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Criteria for informative experiments with subspace identification
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Informative experiments are identification experiments which contain sufficient information

for an identification algorithm to discriminate between different models in an intended

model set. In this paper, a particular set of identification algorithms, namely subspace

based identification, is considered. Criteria for experiments to be informative with these meth-

ods in the deterministic setup and the combined deterministic-stochastic setup are presented.

It is pointed out that if these criteria are not satisfied, interesting phenomena, in which perfect

cancellations of the deterministic components and the stochastic components occur in a sub-

space projection, may occur. It is further shown that such cancellations can indeed be avoided

under mild conditions.

1. Introduction

Subspace methods are very successful ‘one-shot’ (i.e.
non-iterative) methods for identifying multivariable
linear systems in state-space form (up to a similarity
transformation) from input–output data. However,
such algorithms may not necessarily yield a meaningful
model in all cases. For example, suppose the input signal
is identically zero. Then, any output driven by any initial
state condition will not provide sufficient information
about how a signal is transformed from the input to
the output. In such a case, subspace algorithms will pro-
duce an incorrect model. To ensure proper use of the
algorithms in this respect, a restriction on the domain
of the data set is required. The study of this domain,
or sets of informative experiments, is the focus of this
paper.
Subspace methods have attracted a lot of attention

in the system identification literature in the past few
years (Moonen et al. 1989, Larimore 1990, Verhaegen
and Dewilde 1992a, 1992b, Verhaegen 1994, Van
Overschee and De Moor 1994, 1996, Viberg 1995,
Deistler et al. 1995, Westwick and Verhaegen 1996,
Chou and Verhaegen 1997).A number of issues, such
as projection weighting, statistical efficiency, and num-
erical robustness, have been investigated extensively.
However, a common implicit assumption has also been

made in these algorithms. This assumption requires an
empty intersection of some particular row spaces con-
structed from the state sequence and the input sequence.
The phenomenon in which input and state sequences
violate this empty intersection assumption is known as
‘rank cancellation’ (De Moor 1988, p. 270). It is further
shown in Jansson and Wahlberg (1998) by means of
an example that even a persistently exciting input of
any order may not prevent rank cancellation, if inap-
propriate ‘block size’ parameters are used in a subspace
method. Rank cancellation leads to incorrect models
being obtained with subspace methods, as it results in
some significant ‘principal components’ being excluded
at the initial step of subspace identification procedures;
hence it usually leads to ‘undermodelling’. The
papers (Chui and Maciejowski 1996, Jansson and
Wahlberg 1998) have addressed this issue more explicitly
than the original treatment in De Moor (1988). In parti-
cular, Chui and Maciejowski (1996) addressed the deter-
ministic case, where no stochastic excitation is present,
while Jansson and Wahlberg (1998) found conditions
for successful identification by subspace methods if pro-
cess noise is not present or if the input signal is white
noise. In this paper further analysis and derivations
are presented, particularly on deterministic-stochastic
cancellation in the general case, thus removing the
restrictions present in Jansson and Wahlberg (1998).

We point out that the term ‘deterministic’ has been
used (as above) in the recent ‘subspace’ literature to
refer to that part of the process which is excited by the*Corresponding author. Email: jmm@eng.cam.ac.uk
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observed inputs, and the term ‘stochastic’ has been used

to refer to the part excited entirely by unobserved

inputs, namely process noise and measurement noise.

This contrasts with the well-established meaning

of ‘purely deterministic’ in the theory of stochastic

processes. To avoid confusion, we use the term ‘noise-

free’ rather than ‘deterministic’ in the rest of the paper,

to refer to the modes excited by the observed inputs.
Informative experiments are identification experi-

ments which contain sufficient information to discrimi-

nate between different models in an intended model

set (Ljung 1987). However, different algorithms require

different amounts of information in an experiment for

successful identification. In this paper, a particular

class of identification algorithms, namely subspace

methods, is considered. Criteria for informative experi-

ments with these methods in the noise-free setup and

the ‘combined’ setup (where observed and unobserved

inputs act) are presented. As will be seen, the key

factor for the construction of informative experiments

in noise-free identification is the emptiness of the inter-

section of certain input and state sequences. On the

other hand, the key factor in combined identification

is the emptiness of certain input and projected state

sequences. Conditions for ensuring such emptiness are

fully explored in this paper. Emptiness is not quite cor-

rect, since we usually refer to subspaces and intersec-

tions of subspaces, but it is convenient to follow the

widespread convention of using ‘empty’ to mean that a

subspace contains only the singleton {0}.
In x 2 we define the system-theoretic and stochastic

set-up that we will use in this paper, and we define

some notations, spaces, and projections which will be

used throughout, as well as some connections with

Kalman filtering. In this section signals are considered

to be random variables. In x 3, we present two subspace

algorithms for which informative experiments will be

investigated. These algorithms work with real data; in

this section measured signals are treated as sampled

random variables. Consequently questions of large-

sample properties arise, which are treated briefly. The

paper is then divided into two parts, in which x 4 and 5

deal with the noise-free case, whereas x 7 and 8 deal with

the combined case. Section 4 contains a definition of

‘sufficiently rich’ input sequences, which is used

throughout the rest of the paper. To facilitate the

study of the combined case, x 6 presents two useful

subsystem decompositions; one decomposes a system

into noise-free and stochastic subsystems which are

uncorrelated with each other, but the stochastic part is

then non-stationary, while the other decomposes the

system into a Kalman filter and a complementary

error subsystem. Most of the proofs have been placed

in the Appendix.

An earlier version of this paper appeared as Chui
and Maciejowski (1998a).

Throughout this paper, the set of real numbers is
denoted by R. The set of integers and non-negative inte-
gers are denoted by Z and Zþ, respectively. The general
Moore–Penrose inverse is written as { while the
Hermitian as *. Denote by þ, � and \ the sum, the
direct sum and the intersection of two vector spaces.
The notation ? denotes the orthogonal complement of
a subspace with respect to the predefined ambient space.

2. System description

Consider a standard linear system with the state-space
equations

xðtþ 1Þ ¼ AxðtÞ þ BuðtÞ þ wðtÞ, ð1aÞ

yðtÞ ¼ CxðtÞ þDuðtÞ þ vðtÞ, ð1bÞ

where the system matrices A2R
n�n, B2R

n�m, C 2R
p�n,

D2R
p�m. Here, u and y are the input and the output

signal, respectively, whereas w and v are the process
and the output (measurement) noise, respectively.

Let � be a sample space, F be a �-field of subsets of
�, and P be a probability measure on ð�,FÞ. A real
random variable  is a function  : � ! R with the
property that f!2� :  ð!Þ � cg 2F for each c2R.
Denote by L2ð�,F ,PÞ the space of all real Lebesgue
square integrable random variables on ð�,F ,PÞ

L2ð�,F ,PÞ :¼  :

ð
�

 2ð!Þ dPð!Þ <1

� �
:

In this paper, we consider the setup in which, for any
time t, the signals x(t), u(t), y(t), w(t) and v(t) are
L2ð�,F ,PÞ-valued vectors. This is to say x(t), for
instance, is an element of L

n
2ð�,F ,PÞ. Denote by E

the usual expectation operator. Moreover, let ZN be a
finite sequence of input-output signals

ZN ¼
�
yð0Þ, uð0Þ, yð1Þ, uð1Þ, . . . , yðN � 1Þ, uðN � 1Þ

�
: ð2Þ

We emphasise again that signals are considered to be
random variables here, so that ZN is a finite sequence
of random variable-valued vectors.

The linear systems of concern in this paper are those
comprised of two subsystems, a subsystem with observa-
ble inputs and a subsystem with unobservable inputs.
The former subsystem, referred to as a noise-free
subsystem (with a superscript d as mnemonic for ‘deter-
ministic’), describes the dynamics due to the input u

xdðtþ 1Þ ¼ AxdðtÞ þ BuðtÞ, ð3aÞ

ydðtÞ ¼ CxdðtÞ þDuðtÞ; ð3bÞ
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whereas the latter subsystem, referred to as a stationary
stochastic subsystem, describes the stationary stochastic
process due to the process and output noises w and v

x sðtþ 1Þ ¼ AxsðtÞ þ wðtÞ, ð4aÞ

y sðtÞ ¼ CxsðtÞ þ vðtÞ: ð4bÞ

The state and the output of the combined system are
then the sum of those of the subsystems as shown in
the following

xðtÞ ¼ xd ðtÞ þ xsðtÞ,

yðtÞ ¼ yd ðtÞ þ y sðtÞ:

The set of systems described above has been studied
extensively in the system identification literature.

2.1. A Stationary stochastic subsystem

Stationary stochastic processes are considered as
follows. The noises w and v are white-noise processes
with the property

E
wðtÞ

vðtÞ

� �
wð�Þ

vð�Þ

� ��� �
¼:

�w �wv

�vw �v

� �
�t�, ð5Þ

for all t, � 2Zþ, where � denotes the Kronecker delta.
Here, �w, �v, �wv, and �vw are real constant matrices
with obvious dimensions. Moreover, define the state
correlation matrix � s, the output correlation matrix
�i, and the cross input–output correlation matrix G as

� s :¼ E ðxsðtÞ ½xsðtÞ��Þ,

�i :¼ E ðysðtþ iÞ ½ysðtÞ��Þ,

G :¼ E ðxsðtþ 1Þ ½ysðtÞ��Þ,

for t � i, i 2Z and t2Zþ. Note that since the stochastic
subsystem of equations (4) is assumed stationary, the
above matrices are constant matrices independent of t.
Consequently, the following identities can be derived

� s ¼ A� sA� þ�w,

�0 ¼ C� sC� þ�v,

G ¼ A� sC� þ�wv:

Furthermore, for i 6¼ 0, �i is equal to

�i ¼ CAi�1G,

��i ¼ G�ðAi�1Þ
�C�:

Finally, the system defined in equations (1) is assumed
to be minimal in the sense that the pair (A,C) is
observable and the pair ðA, ½B ð�wÞ

1=2
�Þ is controllable.

