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Abstract

The problem of H2 reduced order approximation is considered in this report. The
result covers both continuous and discrete time MIMO systems. Necessary and
sufficient conditions for the existence of an approximant within a specified error are
given in terms of a set of LMIs and a matrix rank constraint. A heuristic algorithm
which uses the alternating projection method is proposed and a method of finding
a starting point is suggested. Three numerical examples are employed to show the
effectiveness of the choice of starting points and the capability of the algorithm to
find at least as good approximants as other methods.
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1 Introduction

There has been a significant interest in the model reduction problem, namely, the problem of

approximating a high order system by a lower order, thus simpler, system. One of the most

commonly used methods is the balanced truncation method [21]. The procedure is relatively

simple and also the method is extensively studied [11]. Another popular model reduction method

is the Hankel norm approximation method [8], which also has a constructive way of finding

reduced order models, or approximants. It is common practice to employ an error between the

original high order system and the obtained reduced order model in some sense as an index of

how good the approximant is. For both methods upper bounds of the error in the H∞ sense (and

also a lower bound for the Hankel norm approximation method) are explicitly expressed in terms

of the Hankel singular values of the original system. These methods do not in general produce

optimal approximants in the H∞ sense and several methods for H∞ optimal model reduction

are developed, e.g., [5, 9].

In this report the model reduction problem in terms of the H2-norm is considered. This norm

has an attractive aspect in that minimizing the H2 error means minimizing the H2 error in the

impulse response as well as minimizing the H2 error in the frequency response [25] and the H2

model reduction problem has also attracted considerable attention over four decades.

A number of approaches, e.g., [2, 7, 16, 25], just to name a few, use first order necessary

conditions for optimality in one way or another and develop optimization algorithms to find so-

lutions to resulting nonlinear equations. Most of the methods in this direction are only applicable

to the single input single output (SISO) case. Furthermore it is argued [14, 27] that whether the

global optimum is always achievable is unclear in the continuous time case (while it is shown

to exist in the discrete time case [1]) and that, in the case of nonexistence of the optimum, these

approaches can only find local optima which may be far from the true (global) optimum.

Even if the existence of the global optimum is guaranteed, optimization methods based on

search algorithms can have difficulties [12]: There may be one or more local optima and it

is difficult to guarantee that the obtained solution is close to the global optimum. Moreover

there is usually no guarantee that the chosen stopping criterion for such a search algorithm is

appropriate. To overcome these problems, several algorithms based on algebraic methods have

been proposed that directly solve a set of nonlinear equations [12, 19, 22]. These approaches

seem to have potential (in cases where the optima are achievable), but computation cost required

for such approaches is still high and structural properties of the problem seem to require further

exploitation for algorithmic development, which prevent them from becoming useful alternatives

in practice at this moment.

A different type of approaches has emerged recently. In [14, 27], it is proposed to solve
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slightly modified problems for the continuous time case, where the global optimum is proven

to exist and the use of a search algorithm makes sense. Those methods can deal with the multi

input multi output (MIMO) case and thus favourable compared to many other methods in this

respect. A problem of those methods may be the difficulty of measuring the conservativeness of

the obtained result due to the modification of the problem.

In this report an H2 model reduction method for the MIMO case based on linear matrix

inequality (LMI) techniques is developed. Unlike other methods this approach allows both

continuous time and discrete time cases to be treated in a unified manner, as in [9] for H∞ model

reduction. Necessary and sufficient conditions for the existence of suboptimal approximants are

expressed in bilinear matrix inequality (BMI) form, which will then be converted to a set of LMIs

and a (non-convex) matrix rank constraint. An algorithm using the alternating projection method

is proposed to solve this problem. Due to the non-convex property of the problem, the suggested

method does not guarantee global convergence. However numerical examples show that, from

starting points computed by a method which is also proposed in this report, this method can yield

approximants at least as good as those computed by other methods. It is emphasized that this

method deals with the original problem rather than a modified one and thus is not affected by

the potential conservativeness resulting from modification of the problem. Also the algorithm

essentially solves suboptimal problems and hence avoids the issue of existence/nonexistence of

the optimal solution. Moreover a search is carried out for the feasible H2 error by executing

feasible tests and therefore can be terminated when a desired difference between the achieved

error and the (local) optimum is reached.

The structure of this report is as follows. In Section 2, the H2 model reduction problem

is formally stated and necessary and sufficient conditions for the existence of a reduced order

model within a specified error are derived for both continuous and discrete time cases. Section 3

reviews the alternating projection method which is used for various controller synthesis problems

with fixed controller order, and also proposes an algorithm for the H2 model reduction problem

which makes use of this method. Since the above algorithm is heuristic due to the non-convexity

of the necessary and sufficient conditions derived in Section 2, the choice of starting points has a

significant effect on the practicality of the proposed algorithm. This is the topic of Section 4. In

Section 5, three numerical examples are employed to demonstrate the choice of starting points

and the algorithm. In particular the third example shows that the obtained results are at least as

good as those computed by other methods. Some concluding remarks are made in Section 6.

