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Abstract In [4], we introduced an entirely new methodology to globally
In this paper we develop an entirely new constructive global analysisalyze symmetric unimodal limit cycfesf relay feedback
methodology for a class of hybrid systems knowtfPacewise Linear systems. The idea consisted in finding a quadratic Lyapunov
SystemgPLS). This methodology consists in inferring global propfunction on a switching surface that can be used to prove that
erties of PLS solely by studying their behavior at switching surfacélse associated Poin@map is contracting in some sense.

iated with PLS. Th in idea is t Iy t ie. . . .
associated wi € main idea IS fo analynpac. mapsl.e., This paper generalizes the ideas from [4] to globally ana-

maps from one switching surface to the next switching surface, s L . s
) . . o ze PLS. In a similar way, the main idea consists in finding
constructing quadratic Lyapunov functions on switching surfaces. Weé . . . .
: . - _guadratic Lyapunov functions on associated switching surfaces
found that an impact map induced by an LTI flow between two switcr}- . .
. ) . 1 fett can be used to prove thatpact mapsi.e., maps from one
ing surfaces can be represented as a linear transformation analytica v\y . o .
. . . . S ftchlng surface to the next switching surface, are contracting
parameterized by a scalar function of the state. This representation 0

. . in'some sense. The notion of an impact map can be though as
impact maps allows the search fguadratic surface Lyapunov func- o . ,
. ) : -a generalization of a PoineGamap. Impact maps are known to
tionsto be done by simply solving a set of LMIs. Global asymptotlg . . N . . .
- L - . pbe “unfriendly” maps in the sense that they are highly nonlin-
stability, robustness, and performance of limit cycles and equilibrium . . .
. ! o ear, multivalued, and not continuous. The novelty of this work
points of PLS can this way be efficiently checked. These new rg- mes from expressing impact mans induced by an LT flow
sults were successfully applied to certain classes of PLS. Althou R P g Imp . p . y .
) . . . . .. petween two hyperplanes as linear transformations analytically
this analysis methodology yields only sufficient criteria of stability, i . .
. : arameterized by a scalar function of the state. Furthermore,
has shown to be very successful in globally analyzing a large number . . . .
i = g : evel sets of this function are convex subsets of linear mani-
of examples with a locally stable limit cycle or equilibrium point. “} lds with dimension lower than that of the switching surfaces
fact, it is still an open problem whether there exists an example wi is allows us to search fauadratic surface Lva r?o func- '
a globally stable limit cycle or equilibrium point that cannot be suct-. : W u e . : u yapu .V u
i . igns by solving sets of LMIs using efficient computational al-
cessfully analyzed with this new methodology. Examples analyzed . . L
orithms. Contractions of certain impact maps of the system

include systems of relative degree larger than one and of high dimen- L
incluce syst ve deg 9 9n & can then be used to conclude about global stability, robustness,
sion, for which no other analysis methodology could be applied.

and performance of PLS.

1 Introduction In [1], we show that this new methodology can be used to not
In this work we are interested in a class of nonlinear syste®gly globally analyze limit cycles but also equilibrium points
known aspiecewise linear systenfPLS). PLS are character-of PLS. For that, we analyze on/off and saturation systems, in-
ized by a finite number of linear dynamical models togetheluding those with unstable nonlinearity sectors for which clas-
with a set of rules for switching among these models. Thergical methods like Popov criterion, Zames-Falb criterion, IQCs,
fore, this model description causes a partitioning of the stdail to analyze. Although this analysis methodology yields only
space into cells. These cells have distinctive properties in tisafficient criteria of stability, it has shown to be very successful
the dynamics within each cell are described by linear dynaniicglobally analyzing a large number of examples with a locally
equations. The boundaries of each cell are in effect switctagble limit cycle or equilibrium point. Infact, itis still an open
between different linear systems. Those switches arise frgioblem whether there exists an example with a globally stable
the breakpoints in the piecewise linear functions of the moddimit cycle or equilibrium point that could not be successfully
analyzed with this new methodology. Examples analyzed in-

The reason why we are interested in studying this class of S¥ide systems of relative degree larger than one and of high

tems is to capture discontinuity actions in the dynamics frommension, for which no other analysis methodology could be
either the controller or system nonlinearities. Although widel

é(lpplied.

used, very few results are available to analyze most PLS. More
precisely, one typically cannot guarantee stability, robustne€ssy jimit cycle is unimodalif it only switches twice per cycle.