2.2. Projection spaces

In subspace identification methods, observations at each

time instant are ‘lifted’ up into a sequence of observa-
tions. These sequences are then stacked together, form-
ing a block Hankel matrix as in the following. Given an
input–output signal pair ZN , denote by U the block

Hankel matrix constructed from the input signal u

U :¼

uð0Þ uð1Þ � � � uðN�hÞ

uð1Þ uð2Þ � � � uðN�hþ1Þ

. .. . .. . .. . ..

uðh�1Þ uðhÞ � � � uðN�1Þ

2
6664

3
7775: ð6Þ

Analogously, denote by X, Y, W, and V the correspond-
ing block Hankel matrix constructed from x, y, w and v.
Furthermore, denote by additional subscripts i, j the
submatrix starting from the ith block row to the jth
block row, as

Ui;j :¼

uðiÞ uði þ 1Þ . .. uðN � hþ iÞ

uði þ 1Þ uði þ 2Þ . .. uðN � hþ i þ 1Þ

. .. . .. . .. . ..

uð jÞ uð j þ 1Þ � � � uðN � hþ jÞ

2
66664

3
77775:

To indicate one block row, that is for i ¼ j, the sub-
matrix will be written simply as Ui. Moreover, let
q ¼ N � hþ 1 be the number of columns of the block
Hankel matrix U, or the length of each individual
sequence Ui. With this setup, the system equations can

be extended to the following in a straightforward
manner

Xtþ1 ¼ AXt þ BUt þWt, ð7aÞ

Yt ¼ CXt þDUt þ Vt: ð7bÞ

Again, the noise-free subsystem has the state-space

equations

X d
tþ1 ¼ AX d

t þ BUt,

Y d
t ¼ CX d

t þDUt;

and the stochastic subsystem has the state-space
equations

X s
tþ1 ¼ AX s

t þWt,

Y s
t ¼ CX s

t þ Vt:

Define the noise-free controllability matrix C
d
i , the

stochastic controllability matrix C
s
i , and the ‘full’
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controllability matrix C
w
i as

C
d
i :¼ ½Ai�1B Ai�2B � � � B�,

C
s
i :¼ ½Ai�1G Ai�2G � � � G�,

C
w
i :¼ ½Ai�1I Ai�2I � � � I �:

Furthermore, define the observability matrix Oi, and

block-Toeplitz matrices T d
i and T

w
i as

Oi :¼

C

CA

..

.

CAi�1

2
66664

3
77775, T

d
i :¼

D 0

CB D

..

. . .
. . .

.

CAi�2B � � � CB D

2
66664

3
77775,

T
w
i :¼

0 0

C 0

..

. . .
. . .

.

CAi�2 � � � C 0

2
66664

3
77775:

With these matrices and the block Hankel data matrices

defined above, it is easy to obtain the block system
equations

Xt ¼ AtX0 þ C
d
t U0, t�1 þ C

w
t W0, t�1, ð8aÞ

Y0, t�1 ¼ OtX0 þ T
d
t U0, t�1 þ T

w
t W0, t�1 þ V0, t�1: ð8bÞ

Here all matrices have h block rows, except the state

signal X0 which has only one block row. The first
equation is usually referred to as the state sequence

equation, and the second one is referred to as the
block data equation.
Spaces spanned by subsequences of signals are very

prominent in this paper. These spaces can be envisaged
as the row spaces of the block Hankel matrices defined

above. To facilitate the analysis, denote by U the space
spanned by all the rows of U. That is,

U :¼ spanf �� U j �2R
hm

g:

Similar notation will be used to represent the row spaces
spanned by all other block Hankel matrices.

Furthermore, let � be the orthogonal projection opera-
tor. In this paper, we will use the shorthand &RQ to
represent the orthogonal projection of each row of Q

onto the space R. For instance, the expression &UX0

denotes

&UX0 :¼

&UX0; 1

..

.

&UX0; n

2
64

3
75, where X0 ¼

X0; 1

..

.

X0; n

2
64

3
75:

This projection can be computed as EðX0U
�ÞEðUU�Þ

yU.

Finally, it can be seen without difficulty that
EðOhX0U

�ÞEðUU�Þ
yU can also be written as

OhEðX0U
�ÞEðUU�Þ

yU, or equivalently, &UOhX0¼

Oh&UX0.
It is recalled that definitions such as (6) refer to finite

numbers of random variables, not to finite segments of

sample paths of these variables, and hence a definition
in terms of the expectation operator is appropriate

here. We will consider the treatment of real data later,
in x 3.

2.3. Kalman filtering

In this section, a link between the Kalman filters for

the two systems, equations (7) and (8), is presented.

Note that the systems considered in this paper are not
restricted to fully stochastically excited systems. That

is to say, some states or outputs may not be excited by
unobservable noises w and v—they may be ‘noise-free’.

Because of this possibility, a transformation which
segregates noise-free and stochastic modes is provided

in the following proposition.

Proposition 1 (Chui 1997, Chui and Maciejowski

1998b): For any observable state-space realization

of equations (7), there always exist an invertible Ts and
a unitary To such that

�XXt :¼ TsXt ¼

Ts; 1

Ts; 2

Ts; 3

2
64

3
75 Xt ¼:

�XXt; 1

�XXt; 2

�XXt; 3

2
64

3
75,

�YYt :¼ ToYt ¼

To; 1

To; 2

To; 3

2
64

3
75 Yt ¼:

�YYt; 1

�YYt; 2

�YYt; 3

2
64

3
75,

ð9aÞ

and

���
s
:¼ Ts�

sT�
s ¼

���
s

11 0 0

0 0 0

0 0 0

2
64

3
75,

���
v
:¼ To�

vT�
o ¼

���
v

11
���
v

12 0

���
v

21
���
v

22 0

0 0 0

2
64

3
75,

ð9bÞ

and

�AA :¼ TsAT
�1
s ¼

�AA11
�AA12

�AA13

0 �AA22
�AA23

0 0 �AA33

2
64

3
75,

�CC :¼ ToCT
�1
s ¼

�CC11
�CC12

�CC13

0 �CC22
�CC23

0 0 �CC33

2
64

3
75,

ð9cÞ
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where

���
s

11 > 0, ���
v

22 > 0, �CC11
�CC
�

11 > 0,

ð �CC11, �AA11Þ and ð �CC33, �AA33Þ observable: ð9dÞ

Note that �XXt; 1 :¼ Ts; 1Xt corresponds to the stochas-

tically excited modes; �XXt; 2 :¼ Ts; 2Xt corresponds to

the output disturbance modes; and �XXt; 3 :¼ Ts; 3Xt

corresponds to modes that are ‘noise-free’. According

to this transformation, the reduced stochastic system,

in the state and output coordinates defined in

equations (9), has the state-space equations

�XX
s

tþ1; 1 ¼
�AA11

�XX
s

t; 1 þ
�WWt; 1, ð10aÞ

�YY
s

t; 1

�YY
s

t; 2

2
4

3
5 ¼

�CC11

0

" #
�XX
s

t; 1 þ

�VVt; 1

�VVt; 2

" #
: ð10bÞ

where X s and Y s correspond to x s and y s, respec-

tively—see (4). Furthermore, this reduced system is

assumed to be strictly positive real in order to avoid

introducing further complication into this paper.
Now, applying standard Kalman filtering to

equations (7), it can be shown that the corresponding

Kalman filter has the form

X̂Xt ¼ AX̂Xt�1 þ BUt�1

þ Kt�1ðYt�1 � CX̂Xt�1 �DUt�1Þ, ð11aÞ

Kt�1 ¼ ðGþ A ~PPt�1C
�Þð�0 þ C ~PPt�1C

�Þ
y, ð11bÞ

~PPt ¼ A ~PPt�1A
� � ðGþ A ~PPt�1C

�Þ

� ð�0 þ C ~PPt�1C
�Þ

y
ðGþ A ~PPt�1C

�Þ
�, ð11cÞ

where

~PP0 þ� s :¼
1

q
E
�
½X0 � X̂X0� ½X0 � X̂X0�

�
�
: ð12Þ

Here, q is the length of the sequences X0 and X̂X0.

Note that the general Moore–Penrose inverse is used

in these equations, so that they apply to cases where

some state coordinates are ‘noise-free’. However, in

order for the above formulae to hold, certain restrictions

apply to the state estimate X̂X0, as shown in Chui (1997),

Chui and Maciejowski (1998b). Before looking at

the block system equations, first define the following

Toeplitz matrix Li as

Li :¼

�0 ��1 � � � �1�i

�1 �0
. .
.

�2�i

..

. . .
. . .

. ..
.

�i�1 �i�2 � � � �0

2
666664

3
777775:

Using the same Kalman filtering technique on

equations (8), it can be shown that the corresponding

non-steady state Kalman filter has the form

X̂Xt ¼ AtX̂X0 þ C
d
t U0, t�1

þKtðY0, t�1 �OtX̂X0 � T
d
t U0, t�1Þ, ð13aÞ

Kt :¼ ðC
s
t þ At ~PP0O

�
t ÞðLt þOt

~PP0O
�
t Þ

y, ð13bÞ

~PPt :¼ At ~PP0ðA
tÞ
�
� ðC

s
t þ At ~PP0O

�
t Þ

� ðLt þOt
~PP0O

�
t Þ

y
ðC

s
t þ At ~PP0O

�
t Þ

�: ð13cÞ

Van Overschee and De Moor (1994) showed that the

Kalman filter defined in equation (13) is actually a t-step

ahead Kalman filter generated from equation (11).