Notation: Given a matrix A ∈ C
n×m , A∗ denotes the complex conjugate transpose. The trace of

a square matrix is denoted by tr {·}. The set of all symmetric matrices in C
n×n is denoted by Sn .

The notation > (resp., ≥) is used to denote the positive definiteness (resp., semi-definiteness) of
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a square symmetric matrix, and A > B (resp., A ≥ B), A, B ∈ Sn means A − B > 0 (resp.,

A − B ≥ 0). Also, A < 0 (resp., A ≤ 0) means −A > 0 (resp., −A ≥ 0). For brevity, ()∗

is used to denote the complex conjugate transpose of the preceding matrix, e.g., for a square

matrix A, A + ()∗ = A + A∗. For a matrix A ∈ R
n×m with rank r , A⊥ ∈ R

(n−r)×n is a matrix

such that A⊥ A = 0 and A⊥(A⊥)∗ > 0. The H2-norm of a stable system is denoted by ‖·‖2.

2 H2 Model Reduction

The H2 optimal model reduction problem is stated as follows: Given a stable system G of

McMillan degree n with q inputs and p outputs, find a stable system Ĝ of McMillan degree r(< n)

with the same numbers of inputs and outputs that minimizes the H2-norm of the error system E =

G − Ĝ, i.e., minimizes the error ‖E‖2 =
∥
∥G − Ĝ

∥
∥

2. Under the same set-up, the H2 suboptimal

model reduction problem is stated as: Given γ (> 0), find, if it exists, Ĝ that achieves the H2

error less than γ , i.e., achieves
∥
∥G − Ĝ

∥
∥

2 < γ . Without loss of generality, it can be assumed

that both G and Ĝ are strictly proper.

2.1 Continuous Systems

In this subsection the continuous time case is considered and necessary and sufficient conditions

for the existence of a reduced order model achieving a specified error are derived. Let state space

realizations of G(s) and Ĝ(s) be

G(s) =

[

A B
C 0

]

, (1)

Ĝ(s) =

[

Â B̂
Ĉ 0

]

(2)

where A ∈ R
n×n, B ∈ R

n×q, C ∈ R
p×n, Â ∈ R

r×r , B̂ ∈ R
r×q , Ĉ ∈ R

p×r . A state space

realization of the error system is

E(s) = G(s) − Ĝ(s) =





A 0 B
0 Â B̂
C −Ĉ 0



 =:

[

AE BE

CE 0

]

. (3)

Then the H2 optimal model reduction problem can be expressed as:

minimize γ (> 0)

subject to AE P + P A∗
E + BE B∗

E < 0 , (4)

P > 0 , (5)

tr
{

CE PC∗
E

}

< γ 2 (6)
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where the positive definiteness of P ∈ Sn+r is to guarantee (in fact, is equivalent to) the stability

of Ĝ(s) under the assumption that (AE , BE) is controllable. Partition P conformally with AE

and write

P =

[

P11 P12

P∗
12 P22

]

where P11 ∈ Sn, P12 ∈ R
n×r , P22 ∈ Sr . Then, from the Schur complement formula [3, pp. 7-8],

inequality (4) is equivalent to

[

AE P + P A∗
E BE

B∗
E −I

]

=





AP11 + P11 A∗ AP12 + P12 Â∗ B
P∗

12 A∗ + ÂP∗
12 ÂP22 + P22 Â∗ B̂

B∗ B̂∗ −I



 < 0 . (7)

Using a slack variable W ∈ Sn , inequalities (5) and (6) can be expressed as

tr {W } < γ 2 , (8)

[

W CE P
PC∗

E P

]

=





W C P11 − Ĉ P∗
12 C P12 − Ĉ P22

P11C∗ − P12Ĉ∗ P11 P12

P∗
12C∗ − P22Ĉ∗ P∗

12 P22



 > 0 . (9)

It is observed that neither (7) nor (9) is an LMI in P11, P12, P22, Â, B̂, Ĉ since there are bilinear

terms such as ÂP12.

Now those conditions are expressed with respect to two decision variables (symmetric ma-

trices) by eliminating Â, B̂, Ĉ . The H2 model reduction problem is a special case of the H2

optimal controller synthesis problem and therefore the following result may readily be obtained

from [24]. The result is included for completeness and also due to the straightforwardness of the

proof. Further the result is expressed in a form suited for the method developed later.

Theorem 1 Consider a stable continuous time system G(s) =

[

A B
C 0

]

of McMillan degree n.

