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Abstract: In this contribution we discuss a stochastic framework for air traffic
conflict resolution. The conflict resolution task is posed as the problem of
optimising an expected value criterion. Optimisation is carried out by Monte Carlo
Markov Chain (MCMC) simulation. A numerical example illustrates the proposed
strategy.
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1. INTRODUCTION

In the current organisation of Air Traffic Manage-
ment the centralised Air Traffic Control (ATC)
is in complete control of the air traffic and ul-
timately responsible for safety. Aircraft, before
take off, receive flight plans which cover the entire
flight. During the flight, ATC sends additional
instructions to them, depending on the actual
traffic, in order to avoid dangerous encounters.
The main objective of ATC is to maintain safe
separation. The level of accepted minimum safe
separation can vary with the density of the traffic
and the region of airspace. For example, a largely
accepted value for horizontal minimum safe sepa-
ration is 5 nmi in general en-route airspace which
is reduced to 3 nmi during in approach sectors
with aircraft landing and departing. A conflict is
defined as the situation of loss of minimum safe
separation between two aircraft. If it is possible,
ATC tries also to fulfil, the, possibly conflicting,
requests of aircraft and airlines (desired path to
avoid turbulence, desired time of arrivals to meet
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schedule, etc.. ).
In order to improve performance of ATC, mainly
in view of increasing levels of traffic, research
effort has been spent in the last decade to create
tools for Conflict Detection and Conflict Resolu-
tion. A review of research work on ATC is pre-
sented in (Kuchar and Yang, 2000).
In Conflict Detection one has to evaluate the
possibility of future conflict starting from the
current state of the airspace and taking into ac-
count uncertainty in the future position of aircraft
while they follow given nominal paths. In doing
Conflict Detection one needs a model to predict
the future. In a probabilistic setting, the model
could be either an empirical distribution of fu-
ture position or a stochastic differential equation
that describes the aircraft motion and defines
implicitly a distribution for future aircraft posi-
tions. The stochastic part enters the system as
the action of the wind field and several uncertain-
ties in the physics of the aircraft. On the basis
of the prediction model one can evaluate met-
rics related to safety. One example of a possible
metric is conflict probability over a certain time
horizon. Several methods have been developed to



estimate different metrics related to safety for
a number of prediction models, e.g (Blom and
Bakker, 2002; Hu et al., 2003; Irvine, 2001; Paielli
and Erzberger, 1997; Prandini et al., 2000).
Among other methods, Monte Carlo (MC) meth-
ods have the main advantage of allowing flexibility
in the complexity of the prediction model since the
model is used only as a simulator and, in principle,
it is not involved in explicit calculations. In all
methods a trade off exists between computational
effort (simulation time in the case of MC meth-
ods) and complexity of the model. Techniques to
accelerate MC methods by saving computational
time are under development, see e.g. (Krystul and
Blom, 2004).
In Conflict Resolution one wants to calculate
suitable maneuvers to avoid a predicted conflict.
A number of Conflict Resolution algorithms has
been proposed for a deterministic setting, see
(Kuchar and Yang, 2000). In a stochastic setting,
the research effort has been concentrated mainly
on Conflict Detection while few resolution strate-
gies dedicated to a stochastic setting have been
proposed, the main reason being the complexity of
stochastic prediction models. Simple conflict reso-
lution maneuvers have been considered in (Paielli
and Erzberger, 1997; Prandini et al., 2000).
In this paper we present a Monte Carlo Markov
Chain (MCMC) framework (Robert and Casella,
1999) for Conflict Resolution in a stochastic set-
ting. The approach is borrowed from Bayesian
statistics (Mueller, 1999; Mueller et al., 2002). We
will consider a resolution criterion that takes into
account separation and other factors (e.g. aircraft
requests). Then, the procedure of (Mueller, 1999)
is employed to estimate the resolution maneu-
ver that optimises the expected value criterion
through MCMC simulation. The interesting point
in this approach is that it extends the advantages
of Monte Carlo techniques, in terms of flexibility
and complexity of the problems that can be tack-
led, to Conflict Resolution.
The paper is organised as follows. In the next
section we recall previous work on the modelling
of aircraft motion from the point of view of ATC.
In Section 3 we present our approach to con-
flict resolution based on Monte Carlo optimisation
techniques. A simulation example is illustrated
in Section 4. Conclusions, in Section 5, end the
paper.