We have shown [2, chapter 8] that this methodology can be pbintz, on a switching surface (see figure 1):

ficiently applied to not only globally analyze stability of limit 1 The cell is unbounded and there exists a trajectory that
cycles and equilibrium points, but also robustness, and perfor- i grow unbounded without ever switching. In this case,
mance of PLS. This success in globally analyzing stability, ro- . helongs to an unstable region of the PLS.

bustness, and performance of certain classes of PLS has shown

h £ thi hodol d ) 2. There is a locally stable equilibrium point in the cell and
the power of this new methodology, and suggests Its potential ¢ trajectory will asymptotically converge to it without
towards the analysis of larger and more complex PLS.

switching. If this is the case;, belongs to a stable region
A more complete and detailed version of this paper has been of that equilibrium point.
submitted for publication [3]. 3. The trajectory will switch in finite time.

2 Motivation
As discussed in introduction, there exist several tools to ana ' :
lyze PLS. One of the most important [7, 9, 6] is based in con-

structing piecewise quadratic Lyapunov functions in the stateFigure 1: Possible scenarios for a trajectory entering a cell
space. There are, however, several drawbacks with this aﬁ- ’ . i
proach. First, piecewise quadratic Lyapunov functions in thd Nere are several ways to check if scendre@n happen or not

state space cannot be constructed to analyze most limit cyc{gge [4, 1]). For now, assume that scenaritoes not happen.
Secongfor most PLS, it is not possible to construct piecewisé SCenario2 happens, we are done, i.e., the initial paipts a
quadratic Lyapunov functions with just the given natural paptable pointand so it does not require any further analysis. So,
tition of the system. In order to improve flexibility a subdivi\Ve€ are left with scenari®. This scenario raises several interest-
sion of partitions is typically necessary. The analysis methddg questions: what happens to the trajectory after it switches?
however, is efficient only when the number of partitions rélVill it switch again? And, will it converge to some equilibrium
quired to prove stability is small. Example 4.1 in [2] showB0int or some limit cycle? These are the sort of questions we
that even for second order systems, the construction of pieBgdress in this paper. The idea is to start by analyzing indi-
wise quadratic Lyapunov functions can be computationally i¥idual maps from one switching surface to the next switching
tractable due to the large number of partitions in the state spatéface. Then, we show that the analysis of PLS can be re-
required for the analysisThird, in general, for systems of or-duced to the simultaneously analysis of different maps from
der higher thars, it is extremely hard to obtain a refinemenPn€ Switching surface to another switching surface.

of partitions in the state-space to efficiently analyze PLS Ugnalysis of nonlinear systems at manifolds has been used by
ing piecewise quadratic Lyapunov functions. In fact, only gany researchers for a while now. The so-calRemincae

few and specific examples of PLS of order higher tBaana- map was introduced in order to reduce the study ofran
lyzed with this method have been reportéthally, existence dimensional system to a discretes1-dimensional system in a

of piecewise quadratic Lyapunov functions implies exponegranifold (see, for example, [8] for an introduction to Poirecar”
tial stability of the system. Thus, this approach cannot ProWgaps). The problem with Poin@rmaps is that they are typi-
asymptotic stability of PLS when these are not exponentiaiy|ly nonlinear, not continuous, and multivalued. Thus, global
stable. analysis of PLS is rarely done using these maps. This paper

The construction of piecewise quadratic Lyapunov functiof&Plains how the difficulties inherent to Poineaniaps can be

for PLS proposed in [7, 9, 6] imposes continuity of the th@ercome and how they can be used.to globally analyze PLS.
Lyapunov functions along switching surfaces. This means tlY¥¢ Show that our results reglly work in the sense that a large
the intersection of two Lyapunov functions with a switchin@umber of examples of certain classes of PLS, that could not be
surface—one from each side—defines a unique quadratic L#R&!yzed by any other method, were successfully proven glob-

punov function on the switching surface. Therefore, we coflY stable.

clude that if there are piecewise quadratic Lyapunov functiop§ the problems described above associated with the method
for a certain PLS, then there are also quadratic Lyapunov furmposed by [9, 7, 6], based on piecewise quadratic Lyapunov
tions on switching surfaces for that same PLS. Note that thgyctions, were not an issue in the classes of PLS analyzed
converse is not true. For instance, piecewise quadratic Lygy far using quadratic surface Lyapunov functionsirst,
punov functions cannot be constructed to analyze limit cyclegadratic surface Lyapunov functions can analyze both limit
However, as demonstrated in [4], quadratic Lyapunov functioggcles [4] and equilibrium points [LBecondit was sufficient

on switching surfaces exist and can be efficiently constructgficonsider only the natural partition of all PLS analyzed so
to analyze limit cycles. far, with no extra complexity added. Note that none of exam-

The purpose of this paper is to show how Lyapunov functioR&€S in [4, 1] could be analyzed with just their natural partition
on switching surfaces can be efficiently constructed. We cH#ing piecewise quadratic Lyapunov functiofsird, our new
theseQuadratic Surface Lyapunov Functiorince a PLS be- method scales'well with the dimension qf the system. And,
haves linearly inside each cell, only one of the following thré@lly, quadratic surface Lyapunov functions can be used to

scenarios can happen to a trajectory entering a cell at soph@ve global asymptotic stability of PLS that are not exponen-
tially stable (see example 4.3 in [1]).