There exists a stable continuous time system Ĝ(s) of McMillan degree at most r that satisfies
∥
∥G(s) − Ĝ(s)

∥
∥

2 < γ if and only if there exist X, Z ∈ Sn satisfying

AX + X A∗ + B B∗ < 0 , (10)

A(X − Z) + (X − Z)A∗ < 0 , (11)

tr
{

C(X − Z)C∗
}

< γ 2 , (12)

Z ≥ 0 , (13)

rank Z ≤ r . (14)
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Proof

The elimination lemma [3, pp. 32-33] is used to eliminate Â, B̂, Ĉ from inequalities (7) and (9).

Inequality (7) can be written as





AP11 + P11 A∗ AP12 B
P∗

12 A∗ 0 0
B∗ 0 −I



 +





0 P12 Â∗ 0
ÂP∗

12 ÂP22 + P22 Â∗ B̂
0 B̂∗ 0





=





AP11 + P11 A∗ AP12 B
P∗

12 A∗ 0 0
B∗ 0 −I





︸ ︷︷ ︸

Lc
1(P)

+





0
I
0




[

Â B̂
]
[

P∗
12 P22 0
0 0 I

]

+ ()∗ < 0 . (15)

By noting that





0
I
0





⊥

=

[

I 0 0
0 0 I

]

,





P12 0
P22 0
0 I





⊥

=
[

I −P12 P−1
22 0

]

,

[

Â B̂
]

can be eliminated from (15). (Notice that (9) guarantees that P22 is nonsingular.) There

exists
[

Â B̂
]

that satisfies (15) if and only if there exist P11, P12, P22 such that

[

I 0 0
0 0 I

]

Lc
1(P)





I 0
0 0
0 I



 =

[

AP11 + P11 A∗ B
B∗ −I

]

< 0 , (16)

[

I −P12 P−1
22 0

]

Lc
1(P)





I
−P−1

22 P∗
12

0





= A(P11 − P12 P−1
22 P∗

12) + (P11 − P12 P−1
22 P∗

12)A∗ < 0 . (17)

Inequality (16) is equivalent to

AP11 + P11 A∗ + B B∗ < 0 . (18)

Similarly, inequality (9) can be written as




W C P11 C P12

P11C∗ P11 P12

P∗
12C∗ P∗

12 P22



 −





0 Ĉ P∗
12 Ĉ P22

P12Ĉ∗ 0 0
P22Ĉ∗ 0 0





=





W C P11 C P12

P11C∗ P11 P12

P∗
12C∗ P∗

12 P22





︸ ︷︷ ︸

Lc
2(P)

−





I
0
0



 Ĉ
[

0 P∗
12 P22

]

+ ()∗ > 0 . (19)
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Since




I
0
0





⊥

=

[

0 I 0
0 0 I

]

,





0
P12

P22





⊥

=

[

I 0 0
0 I −P12 P−1

22

]

,

there exists Ĉ that satisfies (19) if and only if there exist P11, P12, P22 such that

[

0 I 0
0 0 I

]

Lc
2(P)





0 0
I 0
0 I



 =

[

P11 P12

P∗
12 P22

]

> 0 , (20)

[

I 0 0
0 I −P12 P−1

22

]

Lc
2(P)





I 0
0 I
0 −P12 P−1

22





=

[

W C(P11 − P12 P−1
22 P∗

12)

(P11 − P12 P−1
22 P∗

12)C
∗ P11 − P12 P−1

22 P∗
12

]

> 0 . (21)

Inequality (20) is equivalent to

P11 − P12 P−1
22 P∗

12 > 0 , (22)

P22 > 0 . (23)

Furthermore, inequality (21) is equivalent to

P11 − P12 P−1
22 P∗

12 > 0 , (24)

W − C(P11 − P12 P−1
22 P∗

12)C
∗ > 0 . (25)

Now, inequalities (8) and (25) imply

tr
{

C(P11 − P12 P−1
22 P∗

12)C
∗
}

< γ 2 , (26)

while this implies the existence of W that satisfies (8) and (25). Note that inequality (17) requires

inequalities (22) and (24) to hold since A is stable. Therefore, inequalities needed are (18), (17),

(23) and (26). By writing X = P11, Z = P12 P−1
22 P∗

12, inequalities (18), (17), (26), respectively,

can be written as (10), (11), (12), respectively. Also the form of Z and (23) implies (13) and

(14). Conversely, any Z satisfying (13) and (14) can be decomposed in the required form by,

e.g., eigenvalue-eigenvector decomposition. This concludes the proof.

2

While inequalities (10)-(13) are convex constraints, the rank constraint (14) is not. An

optimization problem/a feasibility problem under those constraints is a non-convex problem.

Thus interior-point algorithms used for (convex) LMI feasibility/optimization problems cannot

7



be employed and this makes the H2 model reduction problem a difficult task. This is not surprising

since a number of reduced order controller synthesis problems, which, without controller order

constraints, would be formulated as convex feasibility/optimization problems, yield non-convex

feasibility/optimization problems, and the problem considered here is a special case of the H2

optimal controller synthesis problem with fixed controller order.

