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Abstract: This paper is concerned with the development of an efficient compu-
tational solution method for control of linear discrete-time systems subject to
bounded disturbances with mixed polytopic constraints on the states and inputs.
It is shown that the non-convex problem of computing an optimal affine state
feedback control policy can be solved through reparameterization to an equivalent
convex problem, and that if the disturbance set is the linear map of a hypercube,
then this problem may be decomposed into a coupled set of finite horizon control
problems. If the problem involves the minimization of a quadratic cost, then this
yields a highly structured quadratic program in a tractable number of variables,
which can be solved with great efficiency.
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1. INTRODUCTION

This paper is concerned with the development of
an efficient computational solution method for a
robust optimal control problem for linear discrete-
time systems subject to state and input con-
straints and persistent external disturbances.

The difficulty of formulating practically imple-
mentable robust solutions for constrained reced-
ing horizon control is considered an important
open problem in the control literature (Mayne
et al., 2000). Several compromise solutions have
been proposed to make the problem tractable
(Bemporad, 1998; Lee and Kouvaritakis, 1999;
Chisci et al., 2001; Langson et al., 2004), but
generally at the cost of increased conservatism.

A recent proposal from the field of robust opti-
mization (Ben-Tal et al., 2002; Guslitser, 2002)

suggests that the control be parameterized as an
affine function of the past disturbance sequence,
rather than as a state feedback law. This pa-
rameterization has been shown to have several
attractive system-theoretic properties, the most
important of which is that it is equivalent to the
class of time-varying affine state feedback policies,
and thus transforms the non-convex optimiza-
tion problem of finding a constraint-admissible
state feedback policy into a convex one, solvable
using standard techniques (Goulart and Kerri-
gan, 2005). Furthermore, when implemented in a
receding-horizon fashion, these policies enable the
synthesis of stabilizing, time-invariant receding
horizon control laws (Goulart et al., 2005b).

From a computational point of view, the pa-
rameterization is attractive since it allows a ro-
bust optimal control problem to be formulated as



a tractable quadratic program when the distur-
bance set is polytopic and the desired policy is
one which minimizes a quadratic cost. The central
contribution of this paper is the development of
a decomposition technique that can be used to
separate the problem into a set of coupled finite
horizon control problems when the disturbance
set is the linear map of a hypercube, and whose
solution time is cubic in the horizon length at
each interior-point iteration. Numerical results are
presented that demonstrate that the technique is
practically implementable for systems of apprecia-
ble complexity.

Notation: For matrices A and B, A ⊗ B is the
Kronecker product of A and B, A† is the one-sided
or pseudo-inverse of A, A ≤ B denotes element-
wise inequality, and abs(A) denotes the element-
wise absolute value of A. 1 is an appropriately
sized column vector of ones. ei is an appropri-
ately sized unit vector with a single entry in the
ith term. For vectors x and y, ‖x‖2

Q = xT Qx,

vec(x, y) = [xT yT ]T . Z[k,l] represents the set of
integers {k, k + 1, . . . , l}.

2. DEFINITIONS AND ASSUMPTIONS

Consider the discrete-time system:

xk+1 = Axk + Buk + wk, wk ∈ W (1)

where x ∈ R
n is the system state, u ∈ R

m is the
control input and w ∈ R

n is the disturbance. The
values of the disturbance are unknown and may
change unpredictably from one time instant to the
next, but are contained in a convex and compact
set W , which contains the origin. It is assumed
that (A, B) is stabilizable and that at each sample
instant a measurement of the state is available.

Over the planning horizon k ∈ Z[0,N−1], the
system is subject to a mixed constraint on the
states and controls of the form

Z := {(x, u) ∈ R
n × R

m | Cx + Du ≤ b} , (2)

where q is the number of inequality constraints
that define Z , and C ∈ R

q×n, D ∈ R
q×m, and b ∈

R
q . In addition, a further constraint is imposed

on the terminal state xN , so that at the end of
the planning horizon the state must lie within a
terminal constraint set Xf , defined as

Xf := {x ∈ R
n | Y x ≤ z}, (3)

where Y ∈ R
r×n and z ∈ R

r.