2. MODELLING OF AIRCRAFT MOTION

We have developed an air-traffic simulator that
simulates adequately the behaviour of a set of air-
craft from the point of view of ATC. The simulator
implements realistic models of current commercial
aircraft described in the Base of Aircraft Data
(BADA) (EUROCONTROL Experimental Cen-
tre, 2002). The simulator contains also realistic

stochastic models of the wind disturbance (Cole et
al., 1998). The aircraft models contain continuous
dynamics, arising from the physical motion of the
aircraft, discrete dynamics, arising from the logic
embedded in the Flight Management System, and
stochastic dynamics, arising from the effect of
the wind and incomplete knowledge of physical
parameters (for example, the aircraft mass, which
depends on fuel, cargo and number of passengers).
The simulator has been coded in Java and can
be used in different operation modes either to
generate accurate data, for validation of the per-
formance of conflict detection and resolution al-
gorithm, or to run faster simulations of simplified
models. The nominal path for each aircraft is en-
tered in the simulator as a sequence of waypoints.
The actual trajectories of the aircraft are then a
perturbed version of the nominal path, depending
on the particular realisations of wind disturbances
and uncertain parameters. The reader is referred
to (Glover and Lygeros, 2003) for a more detailed
description of the simulator.

3. MONTE CARLO OPTIMISATION OF AN
EXPECTED VALUE CRITERION

In our approach we formulate conflict resolution
as a constrained optimisation problem. Given a
set of aircraft involved in a conflict, the conflict
resolution maneuver is determined by a parameter
ω which defines the nominal paths of the aircraft
The actual execution of the maneuver is affected
by uncertainty. Therefore, the sequence of actual
positions of the aircraft (for example: the sequence
of positions every 6 seconds which is a typical time
interval between two successive radar sweeps) dur-
ing the resolution maneuver is, a-priori of its
execution, a random variable denoted by X. A
conflict is defined as the event that the positions of
two aircraft during the execution of the maneuver
get too close. The objective is to select ω in order
to maximise the expected value of some measure
of performance associated to the execution of the
resolution maneuver while ensuring a small prob-
ability of conflict. In this section we introduce the
formulation of the problem in a general fashion.

3.1 Penalty formulation of an expected value
optimisation problem with constraints

Let X be a random variable whose distribution
depends on some parameter ω. The distribution
of X is denoted by pω(x) with x ∈ X. The set
of all possible values of ω is denoted by Ω. We
assume that a constraint on the random variable
X is given in terms of a feasible set Xf ⊆ X.
We say that a realisation x, of random variable
X, violates the constraint if x 6∈ Xf . Moreover,
we assume that for a realisation x ∈ Xf some



definition of performance of x is given. In general
performance can depend also on the value of ω,
therefore performance is measured by a function
perf(ω, x), x ∈ Xf , ω ∈ Ω. We assume that
perf(ω, x) takes values in (0, 1]. The probability
of satisfying the constraint is denoted by P(ω)

P(ω) =

∫

x∈Xf

pω(x)dx . (1)

The probability of violating the constraint is de-
noted by P̄(ω) = 1 − P(ω). The expected perfor-
mance for a given ω ∈ Ω is denoted by Perf(ω),
where

Perf(ω) =

∫

x∈Xf

perf(ω, x)pω(x)dx . (2)

Ideally one would like to maximise the perfor-
mance over all ω, subject to a bound on the prob-
ability of constraint satisfaction. Given a bound
P̄ ∈ [0, 1], this corresponds to solving the con-
strained optimization problem

Perfmax |P̄ = sup
ω∈Ω

Perf(ω) (3)

subject to P̄(ω) < P̄. (4)

Clearly, a necessary condition for the problem to
have a solution is that there exists ω ∈ Ω such
that P̄(ω) < P̄, or, equivalently,

P̄min = inf
ω∈Ω

P̄(ω) < P̄. (5)

This optimization problem is generally difficult
to solve, or even to approximate by randomised
methods. Here we approximate this problem by
an optimisation problem with penalty terms. We
show that with a proper choice of the penalty term
we can enforce the desired maximum bound on the
probability of violating the constraint, provided
that such a bound is feasible, at the price of sub-
optimality in the resulting expected performance.
Let us introduce the function u(ω, x) defined as

u(ω, x) =







perf(ω, x) + Λ x ∈ Xf

1 x 6∈ Xf ,

(6)

where Λ > 1. The parameter Λ represents a
reward for constraint satisfaction. The expected
value of u(ω, x) is given by