If X and Z that satisfy (10)-(14) are found, then a reduced order model that achieves the

error less than γ can be obtained by firstly computing P12, P22 from a decomposition of Z and

then solving an LMI feasibility problem (7), (8), (9) for Â, B̂, Ĉ .

2.2 Discrete Systems

Now consider the discrete time case. Suppose that state space realizations of the original sys-

tem G(z), the reduced order approximant Ĝ(z) and the error system E(z) are given as in the

right hand sides of (1), (2) and (3), respectively. The model reduction problem can be expressed

identically to the continuous time case except for (4), which is to be replaced with

AE P A∗
E − P + BE B∗

E < 0 . (27)

Similar to the continuous time case, necessary and sufficient conditions with respect to two

symmetric matrices are derived.

Theorem 2 Consider a stable discrete time system G(z) =

[

A B
C 0

]

of McMillan degree n.

There exists a stable discrete time system Ĝ(z) of McMillan degree at most r that satisfies
∥
∥G(z) − Ĝ(z)

∥
∥

2 < γ if and only if there exist X, Z ∈ Sn satisfying

AX A∗ − X + B B∗ < 0 , (28)

A(X − Z)A∗ − (X − Z) < 0 , (29)

tr
{

C(X − Z)C∗
}

< γ 2 , (30)

Z ≥ 0 , (31)

rank Z ≤ r . (32)

Proof

Inequalities (5) and (27) are equivalent to





P −AE P −BE

−P A∗
E P 0

−B∗
E 0 I



 =










P11 P12 −AP11 −AP12 −B
P∗

12 P22 − ÂP∗
12 − ÂP22 −B̂

−P11 A∗ −P12 Â∗ P11 P12 0
−P∗

12 A∗ −P22 Â∗ P∗
12 P22 0

−B∗ −B̂∗ 0 0 I










> 0 . (33)
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This can be written as









P11 P12 −AP11 −AP12 −B
P∗

12 P22 0 0 0
−P11 A∗ 0 P11 P12 0
−P∗

12 A∗ 0 P∗
12 P22 0

−B∗ 0 0 0 I









−










0 0 0 0 0
0 0 ÂP∗

12 ÂP22 B̂
0 P12 Â∗ 0 0 0
0 P22 Â∗ 0 0 0
0 B̂∗ 0 0 0










=









P11 P12 −AP11 −AP12 −B
P∗

12 P22 0 0 0
−P11 A∗ 0 P11 P12 0
−P∗

12 A∗ 0 P∗
12 P22 0

−B∗ 0 0 0 I









︸ ︷︷ ︸

Ld
1 (P)

−









0
I
0
0
0









[

Â B̂
]
[

0 0 P∗
12 P22 0

0 0 0 0 I

]

+ ()∗

> 0 . (34)

Using









0
I
0
0
0









⊥

=







I 0 0 0 0
0 0 I 0 0
0 0 0 I 0
0 0 0 0 I







,









0 0
0 0

P12 0
P22 0
0 I









⊥

=





I 0 0 0 0
0 I 0 0 0
0 0 I −P12 P−1

22 0



 ,

it is seen that there exists
[

Â B̂
]

that satisfies (34) if and only if there exist P11, P12, P22 such

that







I 0 0 0 0
0 0 I 0 0
0 0 0 I 0
0 0 0 0 I







Ld
1(P)









I 0 0 0
0 0 0 0
0 I 0 0
0 0 I 0
0 0 0 I









=







P11 −AP11 −AP12 −B
−P11 A∗ P11 P12 0
−P∗

12 A∗ P∗
12 P22 0

−B∗ 0 0 I







> 0 ,

(35)





I 0 0 0 0
0 I 0 0 0
0 0 I −P12 P−1

22 0



 Ld
1(P)









I 0 0
0 I 0
0 0 I
0 0 −P−1

22 P∗
12

0 0 0









=





P11 P12 −A(P11 − P12 P−1
22 P∗

12)

P∗
12 P22 0

−(P11 − P12 P−1
22 P∗

12)A∗ 0 P11 − P12 P−1
22 P∗

12



 > 0 . (36)
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Moreover, inequality (35) is equivalent to

P11 −
[

AP11 AP12 B
]





P11 P12 0
P∗

12 P22 0
0 0 I





−1 



P11 A∗

P∗
12 A∗

B∗



 > 0 , (37)

[

P11 P12

P∗
12 P22

]

> 0 . (38)

A straightforward calculation shows that (37) can be written as

AP11 A∗ − P11 + B B∗ < 0 . (39)

Also inequality (38) is equivalent to

P11 − P12 P−1
22 P∗

12 > 0 , (40)

P22 > 0 . (41)

Inequality (36) is equivalent to

P11−
[

P12 −A(P11 − P12 P−1
22 P∗

12)
]
[

P22 0
0 P11 − P12 P−1

22 P∗
12

]−1 [

P∗
12

−(P11 − P12 P−1
22 P∗

12)A∗

]

> 0 (42)

and inequalities (40)-(41). Inequality (42) can further be modified to

A(P11 − P12 P−1
22 P∗

12)A∗ − (P11 − P12 P−1
22 P∗

12) < 0 . (43)

Note that the stability of A along with (43) implies (40). Hence, inequalities (39), (43), (41) and

(6) are only needed. Similar to the continuous time case, it can be shown that (6) can be replaced

with (26). Finally, by writing X = P11, Z = P12 P−1
22 P∗

12, it is deduced that the stated conditions

are necessary and sufficient conditions for the existence of a reduced order approximant.