Finally, define the stacked sequence of distur-
bances w ∈ R

nN such that

w := vec(w0, w1, . . . , wN−1), (4)

with w ∈ W and W := W ×· · ·×W , and similarly
define stacked versions of the state and control
sequences x ∈ R

n(N+1) and u ∈ R
mN such that

x := vec(x0, x1, . . . , xN−1, xN ) (5)

u := vec(u0, u1, . . . , uN−1). (6)

3. AN AFFINE STATE FEEDBACK
PARAMETERIZATION

One natural approach to controlling the system
in (1), while ensuring the satisfaction of the con-
straints (2)–(3), is to search over the class of ad-
missible time-varying affine state feedback control
policies. We thus consider policies of the form:

ui =

i
∑

j=0

Li,jxj + gi, ∀i ∈ Z[0,N−1], (7)

where each Li,j ∈ R
m×n and gi ∈ R

m. For
notational convenience, we also define the block
lower triangular matrix L ∈ R

mN×n(N+1) and
stacked vector g ∈ R

mN as

L :=







L0,0 0 · · · 0
...

. . .
. . .

...
LN−1,0 · · · LN−1,N−1 0






, (8a)

and
g := vec(g0, . . . , gN−1), (8b)

so that the control input sequence can be written
as u = Lx + g.

For a given initial state x, we define the set of
admissible (L,g) satisfying (2) and (3) as

Πsf
N (x) :=























(L,g)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

(L,g) satisfies (8), x = x0

xi+1 = Axi + Bui + wi

ui =
∑i

j=0 Li,jxj + gi

(xi, ui) ∈ Z , xN ∈ Xf

∀i ∈ Z[0,N−1], ∀w ∈ W























(9)
and the set of initial states x for which an admissi-
ble control policy of the form (7) exists is defined
as

X
sf
N :=

{

x ∈ R
n

∣

∣

∣
Πsf

N (x) 6= ∅
}

. (10)

In particular, we define an optimal policy pair
(L∗(x),g∗(x)) ∈ Πsf

N (x) to be one which mini-
mizes the value of a cost function that is quadratic
in the disturbance-free state and input sequence.
We thus define:

VN (x,L,g,w) :=
N−1
∑

i=0

1

2
(‖xi‖

2
Q+‖ui‖

2
R)+

1

2
‖xN‖2

P

where the matrices P , Q and R are positive
definite, and ui is given by (7), and define an
optimal policy pair as

(L∗(x),g∗(x)) := argmin
(L,g)∈Πsf

N
(x)

VN (x,L,g,0).

(11)
For the receding-horizon control case, a time-

invariant control law µN : X
sf
N → R

m can be
implemented by using the first part of this control



policy at each time instant, i.e. by implementing
the time-invariant receding horizon control law

µN (x) := L∗
0,0(x)x + g∗0(x). (12)

This control law is, in general, a nonlinear func-
tion with respect to the current state, and has
been shown to have many attractive geometric
and system-theoretic properties. In particular, its
implementation renders the set Πsf

N (x) robust pos-
itively invariant subject to certain conditions on
the set Xf , and, when W is a polytope, is a
continuous function of x. Furthermore, the closed
loop system is guaranteed to be input-to-state
stable (ISS) under suitable assumptions on Q,
P , R, and Xf . See (Goulart et al., 2005b) for a
proof of these and other results. Unfortunately,
such a control policy is seemingly very difficult to
implement, since the set Πsf

N (x) and cost function
VN (x, ·, ·, 0) are non-convex; however, it is possible
to convert this non-convex optimization problem
to an equivalent convex problem through an ap-
propriate reparameterization. This parameteriza-
tion is introduced in the following section.

4. AN AFFINE DISTURBANCE FEEDBACK
PARAMETERIZATION

A recent result in the literature on robust opti-
mization suggests a control policy that is affine in
the sequence of past disturbances, so that

ui =

i−1
∑

j=0

Mi,jwj + vi, ∀i ∈ Z[0,N−1]. (13)

A scheme of this type was suggested in (Ben-
Tal et al., 2002; Guslitser, 2002), and later in-
dependently proposed in (Löfberg, 2003). Note
that since full state feedback is assumed, the past
disturbance sequence is easily calculated as:

wi = xi+1 − Axi − Bui, ∀i ∈ Z[0,N−1]. (14)

Define the variable v ∈ R
mN and the block lower

triangular matrix M ∈ R
mN×nN such that

v := vec(v0, . . . , vN−1) (15a)

and

M :=











0 · · · · · · 0
M1,0 0 · · · 0

...
. . .

. . .
...