U(ω) =

∫

x∈X

u(ω, x)pω(x)dx ω ∈ Ω . (7)

Instead of the constrained optimization prob-
lem (3)–(4) we solve the unconstrained optimiza-
tion problem:

Umax = sup
ω∈Ω

U(ω). (8)

Assume the supremum is attained and let ω̄ de-
note the optimum solution, i.e. Umax = U(ω̄). The
following proposition introduces bounds on the
probability of violating the constraints and the
level of suboptimality of Perf(ω̄) over Perfmax |P̄.

Proposition 3.1. The maximiser, ω̄, of U(ω) sat-
isfies

P̄(ω̄)≤
1

Λ
+

Λ − 1

Λ
P̄min (9)

Perf(ω̄)≥Perfmax |P̄ − (Λ − 1)(P̄ − P̄min)(10)

Proof: see (Lecchini et al., 2005).

Proposition 3.1 suggests a method for choosing Λ
to ensure that the solution ω̄ of the optimization
problem will satisfy P̄(ω̄) ≤ P̄. In particular
it suffices to know P̄(ω) for some ω ∈ Ω with
P̄(ω) < P̄ to obtain a bound. If there exists ω ∈ Ω

for which P̂ = P̄(ω) is known, then any

Λ ≥
1 − P̂

P̄ − P̂
(11)

ensures that P̄(ω̄) ≤ P̄. If we know that there
exists a parameter ω ∈ Ω for which the constraints
are satisfied almost surely a tighter (and poten-
tially more useful) bound can be obtained. If there
exists ω ∈ Ω such that P̄(ω) = 0, then any

Λ ≥
1

P̄
(12)

ensures that P̄(ω̄) ≤ P̄. Clearly to minimise the
gap between the optimal performance and the
performance of ω̄ we need to select Λ as small
as possible. Therefore the optimal choices of Λ
that ensure the bounds on constraint satisfaction
and minimise the suboptimality of the solution are

Λ = 1−
ˆP

P̄−
ˆP

and Λ = 1
P̄

respectively.

3.2 Simulation-based optimisation

In this subsection we recall a simulation-based
procedure, to find approximate optimisers of
U(ω). The only requirement for applicability of
the procedure is to be able to obtain realisations
of the random variable X with distribution pω(x)
and to evaluate u(ω, x) pointwise. This optimisa-
tion procedure is in fact a general procedure for
the optimisation of expected value criteria. It has
been originally proposed in the Bayesian statistics
literature (Mueller, 1999).
The optimisation strategy relies on extractions
of a random variable Ω whose distribution has
modes which coincide with the optimal points
of U(ω). These extractions are obtained through
Monte Carlo Markov Chain (MCMC) simulation
(Robert and Casella, 1999). The problem of opti-
mising the expected criterion is then reformulated
as the problem of estimating the optimal points
from extractions concentrated around them. In
the optimisation procedure, there exists a tunable
trade-off between estimation accuracy of the opti-
miser and computational effort. In particular, the
distribution of Ω is proportional to U(ω)J where
J is a positive integer which allows the user to
increase the “peakedness” of the distribution and



concentrate the extractions around the modes at
the price of an increased computational load. If
the tunable parameter J is increased during the
optimisation procedure, this approach can be seen
as the counterpart of Simulated Annealing for a
stochastic setting. Simulated Annealing is a ran-
domised optimisation strategy developed to find
tractable approximate solutions to complex deter-
ministic combinatorial optimisation problems. A
formal parallel between these two strategies has
been derived in (Mueller et al., 2002).
The MCMC optimisation procedure can be de-
scribed as follows. Consider a stochastic model
formed by a random variable Ω, whose distri-
bution has not been defined yet, and J con-
ditionally independent replicas of random vari-
able X with distribution pΩ(x). Let us de-
note h(ω, x1, x2, . . . , xJ ) the joint distribution of
(Ω, X1, X2, X3, . . . , XJ ). It is straightforward to
see that if

h(ω, x1, x2, . . . , xJ ) ∝
∏

j

u(ω, xj)pω(xj) (13)

then the marginal distribution of Ω, also denoted
by h(ω) for simplicity, satisfies

h(ω) ∝

[
∫

u(ω, x)pω(x)dx

]J

= U(ω)J . (14)