2

As is the case with continuous time systems, inequalities (28)-(31) are LMIs and thus convex,

but the rank constraint (32) is not. It makes the problem a non-convex one.

3 H2 Model Reduction Algorithm Using the Alternating Projection
Method

Not only the H2 model reduction problem but also more general controller synthesis problems

with fixed controller order are formulated as LMIs with rank constraints. To tackle those control
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problems with controller order constraints, various heuristic algorithms have been proposed, e.g.,

[6, 10, 17, 18], though there is no guarantee for convergence of those algorithms to a solution.

In this report the alternating projection method [10] is employed for finding reduced order

models. Consider a pair of sets C1 and C2 in the space Sn ×Sn and assume that the intersection of

these sets is non-empty. The feasibility problem of finding an element in the intersection C1 ∩C2

is considered. Denote by PCi the orthogonal projection operator onto the set Ci . Suppose that

C1 and C2 are closed and convex. Then, starting from any element (X 0, Z0) in the space, the

sequence of alternating projections

(X1, Z1) = PC1(X0, Z0)

(X2, Z2) = PC2(X1, Z1)

...

(X2m−1, Z2m−1) = PC1(X2m−2, Z2m−2)

(X2m, Z2m) = PC2(X2m−1, Z2m−1)

...

always converges to an element in the intersection C1 ∩C2. In case the intersection is empty, the

sequence does not converge.

When either C1 or C2 is non-convex, (global) convergence is not guaranteed. However local

convergence is guaranteed, i.e., if a starting point is in a neighbourhood of a feasible solution, the

alternating projection method can yield a sequence converging to an element in the intersection.

In the case of the H2 model reduction problem, C1 can be taken as

C1 = {(X, Z)|X ∈ Sn, Z ∈ Sn, (10), (11), (12), (13)}

in the continuous time case, and

C1 = {(X, Z)|X ∈ Sn, Z ∈ Sn, (28), (29), (30), (31)}

in the discrete time case. Also,

C2 = {(X, Z)|X ∈ Sn, Z ∈ Sn, rank Z ≤ r}

for either case. Note that C1 is convex while C2 is not.

By equipping the space Sn × Sn with the inner product

〈(X1, Z1), (X2, Z2)〉 = tr {X1 X2} + tr {Z1 Z2} ,
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the orthogonal projection of (X0, Z0) ∈ Sn × Sn onto C1 can be found by solving the following

(convex) optimization problem [10]:

minimize tr {S + T }

subject to

[

S (X − X0)

(X − X0) I

]

≥ 0 ,

[

T (Z − Z0)

(Z − Z0) I

]

≥ 0 ,

(X, Z) ∈ C1 , S, T ∈ Sn .

This minimization problem can be solved by using standard numerical algorithms. The pair

(X, Z) that solves it is the projection to be sought.

Now consider the projection PC2(X0, Z0). Since C2 is not convex, there may be more than

one matrix pair that minimize the distance from (X 0, Z0). Let Z0 = U6V ∗ be a singular value

decomposition of Z0. Then a projection of (X0, Z0) onto C2 is given by

PC2(X0, Z0) = (X0, U6r V ∗)

where 6r is a diagonal matrix obtained from 6 by replacing the (n − r) smallest diagonal

elements of 6 by zero [13, Section 7.4].

Now the following algorithm is suggested for H2 model reduction.

1. Find X, Z ∈ Sn and an H2-norm bound γ that satisfy (10)-(14) in the continuous time

case (resp., (28)-(32) in the discrete time case).

2. Reduce γ . Find X, Z ∈ Sn that satisfy (10)-(14) (resp., (28)-(32)) using the alternating

projection method, taking (X, Z) from the previous step as a starting point.

3. If successful, go back to Step 2. Otherwise, compute an approximant from the best (X, Z)

available by solving a feasibility problem (7) (resp., (33)), (8) and (9).

It is also possible to use a bisection method with respect to γ .

It is repeated that the presented algorithm is heuristic since C2 is non-convex and thus the

alternating projection method becomes heuristic. Hence this method may not provide a subop-

timal approximant whose achieved error is as close to the optimal error as desired. It is of great

significance to find a nice starting point in Step 1. This is because it can determine whether

an approximant which is close to the global optimum will be obtained. Also, Step 2 is not in

general an inexpensive task and it is desired to have initial γ close to the optimal γ , which may

be achieved by having (X, Z) close to the optimum (or a suboptimum achieving practically the

optimal error in the case where the optimum cannot be achieved). The choice of the starting

point is the topic of the next section.