MN−1,0 · · · MN−1,N−2 0











, (15b)

so that the control input sequence can be written
as u = Mw + v. Define the set of admissible
(M,v), for which (2) and (3) are satisfied, as:

Πdf
N (x) :=































(M,v)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

(M,v) satisfies (15)
x = x0

xi+1 = Axi + Bui + wi

ui =
∑i−1

j=0 Mi,jwj + vi

(xi, ui) ∈ Z , xN ∈ Xf

∀i ∈ Z[0,N−1], ∀w ∈ W































,

(16)

and define the set of initial states x for which an
admissible control policy of the form (13) exists
as

X
df
N := {x ∈ R

n | Πdf
N (x) 6= ∅}. (17)

We are interested in this control policy parame-
terization primarily due to the following property,
proof of which may be found in (Goulart and
Kerrigan, 2005):

Theorem 1. For a given state x ∈ X
df
N , the set of

admissible policies Πdf
N (x) is convex, and the set

of admissible states X
df
N = X

sf
N . For any admissi-

ble (L,g) an admissible (M,v) can be found that
yields the same input and state sequence for all
w ∈ W , and vice-versa.

This result enables implementation of the control
law u = µN (x) by replacing the non-convex opti-
mization problem (11) with an equivalent convex
one. If we define the nominal states x̂i ∈ R

n to
be the states when no disturbances occur, i.e.
x̂i+1 = Ax̂i + Bvi. and define x̂ ∈ R

nN as

x̂ := vec(x, x̂1, . . . , x̂N ) = Bv + Ax. (18)

where A ∈ R
n(N+1)×n and B ∈ R

n(N+1)×mN are
suitably defined, then a quadratic cost function
similar to that in (11) can be written as

V
df
N (x,v) :=

1

2
(‖Bv‖2

Q + ‖v‖2
R) + (Ax)TQBv,

(19)
where Q := [ I⊗Q

P
] and R := I ⊗ R. As

a direct result of the equivalence of the two
parameterizations, the minimum value of (19)

evaluated over the admissible policies Πdf
N (x) is

equal to the minimum value of VN in (11), i.e.

min
(M,v)∈Πdf

N
(x)
V

df
N (x,v) = min

(L,g)∈Πsf

N
(x)
VN (x,L,g,0)

The control law µN (·) can then be implemented
using the first part of the optimal v∗(·) at each
step, i.e. µN (x) = v∗0(x) = L∗

0,0(x)x+g∗0(x), where

(M∗(x),v∗(x)) := argmin
(M,v)∈Πdf

N
(x)

V
df
N (x,v) (20)

which requires the minimization of a convex func-
tion over a convex set.

This minimization is particularly easy when W is
polyhedral or norm-bounded. In the remainder of
this paper, we will consider the particular case
where W is generated as the linear map of a
hypercube. Define

W = {w ∈ R
n | w = Ed, ‖d‖∞ ≤ 1}, (21)

where E ∈ R
n×l is full column rank, so that the

stacked generating disturbance sequence d ∈ R
lN

is
d = vec(d0, . . . , dN−1), (22)

and define the matrix J := I ⊗ E, so that
w = Jd. As shown in (Kerrigan and Maciejowski,



2004), it is then possible to eliminate the uni-
versal quantifier in (16) and construct matrices
F ∈ R

(qN+r)×mN , G ∈ R
(qN+r)×nN and T ∈

R
(qN+r)×n, and vector c ∈ R

qN+r such that the
set of feasible pairs (M,v) can be written in terms
of purely affine constraints:

Πdf
N (x)=







(M,v)
(M,v) satisfies (15), ∃Λ s.t.

Fv + Λ1 ≤ c + Tx

−Λ ≤ (FMJ + GJ) ≤ Λ







.

(23)
The minimization in (20) then reduces to a
tractable and convex QP in M, Λ, and v. The to-
tal number of variables in (23) is mN in v, mnN 2

in M, and (qlN2 + rlN) in Λ, with a number of
constraints equal to (qN + r) + (qlN 2 + rlN)),
or O(N2) overall. For a naive interior point com-
putational approach using a dense factorization
method, the resulting quadratic program would
thus require computation time of O(N 6) at each
iteration.

Next, define the following variable transformation:

U := MJ (24)

such that U ∈ R
mN×lN has a block lower triangu-

lar structure similar to that defined in (15) for M.

Optimization of the cost function (19) over the
set of feasible disturbance feedback policies thus
yields a QP in U, Λ and v:

min
U,Λ,v

1

2
(‖Bv‖2

Q + ‖v‖2
R) + (Ax)T Bv (25a)

subject to U strictly block lower triangular, and:

Fv + Λ1 ≤ c + Tx (25b)

−Λ ≤ (FU + GJ) ≤ Λ. (25c)

Note that, since E is assumed full column rank,
J†J = I , and an admissible M may always be
recovered by selecting M = UJ†.

