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Abstract

For a large class of relay feedback systems (RFS) there will

be limit cycle oscillations. Conditions to check existence

and local stability of limit cycles for these systems are well

known. Global stability conditions, however, are practically

non-existent. This paper presents conditions in the form

of linear matrix inequalities (LMIs) that guarantee global

asymptotic stability of a limit cycle induced by a relay with

hysteresis in feedback with an LTI stable system. The anal-

ysis is based on �nding global quadratic Lyapunov functions

for a Poincar�e map associated with the RFS. We found that

a typical Poincar�e map induced by an LTI 
ow between two

hyperplanes can be represented as a linear transformation

analytically parametrized by a scalar function of the state.

Moreover, level sets of this function are convex. The search

for globally quadratic Lyapunov functions is then done by

solving a set of LMIs. Most examples of RFS analyzed by

the authors were proven globally stable. Systems analyzed

include minimum-phase systems, systems of relative degree

larger than one, and of high dimension. This leads us to

believe that quadratic stability of associated Poincar�e maps

is common in RFS.

1 Introduction

Although widely used [3, 4, 7, 18, 20], very few results
are available to analyze most PLS. More precisely, one
typically cannot guarantee stability, robustness, and
performance properties of PLS designs. Rather, any
such properties are inferred from extensive computer
simulations. However, in the absence of rigorous anal-
ysis tools, PLS designs come with no guarantees. In
other words, complete and systematic analysis and de-
sign methodologies have yet to emerge.

In this paper, a new methodology to analyze global
asymptotic stability of PLS is proposed. This method-
ology is based in proving quadratic Lyapunov functions
on the switching surfaces that can be used to prove the
map from one switching surface to the next switch-
ing surface is contracting in some norm. The main
di�erence between this and previous work, e.g. [16],
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is that we look for quadratic Lyapunov functions on
the switching surfaces instead of quadratic Lyapunov
functions on the state space. An immediate advan-
tage is that this allows us to analyze not only equilib-
rium points (very recently we were able to prove global
asymptotic stability of on/o� systems [8] and satura-
tion systems [9]) but also limit cycles.

To demonstrate the success of this methodology, we ap-
ply it to a simple yet very hard to analyze class of PLS
known as relay feedback systems (RFS). Although the
focus of this paper is on RFS, it is important to point
out that most ideas behind the main results described
here can be used in the analysis of more general PLS.

Analysis of RFS is a classic �eld. The early work was
motivated by relays in electromechanical systems and
simple models of dry friction. Applications of relay
feedback range from stationary control of industrial
processes to control of mobile objects as used, for ex-
ample, in space research. A vast collection of applica-
tions of relay feedback can be found in the �rst chapter
of [21]. More recent examples include the delta-sigma
modulator (as an alternative to conventional A/D con-
verters) and the automatic tuning of PID regulators.
In the delta-sigma modulator, a relay produces a bit
stream output whose pulse density depends on the ap-
plied input signal amplitude (see, for example, [1]).
Various methods were applied to the analysis of delta-
sigma modulators. In most situations, however, none
allowed to verify global stability of nonlinear oscilla-
tions. As for the automatic tuning of PID regulators,
implemented in many industrial controllers, the idea
is to determine some points on the Nyquist curve of a
stable open loop plant by measuring the frequency of
oscillation induced by a relay feedback (see, for exam-
ple, [4]). One problem that needs to be solved here is
the characterization of those systems that have unique
global attractive unimodal limit cycles. This problem
is important because it gives the class of systems where
relay tuning can be used.

Some important questions can be asked about RFS: do
they have limit cycles? If so, are they locally stable
or unstable? And if there exist a unique locally stable
limit cycle, is it also globally stable? Over many years,
researchers have been trying to answer these questions.
[5] and [21] are references that survey a number of anal-



ysis methods. Rigorous results on existence and local

stability of limit cycles of RFS can be found in [2, 15].
In [2], necessary and suÆcient conditions for local sta-
bility of limit cycles are presented. [15] emphasizes fast
switches and their properties and also proves volume
contraction of RFS. In [10], reasonably large regions
of stability around limit cycles were characterized. For
second-order systems, convergence analysis can be done
in the phase-plane [19, 13]. Stable second-order non-
minimum phase processes can in this way be shown
to have a globally attractive limit cycle. In [17] it is
proved that this also holds for processes having an im-
pulse response suÆciently close, in a certain sense, to
a second-order non-minimum phase process. Many im-
portant RFS, however, are not covered by this result.
It is then clear that the problem of rigorous global anal-
ysis of relay-induced oscillations is still open.

