and W is
such that w ∈W (z) implies |w| ≤ δ|z|, for some δ > 0 (this W models some
parametric uncertainties), then

ℓ(z, w) = (1/2)|z|2HH′ − (γ2/2)|w|2 ≥ (c/2)|z|2 ≥ (c/2)|x|2

for all z, w, some c > 0, provided that δ < (1/γ). With this form of bounded
disturbance, the origin is robustly, exponentially stable (the state converges
to the origin exponentially fast despite the disturbance) if, of course, δ <
(1/γ).

We note, in passing, that we can simplify the dynamic programming
recursion, as in §6.2, by replacing (2.3) by

X∗
j = X ∩ {x | f(x, κj(x),W ) ⊆ X∗

j−1}

and the boundary conditions by

V 0
0 (x) = Vf (x), X∗

0 = Xf

However, in this case, (2.1) remains a constrained optimization problem be-
cause of the state constraint, so the advantage of using this formulation is
not so clear cut. As before, X∗

j ⊆ Xj for each j which introduces conser-
vatism. However, the sets X∗

j are less complex than the corresponding sets
Xj .
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7 Conclusion

We have shown (in §4) how the solution to the constrained H∞ problem may
be characterized when the system is linear, the cost quadratic and the con-
straints polytopic if no state and/or terminad constraints are present. This
characterization required the solution to a parametric program in which
the constraints are polytopic and the cost piecewise quadratic (rather than
quadratic). A novel solution to this problem is presented in §3. A charac-
terization of the solution to the constrained H∞ problem when state con-
straints are present under special (and restrictive) conditions is presented in
§5; characterization of the solution in the general case appears to be diffi-
cult. Stability properties of the resultant H∞ controlled system are briefly
discussed in §6.

APPENDICES

A Proof of Lemma 1, §3.1

We restate Lemma 1:

Lemma 1 (Clarke) Suppose Z is a polytope in IRn × IRm and let X
denote its projection on IRn (X = {x | ∃u ∈ IRm such that (x, u) ∈ Z}).
Let U(x) , {u | (x, u) ∈ Z}. Then there exists a K > 0 such that, for all
x, x′ ∈ X , for all u ∈ U(x), d(u,U(x′)) ≤ K|x′−x| (there exists a u′ ∈ U(x′)
such that |u′ − u| ≤ K|x′ − x|).

Proof: The polytope Z is defined by

Z , {z = (x, u) |Mu ≤ Nx+ p, Lx ≤ l}.

where the second set of inequalities is introduced to ensure that no row of
M is zero (Lx ≤ l defines the right hand boundary of Z in Figure 1). Let r
denote the row-dimension of M , s the row dimension of L, let I , {1, . . . , r}
and J , {1, . . . , s}. For all (x, u) ∈ Z, U(x) = {u | Mu ≤ Nx + p}
(since (x, u) ∈ Z =⇒ Lx ≤ l). For each x ∈ X , U(x) is a polytope in
IRm. For each (x, u) ∈ Z, let ψ(x, u) , max{M iu − N ix − pi | i ∈ I}
and let ψ+(x, u) , max{0, ψ(x, u) where M i, N i, pi denote the ith row,
respectively, of M , N and p. Then, for all x ∈ X , u ∈ U(x) ((x, u) ∈ Z) if
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and only if ψ(z) = 0). Let I0(z) , {i ∈ I | M iu −N ix − pi = ψ(z)} index
the (most) active constraints. The associated set of (most) active gradients
(with respect to u) is {gi | i ∈ I0(z)} where, for each i, gi = (M i)′. Because
U(x) is a polytope, for each x ∈ X , the set of active gradients is positively
linear independent (0 6∈ co{gi(z) | i ∈ I0(z)} for all z such that ψ(z) > 0.
The proximal subgradient of u 7→ ψ(x, u) is:

δp(x, u)ψ(x, u) = co{gi | i ∈ I0(z)}.

and the directional derivative dψ(z;h) of ψ(·) at z in direction h is max{〈gi, h〉 |
i ∈ I0(z)}; the positive linear independence condition ensures that, at each
z, there exists a direction h along which ψ(z) can be decreased. In fact,
there exists a δ > 0 such that, if z ∈ Z and ψ(z) > 0 (z 6∈ Z), then ζ ∈ δp(z)
implies |ζ| ≥ δ. So, by Theorem 3.1 in [32], for all (x, u) ∈ Z, all x′ ∈ X ,
d(u,U(x′)) ≤ ψ(x′, u)/δ ≤ (c/δ)|x − x′| (c , max{|N j | | j ∈ J}) since
ψ(x′, u) ≤ ψ(x, u) + max{N j(x− x′) | j ∈ J} ≤ c|x− x′|}. This proves the
lemma with K , c/δ.