Remark 2. The critical feature of the quadratic
program (25) is that the columns of the vari-
ables U and Λ are decoupled in the constraint
(25c). This allows columnwise separation of the
constraint into a number of subproblems, subject
to the coupling constraint (25b).

5. DIAGONALIZING THE ROBUST
OPTIMAL CONTROL PROBLEM

Following the type of strategy proposed in (Rao
et al., 1998), the QP defined in (25) can be rewrit-
ten in a more computationally attractive form
by reintroducing the eliminated state variables to
achieve greater structure. This is done by separat-
ing the original problem into subproblems; a nom-
inal problem, consisting of the part of the state
resulting from the nominal control vector v, and
a set of perturbation problems, each representing

those components of the state resulting from each
of the columns of (25c) in turn.

Nominal States and Inputs We first define a con-
straint contraction vector δc ∈ R

qN+r such that

δc := vec(δc0, . . . , δcN ) = Λ1, (26)

so that the constraint (25b) becomes

F s + δc ≤ c + Tx. (27)

Recalling that the nominal states x̂i are defined
in (18) as the expected states given no distur-
bances, it is easy to show that the constraint (27)
can be written explicitly in terms of the nominal
controls vi and states x̂i as

x̂0 = x, (28a)

x̂i+1 − Ax̂i − Bvi = 0, ∀i ∈ Z[0,N−1] (28b)

Cx̂i + Dvi + δci ≤ b, ∀i ∈ Z[0,N−1] (28c)

Y x̂N + δcN ≤ z, (28d)

which is in a form that is exactly the same as
that in a conventional receding horizon control
problem with no disturbances, but with the state
and input constraints at each stage i modified
by δci.

Perturbed States and Inputs We next consider the
effects of each of the columns of (FU + GJ) in
turn, and seek to construct a set of problems
similar to that in (28). We treat each column as
the output of a system subject to a unit impulse,
and construct a sub-problem that calculates the
contribution of that disturbance to the total con-
straint contraction vector δc.

From the original QP constraint (25c), the con-
straint contraction vector δc can be written as

abs(FU + GJ)1 ≤ Λ1 = δc, (29)

the left hand side of which can be rewritten as

abs(FU + GJ)1 =
lN
∑

p=1

abs((FU + GJ)ep). (30)

Define yp ∈ R
qN+r and δcp ∈ R

qN+r as

yp := (FU + GJ)ep (31)

δcp := abs(yp). (32)

The unit vector ep represents a unit disturbance
in some element j of the generating disturbance
dk at some time step k, with no disturbances at
any other step 1 . If we denote the jth column of
E as E(j), then it is easy to recognize yp as the
stacked output vector of the system

(up
i , x

p
i , y

p
i ) = 0, ∀i ∈ Z[0,k] (33a)

x
p
k+1 = E(j), (33b)

x
p
i+1−Ax

p
i −Bu

p
i = 0, ∀i ∈ Z[k+1,N−1] (33c)

y
p
i −Cx

p
i −Du

p
i = 0, ∀i ∈ Z[k+1,N−1] (33d)

y
p
N − Y x

p
N = 0, (33e)

1 Note that this implies p = lk + j, k = (p − j)/l and
j = 1 + (p − 1) mod l.



where yp = vec(yp
0 , . . . , y

p
N ). The inputs u

p
i of

this system come directly from the pth column
of the matrix U, and thus represent columns
of the submatrices Ui,k. If the constraint terms
δcp for each subproblem are similarly written as
δcp = vec(δcp

0, . . . , δc
p
N ), then each component

must satisfy δc
p
i = abs(yp

i ), or in linear inequality
constraint form, −δc

p
i ≤ y

p
i ≤ δc

p
i .

Note that for the pth subproblem, representing a
disturbance at stage k, the constraint contraction
terms are zero prior to stage (k + 1). By defining

C̄ :=

[

+C

−C

]

D̄ :=

[

+D

−D

]

Ȳ :=

[

+Y

−Y

]

(34)

H :=

[

−Iq

−Iq

]

Hf :=

[

−Ir

−Ir

]

, (35)

equations (33d) and (33e) can be combined to give

C̄x
p
i + D̄u

p
i + Hδc

p
i ≤ 0, ∀i ∈ Z[k+1,N−1] (36a)

Ȳ x
p
N + Hfδc

p
N ≤ 0. (36b)

The elements of the total constraint contraction
vector in (29) can be found by summing the
contributions from each of the subproblems:

δci =
∑lN

p=1
δc

p
i , ∀i ∈ Z[0,N ], (37)

Complete Robust Control Problem We can now
restate the robust optimization problem (25) as:

min

N−1
∑

i=0

(

1

2
‖x̂i‖

2
Q +

1

2
‖vi‖

2
R

)

+
1

2
‖x̂N‖2

P (38a)

subject to:

(28), (37) (38b)

(33a)–(33c) and (36) ∀p ∈ Z[1,lN ] (38c)

The decision variables in this problem are the
nominal states and controls x̂i and vi at each stage
(the initial state x̂0 is known), plus the perturbed
states, controls, and constraint contractions terms
x

p
i , u

p
i , and δc

p
i for each subproblem at each stage.