In this paper we prove global stability of limit cycles
of RFS by �nding quadratic stability of associated
Poincar�e maps. These results are based on the dis-
covery that most Poincar�e maps can be represented as
linear transformations parametrized by a scalar func-
tion of the state. Quadratic stability can then be eas-
ily checked by solving a set of linear matrix inequali-
ties (LMIs), which can be eÆciently solved using avail-
able computational tools. Using these ideas, most RFS
analyzed by the authors were proven to be globally
stable. Systems analyzed include minimum-phase sys-
tems, systems of relative degree larger than one, and of
high dimension. This leads us to believe that quadratic
stability of Poincar�e maps is common in RFS.

This paper is organized as follows. Section 2 is ded-
icated to give some background on RFS followed by
the main result of this paper (section 3). There, we
show that most Poincar�e maps can be decomposed in
a such a way that it is possible to reduce the problem of
quadratic stability of Poincar�e maps to solving a set of
LMIs. Section 4 contains some illustrative examples.
Finally, conclusions and future work are discussed in
section 5.

2 Background

We start by de�ning a RFS. Consider an LTI system�
_x = Ax+Bu

y = Cx
(1)

where x 2 IRn and A is Hurwitz, in feedback with a
relay (see �gure 1) de�ned as

u(t) 2

8>>>>>><
>>>>>>:

f�1g if y(t) > d, or y(t) > �d

and u(t� 0) = �1
f1g if y(t) < �d, or y(t) < d

and u(t� 0) = 1
f�1; 1g if y(t) = �d and u(t� 0) = �1

or y(t) = d and u(t� 0) = 1

(2)

where d � 0 is the hysteresis parameter. By a solution
of (1)-(2) we mean functions (x; y; u) satisfying (1)-(2),

where u is piecewise constant. Note that existence of
a solution is always guaranteed if d > 0, or if d = 0
and CB < 0, which are the cases we consider in this
paper. t is a switching time of a solution of (1)-(2) if
u is discontinuous at t. We say a trajectory of (1)-(2)
switches at some time t if t is a switching time.

LTI

u y

Figure 1: Relay Feedback System

The switching surfaces S and S of the RFS are the
surfaces of dimension n � 1 where y is equal to d and
�d, respectively. More precisely

S = fx 2 IRn : Cx = dg

and S = �S. Consider a subset Sa of S given by

Sa = fx 2 S : CAx+ CB � 0g

This set is important since it characterizes those points
in S that can be reached by any trajectory starting
at S. We call it the arrival set in S (see �gure 2).
Similarly, de�ne Sa = �Sa

x= Ax+B
.

Sa
x= Ax-B
.

S

S

Figure 2: The arrival set Sa

Note that trajectories of _x = Ax � B starting at any
point x0 2 S will converge to the equilibrium point
A�1B. When connected in feedback with the relay, one
of the following two possible scenarios will occur for a
certain trajectory starting at x0: it will either cross S
at some time, or it will never cross S. The last situation
is not interesting to us since it does not lead to limit
cycle trajectories. One way to ensure a switch is to
have CA�1B + d < 0, although this is not a necessary
condition for the existence of limit cycles. However,
if we are looking for globally stable limit cycles, it is
in fact necessary to have CA�1B + d < 0. Otherwise
a trajectory starting at A�1B would not converge to
the limit cycle. Throughout the paper, it is assumed
CA�1B + d < 0.

As we mentioned before, for a large class of processes,
there will be limit cycle oscillations. Let �(t) be a non-
trivial periodic solution of (1)-(2) with period T , and



let 
 be the limit cycle de�ned by the trace of �(t). The
limit cycle 
 is called symmetric if �(t+ T=2) = ��(t).
It is called unimodal if it only switches twice per cycle.
A class of limit cycles we are particularly interested in
is the class of all symmetric unimodal limit cycles. [2]
gives necessary and suÆcient conditions for the exis-
tence and local stability of symmetric unimodal limit
cycles.

An interesting property of linear systems in relay feed-
back is their symmetry around the origin, i.e., if x(t)
is a trajectory of _x = Ax � B starting at x0 2 S,
then �x(t) is a trajectory of _x = Ax + B starting at
�x0 2 S. This means that a limit cycle only needs to
be analyzed over half of its period.

We are now ready to de�ne what we mean by a Poincar�e
map for a RFS. Consider a symmetric unimodal limit
cycle 
, with period 2t�, obtained with the initial
condition x� 2 Sa. This means that a trajectory
x(t) starting at x� crosses the switching surface S at
�x� = x(t�) 2 Sa (see �gure 3).

∆1

S

γ
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1
∆

S
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Figure 3: De�nition of a Poincar�e map for a RFS

To study the behavior of the system around the limit
cycle we perturb x� by � such that x�+� 2 Sa. With
the initial condition x(0) = x� +�, consider the solu-
tion of (1)-(2) until the system switches. Let �x���1

be the switching point in S. We are interested in study-
ing the map from � to �1 (see �gure 3).