B Continuous differentiability of the value func-

tion of a parametric quadratic program

See [22] and [8] for related results. We consider the standard parametric
quadratic program:

P(x) : V 0(x) = min
u

{V (x, u) | (x, u) ∈ Z}. (B.1)

where x ∈ IRn, u ∈ IRl and Z is a polytope with a non-empty interior. We
assume

A1: The cost function V (·) is strictly convex and continuously differentiable.
The constraint (x, u) ∈ Z imposes an implicit constraint on u ∈ U(x) where
the set-valued function U(·) is defined by

U(x) = {u | (x, u) ∈ Z} = {u |Mu ≤ Nx+ p} (B.2)

so that P(x) may be written in the form

P(x) : V 0(x) = min
u

{V (x, u) | u ∈ U(x)} (B.3)
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The (unique) solution of P(x), for each x ∈ X , is

u0(x) = arg min
u

{V (x, u) | u ∈ U(x)} (B.4)

The domain of V 0(·), u(·) and U(·), is the polytope

X = {x | U(x) 6= ∅} = {x | ∃ u ∈ U(x)} = ProjX(Z) (B.5)

Let p ≥ l denote the number of rows of M,N and c. It is known that
V 0(·) is continuous piecewise quadratic and continuous and u0(·) is piece-
wise affine and continuous, being quadratic and affine, respectively, in the
polytopes RI , I ⊆ Ip that constitute a polytopic partition of X . Each region
is characterized by a set of active constraints I, i.e. for all x ∈ RI :

MIu
0(x) = NIx+ cI (B.6)

Miu ≤ Nix+ pi for all i ∈ Ic (B.7)

−∇uV (x, u0(x)) ∈ PCI(x) (B.8)

where MI , NI and cI denote the matrices with, rows Mi, Ni and ci, respec-
tively, i ∈ I, and PCI(x) , {M ′

Iλ | λ ≥ 0} is the polar cone to the cone
F (x) , {h |MIh ≤ 0} of feasible directions at x; for each I ⊆ Ip, I

c denotes
the complement of I in Ip. Thus V 0(·) is continuously differentiable (in fact
analytic) in the interior of each region RI , I ⊆ Ip. We may assume, without
loss of generality, that MI has maximal rank. Our final assumption is:

A2: For any two adjacent regions RI1 and RI2 (RI1∩RI2 6= ∅) either I1 ⊂ I2
or I1 ⊃ I2.

Assumption A2 will often be satisfied, but there do exist counterexamples.

Theorem 8 Suppose V (·) is continuously differentiable and that assump-
tions A1 – A2 are satisfied. Then V 0(·) is continuously differentiable in
X .

Proof: It is known that V 0(·) is continuous piecewise quadratic and con-
tinuous and u0(·) is piecewise affine and continuous, being quadratic and
affine, respectively, in the polytopes RI , I ⊆ Ip that constitute a polytopic
partition of X . Each region is characterized by a set of active constraints I,
i.e. RI is defined by the inequalities (B.6)-(B.8). Thus V 0(·) is continuously
differentiable (in fact analytic) in the interior of each region RI , I ⊆ Ip.
Consider the continuous differentiability of V 0(·) on the boundary between
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two regions RI1 and RI2 say where I1 ⊆ I2. For any I ⊆ Ip such that
RI 6= ∅, any x ∈ RI ,

u0(x) = ũ0
I(x) + ū0

I(x) (B.9)

where, for each index set I, ũ0
I(x) ∈ range(M ′

I)= N (MI)
⊥ (the row space

of MI) is that u of minimum norm satisfying MIu = NIx+ cI and ū0
I(x) ∈

range(M ′
I)

⊥ = N (MI) (N (MI) is the null space of MI). Roughly speaking,
ũ0

I(x) satisfies the constraints, and ū0
I(x) optimizes. It is easily shown that

both ũI(·) and ū0
I(·) are affine in x, satisfying, respectively

ũ0
I(x) = K̃Ix+ k̃I , ū0

I(x) = K̄Ix+ k̄I (B.10)

where k̃I and the columns of K̃I lie in range(M ′
I) and k̄I and the columns

of K̄I lie in range(M ′
I)

⊥. In fact, K̃I and k̃I are given by

K̃I = M †
INI , k̃I = M †

I cI (B.11)

where M †
I , the Moore-Penrose pseudo inverse of MI , is given by

M †
I = (M ′

IMI)
−1M ′

I (B.12)

Since V 0(·) is continuously differentiable in each region RI , consider the
continuous differentiability of V 0(·) on the boundary between two regions,
RI1 and RI2 say, where I1 ⊆ I2 Because, for x ∈ RI , u