It is critical to note that this convex, tractable QP
is equivalent to the non-convex problem (11).

Finally, note that the constraints in (38) can
be rewritten in diagonalized form by interleaving
the variables by time index. The complete set
of constraints is then easily written in singly
bordered block diagonal form with considerable
structure and sparsity.

6. RESULTS

Two sparse QP solvers were used to evaluate the
proposed formulation. The first, OOQP (Gertz
and Wright, 2003), uses a primal-dual interior
approach configured with the sparse factorization
code MA27 from the HSL library (HSL, 2002)
and the OOQP version of the multiple-corrector
interior point method of (Gondzio, 1996). The

Table 1. Average Solution Times (sec)

(M,v) Decomposition

Problem Size OOQP PATH OOQP PATH

4 states, 4 stages 0.026 0.047 0.021 0.033
4 states, 8 stages 0.201 0.213 0.089 0.117
4 states, 12 stages 0.977 2.199 0.287 2.926
4 states, 16 stages 3.871 39.83 0.128 10.93
4 states, 20 stages 12.99 76.46 1.128 31.03

8 states, 4 stages 0.886 4.869 0.181 1.130
8 states, 8 stages 7.844 49.15 0.842 19.59
8 states, 12 stages 49.20 303.7 2.949 131.6
8 states, 16 stages 210.5 x 7.219 x
8 states, 20 stages 501.7 x 13.14 x

12 states, 4 stages 4.866 24.66 0.428 6.007
12 states, 8 stages 95.84 697.1† 3.458 230.5†

12 states, 12 stages 672.2 x 11.86 x
12 states, 16 stages x x 33.04 x
12 states, 20 stages x x 79.06 x

x – Solver failed all test cases
† – Based on limited data set due to failures

second sparse solver used was the QP interface
to the PATH (Dirske and Ferris, 1995) solver, a
code which solves the more general mixed com-
plementarity problem using an active-set method,
of which the quadratic programming problem is
a special case. All results reported in this section
were generated on a 3Ghz Pentium 4 single pro-
cessor machine with 1GB of RAM.

A set of test cases was generated to compare
the performance of the two sparse solvers using
the (M,v) formulation of Section 4 with the
decomposition based method of Section 5. Each
test case is defined by its number of states n and
horizon length N . The remaining parameters were
chosen using the following rules:

• There are twice as many states as inputs.
• All constraints represent randomly selected

symmetric bounds subjected to a random
similarity transformation.

• The matrices A and B are randomly gener-
ated, with (A, B) controllable, A stable.

• The dimension l of the generating distur-
bance is chosen as half the number of states,
with randomly generated E of full rank.

• All test cases have feasible solutions. The
current state x is selected such that at least
some of the inequality constraints in (38b)
are active at the optimal solution.

The average computational times required by each
of the two solvers for the two problem formula-
tions for a range of problem sizes are shown in
Table 1. Each entry represents the average of ten
test cases, unless otherwise noted.

It is clear from these results that, as expected, the
decomposition-based formulation can be solved
much more efficiently than the original (M,v)
formulation in every case, and that the differ-
ence in solution times increases dramatically with
increased problem size. Figure 1 shows that the
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Fig. 1. Computation time vs. horizon length for a
4 state system, using decomposition method

interior point solution time increases cubicly with
horizon length for a randomly generated problem
with 4 states. It can be shown that, when us-
ing an interior-point algorithm, the problem (38)
can always be solved in O(N 3) at each iteration,
given a suitable factorization procedure (Goulart
et al., 2005a).

7. CONCLUSIONS AND FUTURE WORK

The results presented rely on the solvers em-
ployed to exploit the underlying structure of the
quadratic program. It is also possible to exploit
this structure directly, by developing specialized
factorization algorithms for the factorization of
each interior point step. It may also be possible to
achieve considerably better performance by plac-
ing further constraints on the structure of the dis-
turbance feedback matrix M, though this appears
difficult to do if the attractive system-theoretic
properties of the present formulation are to be
preserved. These are topics of ongoing research.
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