Extension to the partially stochastic case has also been

given in Chui (1997), Chui and Maciejowski (1998b).

This is summarized in the following theorem.

Theorem 1 (Van Overschee and De Moor 1994):

Suppose that ~PP0 satisfies equation (12) for some initial

state estimate X̂X0. Then, X̂Xt generated recursively

from equations (11) is equal to X̂Xt computed directly

from equations (13), for any t2Zþ.

3. Subspace algorithms

Up to now, an ideal probabilistic setup has been consid-

ered. To deal with real data, the technique of replacing

the expectation operator E by an ‘averaging’ operator
�EE has been employed in the literature (Van Overschee

and De Moor 1994, Jansson and Wahlberg 1998).

One straightforward setup is to have an infinite

number of experiments. For instance, let real sequences

fy1ðiÞ, y2ðiÞ, y3ðiÞ, . . .g and fu1ðiÞ, u2ðiÞ, u3ðiÞ, . . .g be reali-

zations of y(i) and u(i) taken from different experiments.

Then,

�EE ½yðiÞu�ðiÞ� ¼ lim
T!1

1

T

XT
j¼1

y jðiÞu j�ðiÞ:
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Another setup is to have a long time series from
one experiment. Then, �EE is defined to be averaging

over an infinitely long experiment. In this case, signals
are assumed to be ergodic or quasi-stationary
(Ljung 1987, Jansson and Wahlberg 1998). For

instance, let real sequences fy1ð0Þ, y1ð1Þ, y1ð2Þ, . . .g and
fu1ð0Þ, u1ð0Þ, u1ð2Þ, . . .g be realizations of y and u
obtained from one experiment. Then,

�EE½yðiÞu�ðiÞ� ¼ lim
T!1

1

T

XT�1

j¼0

y1ði þ jqÞu1�ði þ jqÞ:

This is the setup which we will assume. Since �EE½:� ¼ E½:�
almost surely, we shall replace E½:� by �EET ½:� in the

algorithms, where

�EET ½yðiÞu
�ðiÞ� ¼

1

T

XT�1

j¼0

y1ði þ jqÞu1�ði þ jqÞ: ð14Þ

All our results will then hold almost surely as T ! 1.
Although many versions of subspace algorithms have

been developed, they all share a similar methodology,
and most of them have been shown to be equivalent,
up to a choice of weighting functions in the observabil-

ity/state sequence decomposition (Van Overschee and
De Moor 1995). In this section we present two generic
subspace algorithms, for which informative experiments
will be investigated. In particular, the first algorithm

(Algorithm 3.1) is analogous to the ordinary MOESP
algorithm (Verhaegen 1993) in which no instrumental
variable is used. The second algorithm (Algorithm 3.2)

is analogous to the MOESP PO scheme (Verhaegen
1994), which employs instrumental variable techniques.
The only difference between the algorithms presented
here and the MOESP algorithms is that the MOESP

algorithms are formulated in RQ factorisations for com-
putational consideration, instead of direct operations
on U and Y. (Also see Chui and Maciejowski (1998a)

for further exposition.) Finally, note that by exploiting
their similarity, results developed in this paper are
readily extended to other algorithms which have been

proposed.

A one-block subspace algorithm

First of all, an algorithm (Algorithm 3.1) which can
identify systems in a noise-free environment is presented.
Its requirements for informative experiments will be

discussed in x 5. Note that singular value decomposition
is involved in the algorithm: &U?Y ¼ ���. Since Y
is a random variable, this decomposition should be
interpreted in the following way: � is real-valued unitary,

� is non-increasing nonnegative diagonal, and � is
random-variable-valued with E½���� ¼ I (See Chui

(1997) for a procedure of computing this SVD).
The algorithm is defined in table 1.

A two-block subspace algorithm

In the following, another subspace algorithm
(Algorithm 3.2) is presented. This algorithm can give
consistent estimates in the presence of process and
output noises under mild conditions, though noise can-
cellation properties will not be discussed here.
Requirements for experiments to be informative with
this algorithm will be presented for the noise-free case
in x 5 and the combined case in x 8.

In the following, we define the ‘past’ and ‘future’ data
blocks. Here, the definition has a more general structure
than usually assumed, in which the number of block
rows in the ‘past’ data and the ‘future’ data can be
different. This unequal splitting of data blocks
has been addressed in Wahlberg and Jansson (1994),

Table 1. A schematic overview of the one-block

subspace algorithm.

Algorithm 3.1. One-block subspace algorithm

1. Construct U and Y as in equation (6).

2. Compute the SVD of &U?Y as (with obvious partitions)

&U?Y ¼
	
�1 �2 �

�1 0

0 0

� �
��

1

��
2

� �
, where �1 ¼

�1

..

.

�h

2
664

3
775:
ð15Þ

3. Compute A and C from

�1

..

.

�h�1

2
664

3
775A ¼

�2

..

.

�h

2
664

3
775 and C ¼ �1:

4. Construct O?
h such that O?

h Oh ¼ 0. Compute S0, . . . ,Sh�1

from

O
?
h Y :¼ S0U0 þ � � � þ Sh�1Uh�1: ð16Þ

5. Determine B and D from

S0

S1

..

.

Sh�1

2
6664

3
7775 ¼

P0 � � � Ph�2 I
P1 � � � I 0

..

. . .. . .. ..
.

I � � � 0 0

2
6664

3
7775 I 0

0 Oh�1

� �
D
B

� �
, ð17Þ

where

P0 � � �Ph�2 I
	 


:¼ O
?
h :

6. Obtain the set of all state-space models�
ðTAT�1,TB,CT�1,DÞ jT invertible

�
:
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Jansson and Wahlberg (1995) and also plays an

important role in Markov parameter estimation, as

discussed in Chui and Maciejowski (1998c).

Up

����

Uf

2
64

3
75

:¼

uð0Þ uð1Þ � � � uðN � k� lÞ

. .. . .. . .. . ..

uðk� 1Þ uðkÞ � � � uðN � l � 1Þ

� � � �� ���������� �����

uðkÞ uðkþ 1Þ � � � uðN � lÞ

. .. . .. . .. . ..
uðkþ l � 1Þ uðkþ lÞ � � � uðN � 1Þ

2
666666666664

3
777777777775
:

ð18Þ

Here, Up has k block rows while Uf has l block rows.

Yp and Yf are defined similarly. On the other hand,

we define two vectors, each consisting of one block

row, Xp :¼ X0 and Xf :¼ Xk. The suffices p and f are
mnemonic, representing ‘past’ and ‘future’, respectively.
The algorithm is defined in table 2.

Remark 1: When dealing with finite data samples, the
zero singular values shown in equation (19) will be
replaced by non-zero values in general, which will con-
verge to zero as T ! 1. Model reduction is required
to bring the model down to a reasonable state dimen-
sion, and this is done by the usual expedient of replacing
sufficiently small singular values by zero values.
We assume that the decision rule for making these
replacements is such that, as the sample size increases,
the number of retained non-zero singular values
converges to the true state dimension of the system,
unless some perfect noise-free/stochastic cancellation
occurs. Such a cancellation is investigated further in
the following sections.

4. Sufficiently rich inputs and state sequences

The concepts of persistent excitation and sufficient rich-
ness have been used extensively in adaptive control and
identification (Moore 1983, Mareels 1984, Bai and
Sastry 1985, Ljung 1987, Stoica and Söderström 1989,
and references therein). The definition of sufficient
richness of a signal is closely related to its block
Hankel matrix as defined in equation (6), whose size
is dependent on the parameter h. For this purpose,
denote by U(h) the block Hankel matrix U with h
block rows.

Definition 1: A signal u is said to be sufficiently rich
(S.R.) of order h, if h (�N) is the greatest integer such
that E ½UðhÞU�ðhÞ� > 0.

This section studies the relationship between input
and state sequences. Define an annihilating polynomial
of A to be a polynomial p(z) such that pðAÞ ¼ 0.
It is well known that all the annihilating polynomials
of A form a principal ideal. The minimal polynomial
pminðzÞ, which is the monic generator of this ideal, is
called the A-annihilator.

The following two theorems are closely related.
The first one covers the case where �w ¼ 0, and will
be used to prove Theorems 1 and 2 in the noise-free
case, whereas the second one covers a more general
case, and will be used to prove Theorem 12 for the
combined case. Here, the one-block configuration
(equation 6) is considered; and hence h refers to the
number of rows in the block Hankel matrices.

Theorem 2: Given an input signal u and some state signal
x satisfying equation (1) with

1. �w ¼ 0;
2. (A,B) reachable;

Table 2. A schematic overview of the two-block

subspace algorithm.

Algorithm 3.2. Two-block subspace algorithm

1. Construct Up,Uf and Yp,Yf as in equation (18).

2. Compute the SVD of &U?
f
&SYf for S ¼ Yp þ Up þ U f as

&U?
f
&SYf ¼ �1 �2

	 
 �1 0

0 0

� �
��

1

��
2

� �
, where �1 ¼

�1

..

.

�l

2
664

3
775:

ð19Þ

3. Compute A and C from

�1
..
.

�l�1

2
64

3
75A ¼

�2
..
.

�l

2
64

3
75 and C ¼ �1:

4. Construct O?
l such that O?

l Ol ¼ 0. Compute S0, . . . ,Sl�1

from

O
?
l &SYf ¼ S0Uk þ � � � þ Sl�1Ukþl�1:

5. Determine B and D from

S0

S1

..

.