0(x) minimizes
(with respect to u) the continuously differentiable function V (x, u) in the
hyperplane {u |MI1u = NI1x+ cI1}, we have

−∇uV (x, u0(x)) ∈ {M ′
I1
λ | λ ≥ 0} ⊆ range(M ′

I1
) (B.13)

Hence

(∂/∂x)V 0
x (x) = (∂/∂x)V (x, u0(x)) + (∂/∂u)V (x, u0(x))(∂/∂x)ũ0

I1
(x)
(B.14)

since (∂/∂u)V ((x, u0(x)))(∂/∂x)ū0
I1

(x) = 0 (because of (B.13) and the fact

that (∂/∂x)ū0
I1

(x) = K̄I1) and the columns of K̄I1 lie in range(M ′
I1

)⊥. Sup-
pose now x→ x∗ ∈ RI1 ∩RI2 , x ∈ RI1 . Then

(∂/∂x)V 0(x) → (∂/∂x)V (x∗, u0(x∗)) + (∂/∂u)V (x, u0(x∗))K̃I1 (B.15)

where both ∇uV (x, u0(x∗))′ and the columns of K̃I1 = (∂/∂x)ũ0
I1

(x∗) lie in
range(M ′

I1
). Next consider a x ∈ RI2 such that x→ x∗ ∈ RI1∩RI2 . Arguing

as above we deduce

(∂/∂x)V 0
x (x) → (∂/∂x)V (x∗, u0(x∗)) + (∂/∂u)Vu((x, u0(x∗))K̃I2 (B.16)
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where ∇uV (x, u0(x∗)) lies in range(M ′
I1

) (as above) but the columns of
K̄I2 = (∂/∂x)ũ0

I2
(x∗) lie in range(M ′

I2
). We show below that I1 ⊆ I2 implies

that MI1K̃I1 = MI1K̃I2 . Since ∇uV ((x, u0(x∗)) lies in range(M ′
I1

), it follows
that

(∂/∂u)V (x, u0(x∗))K̃I1 = (∂/∂u)Vu((x, u0(x∗))K̃I2 (B.17)

Equations (B.15) - (B.17) establish the continuous differentiability of V 0(·)
at x∗ ∈ RI1 ∩RI2 .

We have now to show that I1 ⊆ I2 implies that MI1K̃I1 = MI1K̃I2 .
Suppose

MI2 =

[

MI1

m

]

, NI2 =

[

NI1

n

]

,

Then, from (B.11)

MI1K̃I2 = MI1M
†
I2
NI2

But
MI2K̃I2 = NI2

so that
[

MI1

m

]

K̃I2 =

[

NI1

n

]

from which it follows that

MI1K̃I2 = NI1 = MI1K̃I1 .

It follows from A2 that V 0(·) is continuously differentiable in X .
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[7] D. Q. Mayne and S. Raković. Optimal control of constrained piecewise
affine discrete-time systems using reverse transformation. In Proceed-
ings of the IEEE 2002 Conference on Decision and Control, volume 2,
pages 1546 – 1551 vol.2, Las Vegas, USA, 2002.

[8] Francesco Borrelli. Discrete Time Constrained Optimal Control. PhD
thesis, Swiss Federal Instritute of Technology, Zurich, 2002.

[9] D.R. Ramirez and E.F. Camacho. On the piecewise linear nature of
min-max model predictive control with bounded uncertainties. In Pro-
ceedings of the 40th IEEE 2001 Conference on Decision and Control,
pages 4845–4850, Orlando, Florida, USA, 2001.

[10] Eric. C. Kerrigan and David Q. Mayne. Optimal control of constrained
piecewise affine systems with bounded disturbances. In Proceedings of
the 41st IEEE 2002 Conference on Decision and Control, volume 2,
pages 1552 – 1557, Las Vegas, USA, 2002.

[11] A. Bemporad, F. Borrelli, and M. Morari. Min-max control of con-
strained uncertain discrete-time linear systems. IEEE Transactions on
Automatic Control, 48(9):1600–1606, September 2003.

[12] E. C. Kerrigan and J. M. Maciejowski. Feedback min-max model pre-
dictive control using a single linear program: Robust stability and the
explicit solution. International Journal of Robust and Nonlinear Con-
trol, 14(4):395–413, March 2004.

35



[13] M. Diehl and J. Bjornberg. Robust dynamic programming for min-max
model predictive control of constrained uncertain systems. IEEE Trans.
Automatic Control, 49(12):2253–2257, December 2004.

[14] H. Chen, C.W. Scherer, and F. Allgöwer. A game theoretic approach
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