Note that, in general, �1 is not unique, that is, the map
from � to �1 is, in general, a multivalued map. De�ne
t� as the set of all times ti � 0 such that y(ti) = �d

and y(t) � �d on [0; ti]. For example, in the case of
�gure 4, t� = ft1; t2; t3g. This means that a switch
can occur at t = t1, t = t2, or t = t3. Obviously, if no
switch occurred at t = t1 or t = t2, then a switch must
occur at t = t3.

1x(t ) x(t )3x(t )2

x*+ ∆

-x*=x(t*)

x*

S

γS

Figure 4: Poincar�e map is in general multivalued

Let �x� � �1 2 x(t�). Since �x� � �1 2 Sa then
x� +�1 2 Sa. Consider the multivalued Poincar�e map

T0 : Sa ! Sa de�ned by x� +�1 2 T0(x
� +�). Since

x� is �xed, the Poincar�e map can be rede�ned as the
map T : Sa � x� ! Sa � x� given by �1 2 T (�),
where T (�) = T0(x

� +�)� x�. In result, � = 0 is an
equilibrium point of the discrete-time system

�k+1 2 T (�k)

In this paper, we are interested in systems that have
a unique locally stable unimodal limit cycle. For such
systems, the idea is to �nd a global quadratic Lyapunov
function for the associated Poincar�e map. If this map
is found to be quadratically stable then it follows that
the limit cycle is globally asymptotically stable.

3 Decomposition and stability of Poincar�e

maps

This section contains the main result of this paper. We
start by showing that most Poincar�e maps induced by
an LTI 
ow between the switching surfaces S and S can
be represented as a linear transformation analytically
parametrized by a scalar function of the state. The
proof can be found in [11, 12].

Theorem 3.1 Consider the Poincar�e map T de�ned

above. Let vt =
�
eAt � eAt

�
� �
x� �A�1B

�
and assume

jCvtj � Kkvtk, for some K > 0 and all t > 0. De�ne

H(t) =

�
vtC

Cvt
� I

�
eAt

for t > 0 (for t = t�, H(t) is de�ned via continuation).

Then, for any � 2 Sa�x�0 and �1 2 T (�) there exists
a t > 0 such that

�1 = H(t)� (3)

Such t is the switching time associated with �1.

This theorem says that most Poincar�e maps induced
by an LTI 
ow between two hyperplanes can be
represented as a linear transformation analytically
parametrized by a scalar function of the state. The
advantage of expressing the Poincar�e map this way is
to have all nonlinearities depending on only one pa-
rameter t. Although t depends on �, once t is �xed,
the Poincar�e map becomes linear in �. Note that H(t)
de�ned above is continuous in t > 0.

As we will see next, based on this theorem, it is possible
to reduce the problem of quadratic stability of Poincar�e
maps to the solution of a set of LMIs. The Poincar�e
map T de�ned above is quadratically stable if there
exists a symmetric matrix P > 0 such that

T T (�)PT (�) < �TP� ; 8� 2 Sa� x�; � 6= 0 (4)

A suÆcient condition for the quadratic stability of the
Poincar�emap can easily be obtained by substituting (3)



in (4). Therefore, the limit cycle is globally asymptot-
ically stable if there exists a P > 0 such that

�T
�
P �HT (t)PH(t)

�
� > 0 (5)

for all � 2 Sa, with associated switching times t 2 t�.

There are several alternatives to transform (5) into a
set of LMIs. A simple suÆcient condition is

P �HT (t)PH(t) > 0 on S � x� (6)

for some P > 0 and all t > 0, where \D > 0 on X"
stands for xTDx > 0 for all nonzero x 2 X . As we will
see in the next section using some illustrative examples,
although this condition is more conservative than (5),
it can prove global asymptotic stability of many impor-
tant RFS.

Other less conservative conditions are considered and
discussed in [11, 12]. These are based on the fact that
T is a map from Sa to Sa, and that the set of points in
Sa with the same switching time t forms a convex set
of dimension n� 2.

Condition (6) can be relaxed by noticing that since
A is Hurwitz and u = �1 is a bounded input, there
is a bounded set such that any trajectory will even-
tually enter and stay there. This will lead to bounds
on the di�erence between any two consecutive switch-
ing times. Let t� and t+ be bounds on the minimum
and maximum switching times of trajectories in that
set. Call the elements of [t�; t+] the expected switching

times. Condition (6) can then be relaxed to be satis-
�ed on [t�; t+] instead of t > 0. We brie
y explain how
these bounds t+ and t� can be obtained. The details
can be found in [11, 12].