Sl�1

2
6664

3
7775 ¼

P0 � � � Pl�2 I
P1 � � � I 0

..

. ..
.

I � � � 0 0

2
6664

3
7775 I 0

0 Ol�1

� �
D
B

� �
,

where

P0 � � �Pl�2 I
	 


:¼ O
?
l :

6. Obtain the set of all state-space models

fðTAT�1,TB,CT�1,DÞ jT invertible
�
:
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3. r no smaller than the degree of the A-annihilator;
4. the input signal u S.R. of order hþ r.

Then, dim &U?X0

� �
¼ n.

The proof of the above theorem can be found in
Appendix A. The next theorem covers the case where
ðA, ½B ð�wÞ

1=2
�Þ is reachable; its proof can also be

found in Appendix A.

Theorem 3: Given an input signal u and some state signal
x satisfying equations (1) with

1. ðA, ½B ð�wÞ
1=2

�Þ reachable;
2. r no smaller than the degree of the A-annihilator;
3. the input signal u S.R. of order hþ r.

Then, dim &U?X0

� �
¼ n.

The above theorems imply that if u is S.R. of order
no smaller than its number of block rows plus the
degree of the A-annihilator, then U and X0 will have
an empty intersection.

5. Requirements for informative experiments:

noise-free case

In this section, sufficient conditions for informative
experiments for subspace methods are presented for
the two subspace algorithms presented in x 3. It should
be noted that similar studies using different approaches
have also been carried out in Chui and Maciejowski
(1996), Jansson and Wahlberg (1998), while the deri-
vations in this paper lead to slightly tighter results.
To conduct the analysis, we shall confine the domain
of data sets to all data sets which are generated by nth
order linear systems with some initial condition x(0).
Obviously, for noise-free identification we have � s ¼

�v ¼ 0. Moreover, we recall that the observability
index is defined to be the smallest value of h such that
Oh is injective (Kailath 1980).
The exact input conditions for Algorithm 3.1 are

stated in the following theorem. It can be seen that for
the noise-free case, the excitation of the input signal
determines the informativeness of an experiment.

Theorem 4: Let ZN be an input–output signal pair of a
minimal system (1), with

1. � s ¼ �v ¼ 0;
2. the degree of the A-annihilator no greater than r;
3. the observability index of the system no greater than

h� 1;
4. u S.R. of order hþ r.

Then, Algorithm 3.1 identifies the system
fðTAT�1,TB,CT�1,DÞ jT invertibleg.

The proof of this theorem can be found in Appendix A.

Remark 2: Consider an n-order single-input single-
output (SISO) linear system. It is known that such a
system can be represented by an nth order proper
rational function, or an n-order ARMAX model.
Thus, it is easy to see that a SISO system has 2nþ 1
parameters. As shown in Kim and Cain (1983),
an nth order rational function can be determined by
any input signal which is S.R. of order 2nþ 1.
Accordingly, it is possible to identify a multi-input
multi-output (MIMO) linear system by first identifying
all its input-output channels using an input signal S.R.
of order 2nþ 1. The MIMO system can then be
recovered by collecting all the channels together. This
identification procedure was also applied in McKelvey
and Akçay (1995). From Theorem 4 we see that S.R.
of order 2nþ 1 is not the smallest requirement which
uniquely specifies an nth order MIMO system. In gen-
eral, S.R. of order hþ r will be sufficient; both h� 1
and r may be less than n.

The exact input conditions for Algorithm 3.2 are stated
in the following theorem. Again, the excitation of the
input signal is the key to getting an informative experi-
ment. However, since an instrumental variable S is
used, the richness of the input excitation has to be
increased to account for the extra past data block. It is
also noteworthy that the number of block rows in the
past data block must be no smaller than the observabil-
ity index, while the number of block rows in the future
data block must be greater than the observability index.

Theorem 5: Let ZN be an input–output signal pair of
a minimal system (1), with

1. � s ¼ �v ¼ 0;
2. the degree of the A-annihilator no greater than r;
3. the observability index of the system no greater than

min fk, l � 1g;
4. u S.R. of order kþ l þ r.

Then, Algorithm 3.2 identifies the system
fðTAT�1,TB,CT�1,DÞ j T invertibleg.

Proof: Notice that if &SYf and Uf in Algorithm 3.2 are
replaced by Y and U, the algorithm will then be equiv-
alent to Algorithm 3.1. Thus, in this proof it is shown
that conditions 1–4 in this theorem do imply those in
Theorem 4 and &SYf ¼ Yf .

First of all, conditions 1 and 2 in this theorem are iden-
tical to those in Theorem 4. Moreover, condition 3
in this theorem implies that in Theorem 4. For
condition 4, one can check that Uf is S.R. of order
l þ r by a straightforward verification of Definition 1.
Now, it remains to prove &SYf ¼ Yf , or equivalently,
Yf 	S.

From equation (8b), it can be seen Yf 	X f þ Uf .
Note that Xf ¼ AkXp þ C

d
k Up, which in turn implies
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X f 	X p þ Up: Combining the two inclusions gives
Yf 	X p þ Up þ U f . Noticing Yp ¼ OkXp þ T

d
k Up and

OkXp ¼ Yp � T
d
k Up gives

Yp 	X p þ Up and X p 	Yp þ Up,

where the latter inclusion stems from the fact that Ok is
injective. Adding Up to both sides gives

Yp þ Up ¼ X p þ Up: ð20Þ

That is, Yf 	Yp þ Up þ U f ¼ S, which completes the
proof. œ

6. Decomposition into noise-free/stochastic subsystems

In this section we introduce two system decompositions.
These decompositions provide two approaches for the
analysis of the spaces of input and projected state
sequences in the next section.
Given Ut and Yt for 0 � t � h�1, decompose X0 into

three components: X̂X0, ~XX0, and X s
0 . Here, X̂X0 and ~XX0 are

defined as

X̂X0 :¼ &Z d X0 and ~XX0 :¼ X d
0 � X̂X0, ð21Þ

where

Z d :¼ U0, h�1 þ ðY d
0, h�1 \Y0, h�1Þ:

Recall that Y d
t is obtained from the noise-free subsys-

tem, which is uncorrelated with Wt and Vt. Therefore,
the intersection Y d

0, h�1 \Y0, h�1 produces a space which
is orthogonal to Wt and Vt. The following then hold

X̂X0, ~XX0,X
s
0,Wt and Vt are mutually orthogonal;

ð22aÞ

~XX0 and X s
0 are orthogonal to U t and ðY d

t \YtÞ: ð22bÞ

This decomposition of the initial state gives rise to two
different system decompositions, as will be discussed
in the following subsections.

6.1. Decomposition with a non-stationary stochastic
subsystem

In this subsection, ~XX0, which originally belongs to the
noise-free initial condition X d

0 ¼ X̂X0 þ ~XX0, will be trea-
ted as part of the initial condition in the stochastic sub-
system, creating a non-stationary stochastic subsystem
with X s

0 .

Define the initial state of the non-stationary stochastic
subsystem to be Xns

0 :¼ X s
0 þ ~XX0, and the initial state

of the complementary noise-free subsystem to be
Xnd

0 :¼ X̂X0. Note that the additional superscript n
signifies the non-stationary property of the stochastic
subsystem. Now, define Xns

t and Yns
t recursively from

the following non-stationary stochastic subsystem

Xns
tþ1 ¼ AXns

t þWt,

Yns
t ¼ CXns

t þ Vt;

and define Xnd
t and Ynd

t recursively from the following
complementary noise-free subsystem

Xnd
tþ1 ¼ AXnd

t þ BUt,

Ynd
t ¼ CXnd

t þDUt:

Note that it can be verified without difficulty that

Xt ¼ Xnd
t þ Xns

t , ð23aÞ

Yt ¼ Ynd
t þ Yns

t : ð23bÞ

By statements (22), it can be seen that Xnd
t1

and Xns
t2

are
uncorrelated for any t1, t2 2Zþ. In other words, the
non-stationary stochastic subsystem will be uncorrelated
with its noise-free complement. Furthermore, this non-
stationary stochastic subsystem can be envisaged as
the original stochastic subsystem except that the initial
condition is changed from X s

0 to Xns
0 :¼ X s

0 þ ~XX0.

In addition, with statement (22a) it is evident that ~XX0

and fX s
t ,Y

s
t g are uncorrelated. We introduce a new

matrix ~GGt, for t2N, as follows

~GGt :¼
1

q
E
�	
Xns

tþ1


	
Yns

t


��

¼
1

q
E
�	
X s

tþ1 þ Atþ1 ~XX0


	
Y s

t þ CAt ~XX0


��
:

Again, q is the length of each individual signal sequence.
Now, define ~PP0 :¼ ð1=qÞE

	
~XX0

~XX�
0



. Then,

~GGt ¼ A� sC� þ�wv þ Atþ1 ~PP0ðA
tÞ
�C�

¼ A
	
� s þ At ~PP0ðA

tÞ
�


C� þ�wv

¼ A ~�� s
t C

� þ�wv, ð24Þ

where ~�� s
t ¼ � s þ At ~PP0ðA

tÞ
� is the non-stationary

stochastic state covariance matrix. Note that ~GGt plays
a similar role as G, which, with A, forms the non-
stationary stochastic controllability pair ðA, ~GGtÞ.
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6.2. Decomposition with a Kalman filter subsystem

Again, decompose X0 into X̂X0 þ ~XX0 þ X s
0 , as in

equations (21). Define X̂Xt and ŶYt recursively from the
following Kalman filter subsystem

X̂Xtþ1 ¼ ðA� KtCÞX̂Xt þ ðB� KtDÞUt þ KtYt,

ŶYt ¼ CX̂Xt þDUt,

where Kt and ~PP0 are defined in equations (11).
Now denote by ~XX s

t the error of the Kalman filter
state, and by ~YY s

t the error of the Kalman filter output

~XX s
t :¼ Xt � X̂Xt :¼ ~XXt þ X s

t ,

~YY s
t :¼ Yt � ŶYt:

It can be shown that ~XX s
t and ~YY s

t satisfy the following
complementary error subsystem

~XX s
tþ1 ¼ ðA� KtCÞ ~XX s

t � KtVt þWt;

~YY s
t ¼ C ~XX s

t þ Vt:

For convenience, adopt, for t2 > t1, the notation

�ðt2, t1Þ :¼ ðA� Kt2�1CÞðA� Kt2�2CÞ � � � ðA� Kt1CÞ:

ð25Þ

7. Spaces of input and projected state sequences

This section provides the generalisation of x 4 that is
required to treat the combined case. Due to the presence
of stochastic disturbances, system equations are pro-
jected onto some instrumental variable space S, so as
to eliminate the effect of stochastic noises. It has been
seen that this instrumental variable space is usually
taken to be Yf þ Up þ U f in subspace methods. Owing
to this fact, the emptiness of the intersection of &SXf

and Uf is desired. More precise statements of this condi-
tion are given in the following proposition in various
forms.