12



4 Choice of Starting Points

4.1 Choosing from the Balanced Realization

From now on, it is supposed that the given state space realization is balanced. This is a sensible

assumption from the practical point of view since the use of balanced realizations in general

improves the reliability of numerical computation and thus is common practice. In such a case

the Gramian of the form

6 =








σ1 0 · · · 0
0 σ2 · · · 0
...

...
. . .

...

0 0 · · · σn








satisfies

A6 + 6 A∗ + B B∗ = 0 , A∗6 + 6 A + C∗C = 0

in the continuous time case, or

A6 A∗ − 6 + B B∗ = 0 , A∗6 A − 6 + C∗C = 0

in the discrete time case. The diagonal elements of 6 are called Hankel singular values and

ordered as

σ1 ≥ σ2 ≥ · · · σn ≥ 0 .

Model reduction by balanced truncation [21] is carried out by discarding modes corresponding

to small Hankel singular values.

To make the left hand side of (12) (or (30)) small, a straightforward idea is to make X − Z

“small”. From (10) (or (28)), it is observed that X > 6 [26]. Inequality (11) (or (29)) implies

that X > Z , and, if X is taken to be very close to 6, the i -th diagonal element of Z is smaller

than σi . Write C =
[

c1 c2 · · · cn

]

where ci is a column vector and observe that

tr
{

C6C∗
}

= tr
{

C∗C6
}

=
∑

i

(c∗
i ci)σi . (44)

If Z is assumed to be a diagonal matrix whose r (diagonal) elements are only nonzero, and the

only constraint is 6 > Z , then the optimal choice of Z is obtained by identifying the n − r

smallest terms of (c∗
i ci)σi , i = 1, . . . , n, and letting the corresponding diagonal elements of 6

be zero.

Unfortunately such Z does not in general satisfy inequality (11) (or (29)). An option may

be to restrict the structure of Z and minimize γ under LMIs (10)-(13) (or (28)-(31)). Another

method is to use the balanced realization. This has an effect similar to having structured Z . As is
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mentioned above, a balanced realization is often obtained beforehand, so it can be used without

extra cost. However, instead of the ordinary balanced truncation, modes whose contributions to

(44) are small are truncated. Indeed this idea can be used to find upper bounds of H2 error [20, 27].

Once a reduced order model and the H2-norm of the error system, which will serve as

initial γ , are obtained in this way, the controllability Gramian of the error system is computed,

from which initial X and Z are obtained. Note that, if the modes are chosen such that the retained

modes and the truncated modes do not share the same Hankel singular values, then the reduced

order system is stable [23], [28, Theorem 21.29] and thus inequalities (10) and (11) (or (28) and

(29)) are automatically satisfied.

In fact it is observed that a good starting point is not necessarily obtained from the modes

of the r largest contributions. In the worst case,
(n

r

)

combinations of modes are to be exam-

ined. Nevertheless, in practice, combinations containing modes with small contributions may be

ignored and the number of combinations to be tested can be greatly reduced.

4.2 Improving Starting Points

It is observed that, once an initial approximant is obtained from the balanced realization as in the

previous subsection, a better approximant may be obtained by solving a feasibility problem with

LMIs. The set of LMIs (7) (or (33)), (8) and (9) is to be solved for Â, B̂, Ĉ where P is replaced

with the controllability Gramian of the error system and γ in the right hand side of (8) is replaced

with the H2-norm of the error system. Notice that, once P is fixed, the set of inequalities are

LMIs with respect to Â, B̂, Ĉ .

The above method usually gives a reduced order model that achieves a smaller error. The

effect is sometimes trivial. (If the model obtained from the balanced realization is close to the

(local) minimum, there is little room for improvement.) However the required computation cost

is relatively small compared to the alternating projection method, so it is worth carrying out.

5 Numerical Examples

In this section three numerical examples are presented. The first two examples demonstrate the

effectiveness of the choice of starting points in Section 4, and the third example shows that the

algorithm proposed in Section 3 works at least as well as other methods. The error achieved by

an approximant is shown in the relative error, i.e.,

J(G, Ĝ) =

∥
∥G − Ĝ

∥
∥

2

‖G‖2
.
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Example 1. This second order continuous time SISO example is taken from [25, Example 2]:

G(s) =
10000s + 5000

s2 + 5000s + 25
.

A first order approximant is sought. Its Hankel singular values σi , i = 1, 2, are

99.000, 0.99990,

but, (c∗
i ci)σi , i = 1, 2, are

102.05, 9997.9.

It is seen that the contribution of the mode corresponding to the second (i.e., the smaller) Hankel

singular value to (44) is the larger. Indeed,

J(G(s), Ĝ1(s)) = 0.99494,

J(G(s), Ĝ2(s)) = 0.0985088

where Ĝi(s) is the approximant obtained by retaining the i -th mode.