By de�nition of Sa, y(t) > �d at least in some interval
(0; �), where � > 0. However, since we are assuming
CA�1B < �d, and A Hurwitz, it is easy to see that
y(t) cannot remain larger than �d for all t > 0. For
any initial condition x0, Ce

At(x0 �A�1B)! 0 as t!
1. Hence, since for suÆciently large time t, x(t) is
bounded, an upper bound on t+ can be obtained.

If x0 2 Sa, y(t) will be positive at least in some interval
(0; �). It can be shown [11, 12] that for t large enough,
� cannot be made arbitrarily small. So, since for suÆ-
ciently large time t, x(t) is bounded, a lower bound on
the time it takes between two consecutive switches can
be obtained.

4 Examples

The following examples were processed in matlab code
written by the authors. This code can be obtained
at [14]. The input to the matlab function is a transfer
function of an LTI system, together with the hystere-
sis parameter d. If the RFS is proven to be stable,

the matlab functions return the matrix P > 0 in (6).
For space limitation reasons, we have omitted several
details in these examples. Please refer to [11, 12] for
completeness and more examples.

Example 4.1 Consider the system in (1) with transfer
function

H(s) = �
s2 + s� 4

3(s+ 1)(s+ 2)(s+ 3)

in feedback with an ideal relay (d = 0). This is pos-
sible since any state-space realization of H results in
CB < 0. Although very simple, this system has never
been proven to be globally stable. The closed-loop sys-
tem has one unimodal symmetric limit cycle with pe-
riod approximately equal to 2�1:4. This corresponds to
x� � [0:60 -0.44 0:32]T 2 Sa. We analyzed this same
RFS in [10]. There, we characterized a reasonably large
region of stability around the limit cycle. Using the
software described above we were able to �nd P > 0
satisfying (6) for all expected switching times. There-
fore, the limit cycle is in fact globally asymptotically
stable.

Example 4.2 Consider the following 3rd-order mini-
mum phase system in

H(s) =
s2 + 3s+ 10

(s2 + 4s+ 2)(s+ 3)

in feedback with an hysteresis with d = 0:25. The RFS
has one unimodal symmetric limit cycle with period
approximately equal to 2 � 0:94. Moreover, there exists
a P > 0 satisfying (6) for all expected switching times
which means that the limit cycle is globally asymptot-
ically stable.

Example 4.3 Consider the following LTI system with
relative degree 7

H(s) =
1

(s+ 1)7

in feedback with an hysteresis with d = 0:1. The RFS
has a symmetric unimodal limit cycle with period 2t�,
where t� � 6:89. Note how the period of the limit
cycle is much larger than the hysteresis parameter d.
Again, it is possible to �nd a P > 0 satisfying (6) for
all expected switching times. We then conclude that
the limit cycle is globally asymptotically stable

5 Conclusion

This paper introduces the idea that global stability
analysis of certain trajectories like equilibrium points
and limit cycles of piecewise linear systems can be
done using surface Lyapunov functions. The devel-
opment of stability conditions is based on expressing



Poincar�e maps induced by LTI 
ow between a set and
an hyperplane as linear transformations analytically
parametrized by a scalar function of the state. More-
over, level sets of this function are convex. This way,
quadratic constraints for Poincar�e maps can expressed
as sets of LMIs.

To show how this approach can be powerful in the anal-
ysis of piecewise linear systems, we applied it to a sim-
ple, yet very hard to analyze, class of PLS known as
relay feedback systems. We addressed the problem of
global quadratic stability analysis of limit cycles for
RFS with hysteresis. This is, in fact, a hard problem
since very few results existed until now. However, with
this new results, most RFS analyzed by the authors
were proven to be globally stable. Systems analyzed
include minimum-phase systems, systems of relative
degree larger than one, and of high dimension. This
leads us to believe that quadratic stability is common
in RFS.

Knowing that this methodology worked so well for this
simple class of PLS, we pose the following question:
will the same ideas work well for other, more compli-
cated classes of PLS? Very recently we were able to
prove global asymptotic stability of equilibrium points
of on/o� systems [8] and saturation systems [9] show-
ing that this methodology can in fact be used to ana-
lyze many PLS. The ideas are similar: on the switching
surfaces we �nd quadratic Lyapunov functions that are
used to prove that the map from one switching surface
to the next switching surface is contracting in some
norm. These recent results together with the one in
this paper opens the door to the possibility that more
general PLS can be systematically analyzed using sur-
face Lyapunov functions.

There are still many open problems following this work.
An important extension of the results from this paper
is to �nd conditions that do not depend on P but guar-
antee its existence. Another interesting direction is to
study robustness and performance of RFS.
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