Proposition 2: For S ¼ Yp þ Up þ Uf , the following are
equivalent

1. E
	
Uf U

�
f



> 0, and dim &S&U?

f
Xf

n o
¼ n.

2. E
	
Uf U

�
f



> 0, and dim &U?

f
&SXf

n o
¼ n.

3. E
&SXf

U f

� �
&SXf

Uf

� ��� �
> 0.

4. E
Xf

Uf

� �
ðY�

p U�
p U�

f Þ

� �
is of full row rank.

The proof of this proposition can be found in
Appendix A. This section is organised into three sub-
sections as follows. Section 7.1 covers the case where

�w ¼ 0, while x 7.2 covers the case where ðA, ½�w�
1=2

Þ

is reachable. Finally, x 7.3 presents the generalized
case where ðA, ½B ð�wÞ

1=2
�Þ is reachable. It is empha-

sised that if an ‘averaging’ operator �EE is used instead
of an expectation operator E, only consistent results
can be obtained.

7.1. Stochastic output disturbance

Systems with only stochastic output disturbance are also
known as output error systems. For such systems, we
simply have �w ¼ 0. Since internal noise excitation is
absent from the system, excitation relies on the external
input signal; in which case, (A,B) being reachable is
required. First, a straightforward lemma is presented.

Lemma 1: Let (A,B) be reachable. Then,
Ak Ak�1 B � � � B
	 


is of full row rank, for any k � 1.

The proof of this lemma can be found in Appendix A.
Note that this lemma, together with material derived
in x 4, are the key point tightening the input excitation
requirement from kþ l þ n to kþ l þ r. The next theo-
rem gives an input excitation requirement such that
the conditions in Proposition 2 are satisfied. Note
that these requirements are exactly the same as those
in Theorem 5 for the noise-free case. In other words,
input excitation is again the key to obtaining informa-
tive experiments.

Theorem 6: Let ZN be an input–output signal pair of
a system (1), with

1. �w ¼ 0 and (A,B) reachable;
2. r no smaller than the degree of the A-annihilator;
3. k no smaller than the observability index of the system;
4. the input signal u S.R. of order kþ l þ r.

Then, dim &U?
f
&SXf

n o
¼ n, where S ¼ Yp þ Up þ U f .

Proof: Note that S ¼ Yp þ Up þ Uf is equal to the
space spanned by Up, Uf and ðYp � T

d
k UpÞ ¼

ðOkXp þ VpÞ. Thus, by Proposition 2 it is equivalent
to show that

E

�
Xf

Uf

� �
½OkXpþVp�

�,U�
p ,U

�
f


 ��
¼E

Xf

Uf

� �
ðX�

pO
�
k,U

�
p ,U

�
f Þ

��

is of full row rank. Note that the above equality stems
from the fact that Vp is orthogonal to Xf and Uf.
Finally, realising that Xf ¼ AkXp þ C

d
k Up gives

E
Xf

Uf

� �
X�

pO
�
k U�

p U�
f


 �� �

¼
Ak C

d
k 0

0 0 I

" #
E

Xp

Up

Uf

0
B@

1
CA

Xp

Up

Uf

0
B@

1
CA
�2

64
3
75

O
�
k 0 0

0 I 0

0 0 I

2
64

3
75:
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Note that the covariance matrix above is positive defi-

nite by Theorem 2. In addition, the first term is of full

row rank by Lemma 1. Thus, the above expression, as

a product of full row rank matrices, is also of full

row rank. œ

7.2. Stochastic state excitation

This subsection covers the case where ðA, ½�w�
1=2

Þ is

reachable. In other words, this corresponds to systems

whose states are fully stochastically excited. For such

systems, the stochastic controllability pair (A,G) is

required to be reachable. Also because of the introduc-

tion of this process noise, perfect noise-free/stochastic

cancellation may occur. Such a phenomenon is also

pointed out in Jansson and Wahlberg (1998), in which

a counterexample demonstrating this effect is given.

In the following, an exact condition preventing such

cancellation is derived.
First of all, it is shown that under the assumption that

the stochastic subsystem is stationary, the system matrix

A must be asymptotically stable.

Lemma 2 (Pernebo and Silverman 1982): Suppose

ðA, ½�w�
1=2

Þ reachable. Then, A is asymptotically stable

if and only if

0 < � s ¼ A� sA� þ�w <1:

Before proving Theorem 7 regarding the controllability

of some non-steady stochastic pairs, the following

lemma is presented first.

Lemma 3: Let pminðzÞ ¼ zr þ ar�1z
r�1 þ � � � þ a0 be

the A-annihilator, where A is asymptotically stable.

Then, the n� n matrix I þ ar�1Aþ � � � þ a0A
r is

non-singular.

Proof: Suppose pminðzÞ can be factorised as

pminðzÞ ¼ ðz� s1Þðz� s2Þ � � � ðz� srÞ, where s1, . . . , sr are

eigenvalues of A. Then, we have

I þ ar�1Aþ � � � þ a0A
r ¼ ðI � s1AÞðI � s2AÞ � � � ðI � srAÞ:

Therefore, I þ ar�1Aþ � � � þ a0A
r is singular if one of

the ðI � sjAÞ is singular. Now suppose sj ¼ 0, then cer-

tainly ðI � sjAÞ ¼ I is not singular. On the other hand,

suppose sj 6¼ 0. Then, ðI � sjAÞ is singular if and only if

ðs�1
j I � AÞ is singular, or equivalently, s�1

j is an eigen-

value of A. However, since A is asymptotically stable,

we have jsjj < 1. Therefore, s�1
j , where js�1

j j > 1,

cannot be an eigenvalue of A. In other words, each

of ðI � sjAÞ is non-singular; and hence, the result

follows. œ

In the following, the controllability of the non-steady

pairs ðA, ~GGtÞ and ð�ðt2, t1Þ,Kt1Þ, defined in x 6, is investi-

gated. These pairs, changing with respect to time,

can be seen as time-varying stochastic controllability

pairs. The following theorem shows that if a long

enough time period is allowed, these pairs are in fact

reachable.

Theorem 7: Suppose each of the following holds:

1. ðA, ½�w�
1=2

Þ and (A,G) are reachable;
2. k is no smaller than twice the degree of the

A-annihilator.

Then for ~GG� and �ðk, �Þ respectively defined in

equations (24) and (25),

1. ½Ak�1 ~GG0 Ak�2 ~GG1 � � � ~GGk�1� is of full row rank;
2. ½�ðk, 0ÞK0 �ðk, 1ÞK1 � � � Kk�1� is of full row rank.

Proof: Let r be the degree of the A-annihilator and

pminðzÞ ¼ zr þ ar�1z
r�1 þ � � � þ a0 the A-annihilator.

So, we have k � 2r. Define the Toeplitz matrix � as:

Since pminðA
�Þ ¼ 0, we have

Ak ~PP0 � pminðA
�Þ � ðAhÞ

�C� ¼ 0,

for any h2Zþ. Thus,

½I ar�1I � � � a0I ��

¼ ½I ar�1I � � � a0I �

�

Ak�r�1G Ak�r�2G � � � G

Ak�rG Ak�r�1G � � � AG

. .
. . .

. . .
. . .

.

Ak�1G Ak�2G � � � ArG

0
BBBB@

1
CCCCA

¼ ðI þar�1Aþ�� �þa0A
rÞ½Ak�r�1G Ak�r�2G � � � G�:

As shown in Lemma 2, A must be asymptotically stable
for any stationary stochastic process. Consequently,

� :¼

Ak�r�1Gþ Ak ~PP0ðA
rÞ
�C� Ak�r�2Gþ Ak ~PP0ðA

rþ1Þ
�C� � � � Gþ Ak ~PP0ðA

k�1Þ
�C�

Ak�rGþ Ak ~PP0ðA
r�1Þ

�C� Ak�r�1Gþ Ak ~PP0ðA
rÞ
�C� � � � AGþ Ak ~PP0ðA

k�2Þ
�C�

. .
. . .

. . .
. . .

.