This means that if we can extract realisations
of (Ω, X1, X2, X3, . . . , XJ ) then the extracted Ω’s
will be concentrated around the optimal points of
U(Ω) for a sufficiently high J . These extractions
can be used to find an approximate solution to the
optimisation of U(ω).
Realisations of the random variables
(Ω, X1, X2, X3, . . . , XJ ), with the desired joint
probability density given by (13), can be obtained
through Monte Carlo Markov Chain simulation.
The algorithm is presented below. In the algo-
rithm, g(ω) is known as the instrumental (or
proposal) distribution and is freely chosen by the
user; the only requirement is that g(ω) covers the
support of h(ω).

MCMC algorithm (Metropolis-Hastings)

Initial state (ω̄, x̄j j = 1, . . . , J) and ūJ =
∏

j u(ω̄, x̄j)

1 Extract
Ω̃ ∼ g(ω|ω̄)

2 Extract

X̃j ∼ pΩ̃(x) j = 1 . . . J

and calculate

ŨJ =
∏

j

u(Ω̃, X̃j)

3 Extract the new state of the chain as

(Ω̄, ŪJ )=







(Ω̃, ŨJ ) with prob. ρ(ω̄, ūJ , Ω̃, ŨJ )

(ω̄, ūJ ) with prob. 1−ρ(ω̄, ūJ , Ω̃, ŨJ )

where

ρ(ω̄, ūJ , ω̃, ũJ ) = min

{

1,
ũJ

ūJ

g(ω̄|ω̃)

g(ω̃|ω̄)

}

4 Repeat steps 1 through 3

This algorithm is a formulation of the Metropolis-
Hasting algorithm for a desired distribution given
by h(ω, x1, x2, . . . , xJ ) and proposal distribution
given by

g(ω)
∏

j

pω(xj) .

In this case, the acceptance probability for the
standard Metropolis-Hastings algorithm is

h(ω̃, x̃1, x̃2, . . . , x̃J )

h(ω, x1, x2, . . . , xJ )

g(ω)
∏

j pω(xj)

g(ω̃)
∏

j pω(x̃j)
.

By inserting (13) in the above expression one ob-
tains the probability ρ(ω, uJ , ω̃, ũJ ). Under mini-
mal assumptions, the Markov Chain Ω(k) is uni-
formly ergodic with stationary distribution h(ω)
given by (14). Results that characterise the con-
vergence rate to the stationary distribution can be
found for example in (Robert and Casella, 1999).
A general guideline to obtain faster convergence is
to concentrate the search distribution g(ω) where
U(ω) assumes nearly optimal values.

4. SIMULATION EXAMPLE

We consider the problem of sequencing two air-
craft. This is typically a task of air-traffic con-
trollers in Terminal Airspace where aircraft de-
scend from cruising altitude and need to be se-
quenced and separated by a certain time interval
before entering in the final Approach Sector. In
Figure 1 several possible trajectory realisations of
a descending aircraft corresponding to the same
nominal path are displayed. In this figure, the
aircraft descends from 35000 ft to 10000 ft. In
addition to stochastic wind terms, uncertainty
about the mass of the aircraft is introduced as an
uniform distribution between two extreme values.
The figure suggests that the resulting uncertainty
in the position of aircraft is of the order of mag-
nitude of some kilometres.
We consider the problem of sequencing two de-
scending aircraft as illustrated in Figure 2-(a).
The initial position of the first aircraft (A1)
is [−100000 100000] (where coordinates are ex-
pressed in meters) and altitude 35000 ft. The path
of this aircraft is fixed. This aircraft proceeds
to waypoint [−90000 90000] where it will start a
descent to 15000 ft. The trajectory of A1, while
descending, is determined by an intermediate way-
point in [0 0] and a final waypoint in [100000 0].
The second aircraft (A2) is initially in [−100000 −
100000] and altitude 35000 ft. This aircraft pro-
ceeds to waypoint [−90000 − 90000] where it will
start the descent to 15000 ft. The intermediate
waypoint ω = [ω1 ω2] must be selected in the
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Fig. 1. Trajectory realisations of aircraft descent