An improved starting point is computed from Ĝ2(s) using the method in Subsection 4.2.

However the improvement is practically zero and the error the new approximant Ĝ′
2(s) achieves

is

J(G(s), Ĝ′
2(s)) = 0.0985086.

The algorithm described in Section 3 hardly improves this, but this is natural since the optimal

relative error is 0.0985 [25].

Example 2. This discrete time system is taken from [22]:

G(z) =











0 1 0 0 1
2

−3
4

0 0 1 0 383
2080

279
1040

0 0 0 1 1839
8320

−1317
4160

0 −1
8

1
2

1
4

1419
33280

99
1280

1 0 0 0 0 0
1 1 0 0 0 0











.

This is a 4th order MIMO system, with 2 inputs and 2 outputs. A 2nd order approximant is to

be found. Its Hankel singular values σi , i = 1, . . . , 4, are

1.6752, 0.90114, 0.16511, 0.083916,

and, (c∗
i ci)σi, i = 1, . . . , 4, are

2.0191, 0.18054, 0.0045092, 0.00082210.
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In this example the order of the contributions is identical to that of the Hankel singular values.

Indeed the approximant Ĝ12(z), constructed by retaining the 1st and 2nd modes and discarding

the 3rd and 4th modes, achieves the smallest error among
(4

2

)

= 6 possible approximants of

order 2:

J(G(z), Ĝ12(z)) = 0.089277.

The method in Subsection 4.2 is carried out to find an improved starting point, but again the

improvement is not significant:

J(G(z), Ĝ′
12(z)) = 0.089119.

Also the algorithm described in Section 3 hardly improves this since Ĝ′
12(z) is nearly optimal;

The optimal approximant given in [22] achieves

J(G(z), Ĝopt(z)) = 0.089039.

Notice that
J(G(z), Ĝ′

12(z))

J(G(z), Ĝopt(z))
= 1.00089675.

Example 3. A more realistic example, the System AUTM in [15], is examined. The system to

be approximated is a 12th order continuous time MIMO system, with 2 inputs and 2 outputs.

The system data is given in Appendix A. The Hankel singular values σi , i = 1, 2, . . . , 12, are

7.1833, 1.4904, 0.92791, 0.58756, 0.46331, 0.23683, 0.16132,

0.093582, 0.56596 × 10−3, 0.20608 × 10−4, 0.14124 × 10−5, 0.34341 × 10−7,

and, (c∗
i ci)σi, i = 1, 2, . . . , 12, are

17.001, 3.6844, 0.23558, 0.076721, 2.5247, 0.30031, 0.065789,

0.20424, 4.0153 × 10−6, 1.1683 × 10−8, 9.8808 × 10−13, 2.1223 × 10−15.

It is observed that modes corresponding to large Hankel singular values in general have large

contributions in (44), but the orders are slightly different.

Reduced order models of McMillan degrees 4, 5 and 6 are sought. First a 4th order approx-

imant is found. In this case the best initial approximant is obtained by discarding all the modes

except for those corresponding to the 1st, 2nd, 3rd and 5th Hankel singular values, or the 1st,

2nd, 3rd and 5th largest (c∗
i ci)σi :

J(G(z), Ĝ1235(s)) = 0.15231.
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It is pointed out that the approximant constructed from the modes corresponding to the 4 largest

(c∗
i ci)σi yields a much worse error:

J(G(z), Ĝ1257(s)) = 0.36873.

By means of the method in Subsection 4.2, a slight improvement of the starting point is made:

J(G(z), Ĝ′
1235(s)) = 0.15171.

Finally the H2 model reduction algorithm in Section 3 is invoked and an approximant Ĝ4
APM(s)

that achieves the following error is obtained:

J(G(z), Ĝ4
APM(s)) = 0.13494.

The data of the approximant is provided in Appendix B. It is pointed out that this is a slight

improvement over the approximant Ĝ4
YL(s) reported in [27]:

J(G(z), Ĝ4
YL(s)) = 0.1354.

The same procedure is executed for r = 5. By retaining the modes corresponding to the 1st,

2nd, 3rd, 5th and 8th Hankel singular values, or the 1st, 2nd, 3rd, 5th and 6th largest (c∗
i ci)σi ,

the best initial approximant is obtained:

J(G(z), Ĝ12358(s)) = 0.10831.

This is improved a little by the method described in Subsection 4.2:

J(G(z), Ĝ′
12358(s)) = 0.10634.

Finally the model reduction algorithm finds an approximant achieving

J(G(z), Ĝ5
APM(s)) = 0.078078.

Again a slight improvement over the result in [27] is observed:

J(G(z), Ĝ5
YL(s)) = 0.0795.