Ak�1Gþ Ak ~PP0C
� Ak�2Gþ Ak ~PP0A

�C� � � � ArGþ Ak ~PP0ðA
k�r�1Þ

�C�

0
BBBB@

1
CCCCA:
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we have ðI þ ar�1Aþ � � � þ a0A
rÞ non-singular by

Lemma 3. Finally, since k� r� 1 � r� 1 and (A,G) is
reachable, we have

rank Ak�r�1G Ak�r�2G � � � G
	 
�

¼ n:

�

Now, it is easy to see that

rank I ar�1I � � � a0I½ ��

�
¼ n:

�
ð26Þ

1. Statement 1 will be proven by contradiction. Suppose
there exists � 6¼ 0 such that

� Ak�1 ~GG0 Ak�2 ~GG1 . . . ~GGk�1

h i
¼ 0:

This implies �
�
Ak�jGþ Ak ~PP0ðA

j�1Þ
�C�

�
¼ 0, for

j ¼ 1, . . . , k. Thus,

� I ar�1I � � � a0I
	 


� ¼ � ar�1� � � � a0�
	 


� ¼ 0,

which is clearly a contradiction to equation 26.
2. By Theorem 1 we write

Kk ¼ ½ ðA� Kk�1CÞ Kk�1 Kk�1 �

¼ ½ ðA� Kk�1CÞðA� Kk�2CÞKk�2

ðA� Kk�1CÞKk�2 Kk�1�

¼ ½�ðk, 0ÞK0 �ðk, 1ÞK1 � � � Kk�1: �

Moreover, we have

Kk ¼ ðAk ~PP0O
�
k þ C

s
kÞðLk þOk

~PP0O
�
kÞ

�1

¼

"
Akð� s þ ~PP0ÞC

� þ Ak�1�wv Ak�1ð� s þ A ~PP0A
�ÞC�

þAk�2�wv � � � Að� s þ Ak�1 ~PP0A
k�1ÞC� þ�wv

#

� ðLk þOk
~PP0O

�
kÞ

�1

¼ Ak�1 ~GG0 Ak�2 ~GG1 � � � ~GGk�1

h i
ðLk þOk

~PP0O
�
kÞ

�1:

Note that since ðA, ½�w�
1=2

Þ is controllable, � s is posi-
tive definite. Without loss of generality, this system
can be regarded as the reduced stochastic system
defined in equation (10). Note also that with strictly
positive realness, Lk is guaranteed to be positive defi-
nite, as shown in Faurre (1976). Thus, statement 1
and statement 2 are equivalent.

This completes the proof. œ

The next theorem provides the conditions under which
the statements in Proposition 2 will be satisfied in
the case of full stochastic state excitation. Unlike

the noise-free case in which a certain degree of input
excitation is required, we require in this case a longer

past data block to avoid rank cancellation, similar to
that shown in Theorem 7. This ensures the emptiness
of the intersection of the input and projected state

sequences.

Theorem 8: Let ZN be an input–output signal pair of a
system (1), with

1. ðA, ð�wÞ
1=2

Þ and (A,G) reachable;
2. k no smaller than twice the degree of the A-annihilator;
3. the input signal u S.R. of order kþ l.

Then, dim &U?
f
&SXf

n o
¼ n, where S ¼ Yp þ Up þ Uf .

The proof of the theorem can be found in Appendix A.
From the above theorem, it can be seen that due to the
internal state excitation by the process noise, a lower

degree of input excitation is required as compared to
that in Theorem 5. However, a long enough past data
block is required.

7.3. General excitation and disturbance

Finally, the development is extended to a much more
general input structure, in which no specific constraint
is imposed on B and �w as long as these matrices,

together with A, form a reachable pair. In other words,
such a setup covers cases where�v is not necessarily posi-
tive definite and ðA, ð�wÞ

1=2
Þ is not necessarily reachable.

To facilitate the analysis, transformation as described in

Proposition 1 is performed. It is clear that requirements
for the lower two-block reduced system have been pre-
sented in Theorem 6, and the upper one-block reduced
system in Theorem 8. Therefore, the difficulty lies in

the hybrid combination of the two reduced systems.

Theorem 9: Let ZN be an input–output signal pair of
a system (1), with

1. A asymptotically stable;
2. ðA, ½B ð�wÞ

1=2
�Þ reachable;

3. ðA, ½�w�
1=2

Þ and (A,G) having common reachable

modes;z

4. r no smaller than the degree of the A-annihilator;
5. k no smaller than three times the degree of the

A-annihilator;
6. the input signal u S.R. of order kþ l þ r.

Then, dimf&U?
f
&SXf g ¼ n, where S ¼ Yp þ Up þ U f .

The proof is tedious and can be found in Appendix A.

This theorem implies that additional past data block
rows are required to accommodate the further degree
of freedom in the system input structure.

zThat is, for any �2C, v2C
n, we have v½A� �I ð�wÞ

1=2
� ¼ 0 if and only if v½A� �I G� ¼ 0.
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8. General requirements for informative experiments

This section is concerned with informative criteria for
Algorithm 3.2, which is capable of identifying systems
in the combined case. Criteria for the three different con-
ditions discussed in the previous section are presented in
the following. As in the setup of x 5, we shall confine the
domain of data sets to all data sets which are generated
by nth order systems described by equations (1) with
noises w(t) and v(t), and some initial condition x(0).

First of all, note that in Algorithm 3.2, a combined
noise-free/stochastic data equation (8b) is converted to
a noise-free-like data equation by projecting it onto
the subspace S ¼ Yp þ Up þ U f :

&SYf ¼ Ok&SXf þ T
d
kUf : ð27Þ

Effectively, Algorithm 3.2 is identical to Algorithm 3.1 if
&SYf and &SXf are replaced by Y and X0 respectively.
Thus, as seen in Theorems 4 and 5 for the noise-free
case, the remaining key point for experiments to be
informative is to find a condition such that

dim &U?
f
&SXf

n o
¼ n: ð28Þ

First, the informative criteria for the case where �w ¼ 0
are presented in the following theorem. Before stating
the theorem, it should be pointed out that in a real
data setup where the ‘averaging’ operator �EE is applied,
the true system is only estimated consistently.

Theorem 10: Let ZN be an input–output signal pair of an
observable system (1), with

1. �w ¼ 0 and (A,B) reachable;
2. r no smaller than the degree of the A-annihilator;
3. min fk, l � 1g no smaller than the observability index

of the system;
4. the input signal u S.R. of order kþ l þ r.

Then, Algorithm 2 consistently identifies the system
fðTAT�1,TB,CT�1,DÞ jT invertibleg.z

Proof: From equation (27) it is easy to see that
Ol &U?

f
&SXf ¼ �1�1�

�
1, where �1, �1 and �1 are

defined in equation (19). With the rank requirement

in equation (28) guaranteed by Theorem 6, we have

Ol ¼ �1 and &U?
f
&SXf ¼ �1�

�
1

in some particular state coordinates. Together with
E ½Uf U

�
f � > 0, the proof is then completed by following

that of Theorem 4. œ

Next, the case where ðA, ð�wÞ
1=2

Þ is reachable is con-

sidered. In this case, the rank requirement in

equation (28) is guaranteed by the conditions in

Theorem 8. Thus, this theorem can easily be proven

by modifying the proof of Theorem 10; and hence the

proof is omitted here.

Theorem 11: Let ZN be an input–output signal pair of an

observable system (1), with

1. ðA, ð�wÞ
1=2

Þ and (A,G) reachable;
2. k no smaller than twice the degree of the A-annihilator;
3. l� 1 no smaller than the observability index of the

system;
4. the input signal u S.R. of order kþ l.

Then, Algorithm 3.2 consistently identifies the system

fðTAT�1,TB,CT�1,DÞ jT invertibleg.

Finally, the general excitation and disturbance case is

presented. As expected, the following theorem can also

be derived from the conditions stated in Theorem 9;

and hence the proof is again omitted here.

Theorem 12: Let ZN be an input–output signal pair of

an observable system (1), with

1. A asymptotically stable;
2. ðA, ½B ð�wÞ

1=2
�Þ reachable;

3. ðA, ½�w�
1=2

Þ and (A,G) having common reachable

modes;
4. r no smaller than the degree of the A-annihilator;
5. k no smaller than three times the degree of the

A-annihilator;
6. l� 1 no smaller than the observability index of the

system;
7. the input signal u S.R. of order kþ lþ r.

Then, Algorithm 2 consistently identifies the system

fðTAT�1,TB,CT�1,DÞ j T invertibleg.

Remark 3: At this point, attention should be drawn to

the fact that the criteria presented in this paper are

only sufficient conditions for experiments to be infor-

mative. That is, in some cases subspace methods can

still identify a system even though these criteria are

not satisfied.

Remark 4: Theorem 12 is more general than the results

available in Jansson and Wahlberg (1998). In that

paper results are obtained for the case that �w ¼ 0, or

for single-input systems, or under the restriction that

u is white noise. We do not impose any of these

restrictions here.

zThe term ‘consistently identifies’ refers to the fact that, when the ‘averaging’ operator �EET is used on real data, the identified system converges almost

surely to the true system (up to a state-coordinate transformation) as T ! 1
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9. Summary

In this paper, we have shown that a rank condition, or

the emptiness of the intersection of certain input and

projected state sequences, is the key point for construct-

ing informative experiments for subspace algorithms.

The requirements for achieving this rank condition are

presented

. in x 4 for the the noise-free case, where �w ¼ �v ¼ 0;

. in x 7.1 for the output disturbance case, where �w ¼ 0;

. in x 7.2 for the stochastic state excitation case, where
ðA, ½�w�

1=2
Þ is reachable;

. in x 7.3 for the general excitation and disturbance case,
where ðA, ½B ð�wÞ

1=2
�Þ is reachable.

From this analysis, criteria for informative experiments

for the two subspace algorithms given in x 3 are derived

in x 5 for the noise-free case, and in x 8 for the other three

cases.
Our analysis goes beyond that available in Jansson

andWahlberg (1998), in that we do not place any restric-

tion on either the unobserved ‘noise’—stochastic excita-

tion of the system—or the observed input. The results

obtained in x 8 hold for multivariable systems with

general stochastic excitation and arbitrary input signals.