range ω1 , ω2 ∈ [−90000 90000]. The aircraft will
then proceed to waypoint [90000 0] and then to
the final waypoint [100000 0].
We assume that the objective is to obtain a time
separation of 300 sec between the arrivals of the
two aircraft at the final waypoint. Performance in
this sense is measured by perf = e−a·(|T1−T2|−300)

where T1,2 are the arrival times at the final way-
point and a = 5 · 10−3. The constraint is that
the trajectory of the two aircraft are not con-
flicting. A conflict is defined as the situation of
loss of minimum safe separation. Safe separation
is defined by a protected zone centred around
each aircraft having radius 5 nmi and height 2000
ft, so that aircraft which do not have 5 nmi of
horizontal separation must have 1000 ft of vertical
separation. We optimise initially with an upper
bound on probability of constraint violation given
by P̄ = 0.1. It is easy to see that there exists a
maneuver in the set of optimisation parameters
that gives negligible conflict probability. There-
fore, based on inequality (12), we select Λ = 10 in
the optimisation criterion.
The results of the optimisation procedure are il-
lustrated in Figures 2-(b-d). Each figure shows
the scatter plot of the accepted parameters during
MCMC simulation for different choices of J and
search distribution g. In all cases the first 10%
of accepted parameters was discarded as a burn
in period to allow convergence of the chain to its
stationary distribution. For each case we give also
the ratio between accepted and proposed states
during MCMC simulation. Figure 2.(b) illustrates
the case J = 10. In this case the proposal distribu-
tion g was uniform over the parameter space. The
ratio accepted/proposed states was 0.27. Regions
characterised by a low density of accepted param-
eters can be clearly seen in the figure. These are
parameters which correspond to nominal paths
with high probability of conflict. The figure also
shows distinct “clouds” of accepted maneuvers.
They correspond to different sequences of arrivals:
either A1 arrives before before A2 (top left and
bottom right clouds) or A1 arrives after A2 (mid-
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(a) Nominal paths: A1 (bold) and A2 (dashed)
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(b) 2000 accepted states, J = 10
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(c) 1000 accepted states, J = 50
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(d) 1000 accepted states, J = 100

Fig. 2. Accepted states during MCMC simulation

dle cloud). Figure 2.(c) illustrates the case J = 50.
In this case the proposal distribution g was a sum
of 2000 Gaussian distributions N(µ, σ2I) with
variance σ2 = 107 m2. The means of Gaussian dis-



tributions were 2000 parameters randomly chosen
from those accepted in the MCMC simulation for
J = 10. The choice of this proposal distribution
gives clear computational advantages since less
computational time is spent searching over regions
of non optimal parameters. In this case the ratio
accepted/proposed states was 0.34. Figure 2.(d)
illustrates the case J = 100 and proposal distribu-
tion constructed as before from states accepted for
J = 50. Here the ratio accepted/proposed states
was 0.3. Figure 2.(d) indicates that a nearly op-
timal maneuver is ω1 = −40000 and ω2 = 40000.
The probability of conflict for this maneuver,
estimated by 1000 Monte-Carlo runs, was zero.
The estimated expected time separation between
arrivals was 283 sec.

5. CONCLUSIONS

In this paper we illustrated our current approach
to air traffic conflict resolution in a stochastic
setting based on the use of Monte Carlo methods.
The main motivation for our approach is to enable
the use of realistic stochastic hybrid models of
aircraft flight; Monte Carlo methods appear to be
the only ones that allow such models. We have
formulated conflict resolution as the optimisation
of an expected value criterion with probabilistic
constraints. Here, a penalty formulation of the
problem has been considered which guarantees
constraint satisfaction but delivers a suboptimal
solution. A side effect of the optimization pro-
cedure is that structural differences between ma-
neuvers are highlighted as “clouds” of maneuvers
accepted by the algorithm.
Our current research is concerned with overcom-
ing the sub optimality imposed by the need to
provide constraint satisfaction guarantees. A pos-
sible way is to use the Monte Carlo Markov Chain
procedure presented in Section 3 to obtain op-
timisation parameters that satisfy the constraint
and then to optimise over this set in a successive
step. Formulation of the the conflict resolution
procedure in the Sequential Monte Carlo (Doucet
et al., 2001) framework is also under investigation.
Our current research is focused also on modelling
and implementation in the simulator of typical
Air-Traffic Control situation with a realistic pa-
rameterisation of control actions and control ob-
jectives.
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