For r = 6, the best initial approximant is constructed by keeping the modes corresponding

to the 1st, 2nd, 3rd, 4th, 5th and 8th Hankel singular values, or the 1st, 2nd, 3rd, 5th, 6th and 7th

largest (c∗
i ci)σi . It achieves the error

J(G(z), Ĝ123458(s)) = 0.078882.
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The method in Subsection 4.2 yields a slightly better approximation:

J(G(z), Ĝ′
123458(s)) = 0.076574.

Finally the model reduction algorithm finds an approximant whose error is

J(G(z), Ĝ6
APM(s)) = 0.052709.

This reduced order model is better than the one reported in [27]:

J(G(z), Ĝ6
YL(s)) = 0.0541.

6 Conclusion

This report has considered the H2 model reduction problem. Necessary and sufficient conditions

for the existence of an H2 suboptimal reduced order model are derived for both continuous and

discrete time cases by means of LMI techniques. The resulting constraints are non-convex and

do not allow globally convergent algorithms to be developed. A heuristic algorithm is proposed

which utilizes the alternating projection method. Along with the suggested method for choosing

starting points, this algorithm can find suboptimal approximants which are as good as those

computed by previously proposed methods, which is demonstrated by numerical examples.

This algorithm is believed to have several advantages. It relies on off-the-shelf routines and

requires rather simple programming. It covers both continuous and discrete time systems; The

difference in the programs is trivial. The conditions share the same structure—several LMIs and

a matrix rank constraint—as various controller synthesis problems with fixed controller order.

Observe in particular some similarity of the conditions in [5] for H∞ model reduction and those

in [4] for model reduction in the ν-gap metric. Research on the solution of such problems is one

of areas where intensive studies are carried out and the potential for the development of efficient,

numerically reliable algorithms to tackle those problems including this approach to H2 model

reduction can be large.
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A The System AUTM

In Example 3 of this report, the system AUTM, a 2-input, 12-state, 2-output model of an automo-

tive gas turbine, is used, which is studied in [15]. The following is a state-space representation

of this model, taken from [15]:

G(s) =

[

A B
C 0

]

where

A =






















0 1 0 0 0 0 0 0 0 0 0 0
−0.202 −1.15 0 0 0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0
0 0 −2.360 −13.6 −12.8 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 −1.62 −9.4 −9.15 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 −188.0 −111.6 −116.4 −20.8























,

B =

[

0 1.0439 0 0 −1.794 0 0 1.0439 0 0 0 −1.794
0 4.1486 0 0 2.6775 0 0 4.1486 0 0 0 2.6775

]T
,

C =

[

0.2640 0.8060 −1.420 −15.00 0 0 0 0 0 0 0 0
0 0 0 0 0 4.9000 2.1200 1.9500 9.3500 25.800 7.1400 0

]

.

B Reduced Order Models Obtained in Example 3

The obtained approximants of McMillan degrees 4, 5 and 6 for the system in Example 3 are as

follows:

Gr(s) =

[

Ar Br

Cr 0

]

, r = 4, 5, 6
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where

A4 =







−0.1632 −0.003010 0.01469 0.02672
−0.02222 −0.8835 0.1378 0.2156
−0.3549 −1.193 −0.1657 −1.197

9.138 −1.434 2.953 −8.384







,

B4 =







0.06693 0.2025
1.060 −0.3248

0.6186 −0.04439
−1.417 −6.133







,

C4 =

[

3.885 2.160 −0.0002362 −0.4002
10.34 −0.7046 −0.4843 −1.009

]

,

A5 =









−0.1645 −0.005458 0.01376 −0.02903 0.001243
−0.004979 −0.7658 0.1608 −0.2112 −0.1891
−0.3550 −1.156 −0.1595 1.226 −0.04172
−9.036 1.864 −2.882 −8.297 −0.1604
1.028 22.35 7.137 −2.497 −10.38









,

B5 =









0.06813 0.2029
0.9769 −0.3062
0.6061 −0.03843
1.136 6.160

−12.88 3.566









,

C5 =

[

3.874 2.192 0.008667 0.4068 0.1555
10.35 −0.6900 −0.4799 1.010 −0.07624

]

,

A6 =











−0.1651 −0.004383 0.01380 0.002821 −0.03048 −0.0002774
0.02033 −0.8239 0.1817 0.1418 −0.09048 0.1308
−0.4088 −1.139 −0.1363 −0.1050 1.040 0.04388
0.7130 −0.6050 0.1694 −0.07483 −0.3059 −0.07212
−9.010 1.409 −2.841 2.210 −8.148 0.01207
1.602 −25.53 −7.066 −1.225 7.046 −12.31











,

B6 =











0.06731 0.2036
0.9984 −0.3296
0.5602 0.01618

−0.008500 −0.5092
1.281 6.097
14.05 −5.727











,

C6 =

[

3.855 2.238 −0.05627 −0.1745 0.3806 −0.1526
10.36 −0.6923 −0.4478 −0.05021 1.014 0.06293

]

.
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