The conditions we obtain are still sufficient conditions

only, however. If rank cancellation occurs then the iden-

tified model will almost certainly be incorrect. However

rank cancellation may not occur, even if our conditions

do not hold. The degree of conservativeness of our

results remains a matter for investigation.
The requirements presented in this paper may be con-

sidered mild in the sense that they are easily satisfied in

typical identification practice. For instance, structural

conditions, like the reachability of (A,B) or (A,G),

hold in most cases, except in some extreme rank defi-

cient cases. Another requirement is the order of persis-

tent excitation of the input signal, which has to be

slightly larger (by the degree of the A-annihilator) than

the total number of Hankel block rows. Unless the

input signal has certain repeating patterns, its excitation

is normally sufficient. In the general excitation and dis-

turbance case, the truncation index k should be larger

than three times the degree of the A-annihilator. Such

a requirement is mild since, as indicated in Deistler

et al. (1995), Peternell et al. (1996), one should increase

the truncation index k at a rate equal to some function

involving log N in order to minimize the BIC criterion,

and hence obtain correct estimation of the order n.

Therefore, it is reasonable to assume the rank n condi-

tion holds by default in a typical subspace identification

operation; otherwise not only are these mild require-

ments violated but also the input-state signals coinciden-

tally create an exact cancellation effect.
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A. Appendix

A.1. Proof of Theorem 2

Proof: To begin with, introduce two additional Hankel
matrices of signals u and x. Define Ŭ as:

Ŭ :¼

uð0Þ uð1Þ � � � uðN�h�sÞ
uð1Þ uð2Þ � � � uðN�h�sþ1Þ

. .. . .. . .. . ..

uðhþs�1Þ uðhþsÞ � � � uðN�1Þ

2
664

3
775:

This matrix has more rows but fewer columns than U
(defined in (6)). Define X̆ in an analogous way.
Let pminðzÞ ¼ zr þ ar�1z

r�1 þ � � � þ a0 be the minimal
polynomial of A, ðr � nÞ. Now, define �0 as:

�0 :¼ X̆s þ ar�1X̆s�1 þ � � � þ a0X̆s�r: ð29Þ

Note that by recursive expansion the state equation has
the form

X̆s�j ¼ Ar�j X̆s�r þ
Xr�j

i¼1

Ai�1B Ŭs�i�j,

where s � r as given in the conditions of the theorem.
Applying these equalities (for j ¼ 0, 1, . . . , r) to �0 gives

�0 ¼ ðAr�1Bþ ar�1A
r�2Bþ � � � þ a1BÞ Ŭs�r

þ � � � þ ðABþ ar�1BÞ Ŭs�2 þ ðBÞ Ŭs�1:

It is noteworthy that the initial state sequence X̆s�r

is cancelled out since pminðAÞX̆s�r ¼ 0, by the property
of the A-annihilator. On the other hand, define �j, for
j ¼ 1, 2, . . . , h as

�j :¼ Ŭsþj�1 þ ar�1Ŭsþj�2 þ � � � þ a0Ŭsþj�r�1 ð30Þ
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and let � be the aggregate matrix �� :¼ ½��
0 ��

1 � � � ��
h�.

By grouping similar terms, it is not hard to see that

� ¼ 	1 	2 Ŭ0, hþs�1,

where 	1 and 	2 are defined as follows:

	1 :¼
Ar�1B Ar�2B � � � B 0

0 0 0 0 I

" #
,

	2 :¼

I 0

ar�1I
. .
.

..

. . .
.

I

a0I ar�1I
. .
.

. .
. . .

. . .
.

0 a0I � � � ar�1I I

2
66666666666666664

3
77777777777777775

:

The key point in this proof is to observe that 	1 is of
full row rank since ðA,BÞ is assumed to be controllable.
In addition, 	2 clearly has full row rank. Moreover,
note that by the definition of sufficient richness,
E ½ŬŬ

�
� and all its principal submatrices are positive

definite. Thus, taking the correlation of � yields a posi-
tive definite matrix:

E
	
���



¼ 	1	2 E

	
Ŭs�r, hþs�1Ŭ

�

s�r, hþs�1



	�

2	
�
1 > 0:

ð31Þ

The theorem statement will be proven by contradiction.
Suppose the rows of &U?X0 span a subspace with
dimension less than n. There exist nonzero constant
�0 2R

n and constants �1, . . . ,�h 2R
m such that

��0X0 þ �
�
1U0 þ � � � þ ��hUh�1 ¼ 0:

Expanding each component of X0 and Ui gives

��0xðtÞ þ �
�
1uðtÞ þ � � � þ ��huðtþh�1Þ ¼ 0,

for t ¼ 0, 1, . . . ,N�h. Grouping these equalities
together gives


j :¼ ��0X̆j þ �
�
1ÛUj þ � � � þ ��hÛUhþj�1 ¼ 0, ð32Þ

for j ¼ 0, 1, . . . , s. Note that each of these identities
is denoted by 
j. In addition, define �� :¼
½��0 ��1 � � � ��h �. From equation (32) together with

equations (29) and (30), the following equality can
then be derived:

��� ¼ ��0�0 þ �
�
1�1 þ � � � þ ��h�h

¼ 
s þ ar�1
s�1 þ � � � þ a0
s�r

¼ 0:

However, taking the correlation gives �� E ½����� ¼ 0,
which clearly contradicts equation (31). Therefore,
&U?X 0 is of dimension n. This completes the proof of
the theorem. œ

A.2. Proof of Theorem 3

Proof: First, let e be a noise process such that e is
uncorrelated with u, and

EðeðtÞe�ð�ÞÞ ¼ I�t� , wðtÞ ¼ ð�wÞ
1=2eðtÞ:

Define

�BB ¼
	
B ð�wÞ

1=2


, and ŭðtÞ :¼ uðtÞ� eðtÞ�½ �

�:

Now, the theorem can be proven using Theorem 2 by
replacing B by B̆ and u(t) by �uuðtÞ. œ

A.3. Proof of Theorem 4

Proof: The proof will be based on Theorem 2,
which guarantees &U?Y is of dimension n. Consider
equation (8b). Projecting each row onto the space U?

yields

&U?Y ¼ Oh&U?X0,

which cancels the effect of the input Hankel block U.

Since Oh is injective, the rows of&U?Y span an n-dimen-
sional subspace, by Theorem 2. Suppose we choose
certain state coordinates (note that we allow a similarity
transformation GLnðRÞ) such that

E½ð&U?X0Þ ð&U?X0Þ
�
� ¼ �1�

�
1,

with �1 as defined in equation (15). Then we can take

Oh ¼ �1 and &U?X0 ¼ �1�
�
1,

with �1 and ��
1 as defined in equation (15). Thus, with

the injectivity of Oh�1, A is uniquely determined by the
shift invariant property and C is uniquely determined
from the first p rows of Oh, as shown in Step 3 of
Algorithm 3.1.
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Note that since Oh�1 is injective, there always exists P
such that

POh�1 þ CAh�1 ¼ 0:

Define O
?
h :¼ ½P I �. It is obvious that O

?
h Oh ¼ 0.

Furthermore, by the definition of sufficient richness
we have U0, . . . ,Uh�1 mutually linearly independent.
Thus, S0, . . . ,Sh�1 in equation (16) are uniquely deter-
mined. Partition O

?
h into

O
?
h ¼ P0 � � � Ph�2 I

	 

:

It is then easy to see that equation (17) holds, which
uniquely determines B and D. This completes the
proof. œ

A.4. Proof of Proposition 2

Proof:

(1) , (2): We shall prove &U?
f
and &S commute. Since

U f 	S, we have S
?
	 U?

f . This gives

&U?
f
&S? ¼ &S? ¼ &S?&U?

f
: ð33Þ

Since &S þ&S? ¼ I , it implies ð&S þ&S?Þ&U?
f
¼

&U?
f
ð&S þ&S?Þ: Using equation (33), we have

&U?
f
&S ¼ &S&U?

f
:

(2) ) (3): We shall prove by contradiction. Suppose
statement 3 is not true, then there exist column
vectors �2R

n and �2R
km, not both zero, such

that �� &SXf þ �
� Uf ¼ 0. This implies the U?

f

component must satisfy:

�� &U?
f
&SX f ¼ 0:

Thus, if � 6¼ 0, this violates dimf&U?
f
&SXf g ¼ n.

On the other hand, suppose � ¼ 0. Then, � 6¼ 0
and �� Uf ¼ 0 violate E

	
UfU

�
f



> 0.

(3) ) (4): Note that since E½ð&S?Xf ÞðY
�
p U�

p U�
f Þ� ¼

E½ð&S?Uf ÞðY
�
p U�

p U�
f Þ


¼ 0, we have

E
Xf

Uf

� �
ðY�

p U�
p U�

f Þ

� �

¼ E
&SXf

&SUf

� �
ðY�

p U�
p U�

f Þ

� �
: ð34Þ

Now, we shall prove by contradiction. Recall that
S ¼ Yp þ Up þ U f . Thus, equation (34) is not of
full row rank if and only if there exist �2R

n

and �2R
km, not both zero, such that ��&SXf þ

��Uf ¼ 0. This implies that statement 3 is not valid.

(4) ) (1): Let S� ¼ ½Y�
p U�

p U�
f �. Note that

E
Xf

Uf

� �
ðY�

p U�
P U�

f Þ

� �

¼ E
& U f

Xf

Uf

� �
S�

� �
þ E

&U?
f
Xf

0

� �
S�

� �
:

Since the above equation is of full row rank, the
first term implies E

	
Uf S

�


is of full row rank,

or equivalently, E
	
UfU

�
f



> 0. On the other hand,

since &U f
X f 	U f , the second term in turn

implies E
	
ð&U?

f
Xf ÞS

�


is of full row rank. This is

also to say that E
	
ð&S&U?

f
Xf ÞS

�


is of full row

rank, which guarantees &S&U?
f
X f to be of

dimension n.
This completes the proof. œ

A.5. Proof of Lemma 1

Proof: Let � 6¼ 0 such that

� Ak Ak�1B � � � B
	 


¼ 0:

Since �Ak ¼ 0, we have �AkþiB ¼ 0 for all i 2N. Thus,

� AiB Ai�1B � � � B
	 


¼ 0,

for all i 2N, which is a contradiction. œ

A.6. Proof of Theorem 8

Proof: Let X̂Xp :¼ &UpþU f
Xp and ~XXp :¼ X d

p � X̂Xp. Thus,

&ðUpþU f Þ
?Xp ¼ ~XXp þ X s

p :

It is easy to verify that

&ðUpþUf Þ
?Yp ¼ &ðUpþU f Þ

? ðOkX
d
p þ C

d
k Up þ Y s

p Þ

¼ Ok
~XXp þY s

p :

Observe that S ¼ Yp þUpþU f ¼&ðUpþUf Þ
?Yp þUp þUf .

Thus, by Lemma 1, we shall prove

E
Xf

Uf

� �
Ok

~XXp þ Y s
p

h i�
U�

p U�
f


 �� �

is of full row rank. It is obvious that E
	
ðUf ÞðU

�
p U�

f Þ



is of full row rank by the definition of sufficient richness.
Thus, it is sufficient to show E

	
ðXf ÞðOk

~XXp þ Y s
p Þ

�



is of full row rank. Since X̂Xp and Up are orthogonal to
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~XXp and Y s
p , we can write

1

q
E
	
ðXf ÞðOk

~XXp þ Y s
p Þ

�


¼

1

q
E
	
ðAkX d

p þ C
d
k Up þ X s

f Þ

� ðOk
~XXp þ Y s

p Þ
�
�

¼
1

q
E
	
ðAk ~XXp þ X s

f ÞðOk
~XXp þ Y s

p Þ
�



¼ Ak ~PP0O
�
k þ C

s
k,

where ~PP0 ¼ ð1=qÞE½ ~XXp
~XX�
p � and q :¼ N�k�lþ1 is the

number of filters in the Kalman filter bank. However,
we also have

Ak ~PP0O
�
k þ C

s
k ¼ Akð� s þ ~PP0ÞC

� þ Ak�1�wv � � �
	
Að� s þ Ak�1 ~PP0A

k�1ÞC� þ�wv



¼ Ak�1 ~GG0 Ak�2 ~GG1 � � � ~GGk�1

h i
:

Finally, the above is of full row rank by Theorem 7.œ

A.7. Proof of Theorem 9

Proof: Without loss of generality, we may assume the

system has a realization satisfying equations (9), such
that �XXt; 1 corresponds to the stochastically excited

modes, �XXt; 2 to the output disturbance modes, and �XXt; 3

to the purely deterministic modes. Now, partition Xp

and Xf as:

Xp ¼

Xp; 1

Xp; 2

Xp; 3

2
64

3
75¼

�XXp; 1

�XXp; 2

�XXp; 3

2
64

3
75 and Xf ¼

Xf ; 1

Xf ; 2

Xf ; 3

2
64

3
75¼

�XXf ; 1

�XXf ; 2

�XXf ; 3

2
64

3
75,

Furthermore, we may assume without loss of generality

that k ¼ 3j, where j is no smaller than the degree of the

A-annihilator. Noticing that Y�
p ¼ ½Y�

0, j�1 Y�
j, 3j�1�, it is

equivalent to prove as indicated by Lemma 1 that

E
Xf

Uf

� �
Y�

p U�
p U�

f

� �� �

¼ E
Xf

Uf

� �
Y�

0, j�1 Y�
j, 3j�1 U�

p U�
f

� �� �
ð35Þ

is of full row rank. Now let X̂Xj :¼ &ðUpþUf ÞXj and
~XXj :¼ X d

j � X̂Xj such that

&ðUpþU f Þ
?Xj ¼ ~XXj þ X s

j and

&ðUpþU f Þ
?Yj, 3j�1 ¼ O2j

~XXj þ Y s
j, 3j�1:

Note further that S can be written as

S :¼ Up þ U f þ Y0, j�1 þ Yj, 3j�1

¼ Up þ U f þ Y0, j�1 þ&ðUpþUf Þ
? Y j, 3j�1:

As a result, the rank of equation (35) is equivalent to

that of

E
Xf

Uf

� �
Y�

0, j�1 U�
p U�

f O2j
~XXj þ Y s

j, 3j�1

h i�
 �� �
:

Now, we consider

E

Xf ; 2

Xf ; 3

Uf

0
B@

1
CA Y�

0, j�1 U�
p U�

f

� �2
64

3
75 and

E
Xf

Uf

� �
O2j

~XXj þ Y s
j, 3j�1


 ��� �
: ð36Þ

1. To show the first expression in (36) is of full row

rank, we follow the proof of Theorem 6. Note that

Y0, j�1 � T
d
k U0, j�1 ¼ OkXp þ T

w
kW0, j�1 þ V0, j�1 and

that W0, j�1 and V0, j�1 are orthogonal to X f ; 2 and

X f ; 3. Thus, it is equivalent to show

E

Xf ; 2

Xf ; 3

Uf

0
B@

1
CA X�

pO
�
k U�

p U�
f

� �2
64

3
75

¼
Ak

OD C
d
OD, k 0

0 0 I

" #

� E

Xp; 2

Xp; 3

Up

Uf

0
BBB@

1
CCCA

Xp

Up

Uf

0
B@

1
CA

�

2
6664

3
7775

O
�
k 0 0

0 I 0

0 0 I

2
64

3
75 ð37Þ

is of full row rank, where OD stands for ‘Output

Disturbance’ and

AOD ¼
�AA22

�AA23

0 �AA33

" #
, BOD ¼

�BB2

�BB3

" #
,

C
d
OD, k ¼ �AA

k�1

OD
�BBOD

�AA
k�2

OD
�BBOD � � � �BBOD

h i
,

h

where B has an obvious partition B� ¼ ½ �BB
�

1
�BB
�

2
�BB
�

3�.

Observe by condition 2 that ðAOD,BODÞ is reachable;
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and hence by Theorem 3 we have

E

Xp

Up

Uf

0
B@

1
CA

Xp

Up

Uf

0
B@

1
CA

�2
64

3
75 > 0,

which implies that its principal submatrix is also
positive definite

E

Xp; 2

Xp; 3

Up

Uf

0
BBB@

1
CCCA

Xp; 2

Xp; 3

Up

Uf

0
BBB@

1
CCCA

�2
6664

3
7775 > 0,

Now, it can readily be seen that equation 37 is of full
row rank since the expression is a product of full
row rank matrices.

2. Next, we consider the second expression in (36).
Following the proof of Theorem 8, we get

1

q
E

Xf

Uf

� � �
O2j

~XXj þ Y s
j, 3j�1

��� �

¼
A2j�1 ~GG0 A2j�2 ~GG1 � � � ~GG2j�1

0 0 � � � 0

" #
, ð38Þ

where q :¼ N�k�l þ 1 is the number of filters in
the Kalman filter bank. Now, let pminðzÞ ¼
zj þ aj�1z

j�1 þ � � � þ a0 be an annihilating poly-
nomial and

	 :¼

a0I 0

..

. . .
.

aj�1I a0I

I . .
. ..

.

. .
.

aj�1I
0 I

2
666666664

3
777777775
:

Following the proof of Theorem 7, we obtain

A2j�1 ~GG0 A2j�2 ~GG1 � � � ~GG2j�1

h i
	

¼ ðI þ aj�1Aþ � � � þ a0A
jÞ Aj�1G Aj�2G � � � G
	 


:

ð39Þ

Furthermore, by Lemma 3 we have ðI þ aj�1Aþ

� � � þ a0A
jÞ non-singular. Thus, together with condi-

tion 3 we have

E
�
Xf ; 1

��
O2j

~XXj þ Y s
j, 3j�1

��h i
	

of full row rank. On the other hand, note that

A ¼

�AA11
�AA12

�AA13

0 �AA22
�AA23

0 0 �AA33

2
64

3
75,

G ¼ A� sC� þ�wv ¼

�AA11
���
s

11
�CC
�

11 þ
���
wv

11
���
wv

12 0

0 0 0

0 0 0

2
64

3
75:

Using the above equations, it is easy to derive from
equation (38) and (39) that

E

Xf ; 2

Xf ; 3

Uf

0
B@

1
CA�

O2j
~XXj þ Y s

j, 3j�1

��
2
64

3
75	 ¼ 0:

Finally, we complete the proof by observing that

�11 �12

�21 0

� �

:¼E

Xf ;1

Xf ;2

Xf ;3

Uf

0
BBB@

1
CCCA Y�

0,j�1U
�
p U

�
f

	
O2j

~XXjþYs
j,3j�1


�
 �
2
6664

3
7775 I 0

0 	

� �

is of full row rank since

�21 :¼ E

Xf ; 2

Xf ; 3

Uf

0
@

1
A Y�

0, j�1 U�
p U�

f

� �2
4

3
5

is of full row rank from part (1) and

�12 :¼ E
�
Xf ; 1

��
O2j

~XXj þ Y s
j, 3j�1

��h i
	

is of full row rank from part (2). œ
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