3 Impact maps

In order to analyze PLS using quadratic surface Lyapunov
functions, we first need to understand the behavior of the sys-
tem as this flows from one switching surface to the next switch-
ing surface. A useful notion that we will be using throughout
this paper is that ofimpact map An impact map is simply a
map from one switching surface to the ngxt switching surfac%igure 2: Impact map from, € S¢ <af to A, € 5S¢ <]
Only after we understand the nature of a single impact map can

we look at a PLS as a whole, by combining all impact maps dgefinition 3.1 Let z(0) = x5 + Ao. Defineta, as the set
sociated with the PLS, to conclude about stability, robustneg$ all timest; > 0 such that the trajectory(t) with initial
and performance properties of the system. conditionz(0) satisfiesCyz(t;) = di andz(t) € X on[0,¢;].
Define also the set aéxpected switching times the impact
map fromA, € S¢ &xito A, € S¢ &af as

T ={t|t €ta,, Ao € S§ &z}}

Consider the following affine linear time-invariant system
i =Ax+ B Q)

wherez € R", A € R™*", andB € R". Note that we are not
imposing any kind of restrictions oA. Matrix A is allowed ) . der to find . ga N "
to have stable, unstable, and pure imaginary eigenvalues. RsIven, n order to find an imaga, € S <af, we mus

sume (1) is part of some PLS, and that (1) is defined on soﬂ{ét f".qd aln assolc:@ted S‘tw'tChng'mf ISOIV'n% fort'sh?vl/.' ¢
open polytopical sek C R". Assume also a trajectory justever, involves solving a transcendental equation. Solution to

arrived to a subset of the boundnf X belonging to such equations cannot, in general, be written in closed form,
and numerical procedures are typically the only way to solve

So={z € R": Cor =do} for t. Once a switching time is found, we can finally find the
and the system switches to (1). In this paper, we are interestetresponding\; .
in studying the impact map from some subsetSgfto some
subset of

For an impact map, once an initial conditidy, € S§ <}

Thus, in general, impact maps are highly nonlinear, multival-

Si={xeR": Ciz=d} ued, and not continuous. This “non-friendly” nature of impact
also in the boundary X . In this scenario, some subsetsSaf MaPs is the main reason why global analysis of PLS has not
andS; are switching surfaces of the PLS. been done before using quadratic surface Lyapunov functions.

The following result, however, shows that this map is not as
By a solution of (1) we mean a functiordefined or{0, ], with  “pad” as it looks, and opens the door to analysis of PLS in
2(0) € So, z(t) € S1, z(r) € X on0,]*, and satisfying (1). switching surfaces.
In this caset is aswitching timeof the solutionz of (1) and
we say aswitchoccurs ate(t). Theorem 3.1 Assume” x§(t) # d; forall t € T. Define

Let S¢ be some polytopical subset §f where any trajectory (1) = Crelt

starting atSy satisfiesz(t) € Sy, for some finitet > 0, and di ©Cyz§(t)

z(r) € X on[0,1]. LetalsoS} C S, be the set of those pointsand let H(t) = A + (a3(t) &%) w(t)

x; = z(t). The setS¢ can be seen as the image sefgf We hen. f 4 et th i hthat th

call S¢ thedeparture sein S, andS¢ thearrival setin S;. Then, for anyA, € Sg < there exists & € 7 such that the
impact map is given by

We are interested in studying the impact map, induced by (1), A = H(OA 2

fromz, € S§ toz; € S¢. Since bothr, andz; belong to ) T .( )80 ) . @

switching surfaces, they can be parameterized in their respelCht € ta, is the switching time associated withy .

tive hyperplanes. For that, let This theorem says that maps between switching surfaces, in-
o = x5+ Ao duced by an LTI flow, can be represented as linear transfor-
z o=t A mations analytically parameterized by a scalar function of the

state. At first, equation (2) may not seem of great help in an-
wherez; € Sy, 7 € Si, andAg, A, are any vectors suchalyzing the impact map from, to A;. There,A, is a linear
thatAy € S¢ &) andA; € S¢ a7 Inthis caseCyAy = function of Ay and a nonlinear function af the switching time
C1A; = 0. Define alsarj(t) as the trajectory of (1), startingassociated witi\, andA;. The switching time, however, is a
atzy, for allt > 0. The impact map of interest reduces to th&nction of A,. A transcendental equation needs to be solved
map fromA, to A, (see figure 2). in order to findt. Thus, by this reasoning, it seems (2) is say-
ing thatA; is a nonlinear function of\,. But, that we already

Note that, in general, the impact map fralp € S¢ <z new.

to Ay € S¢ <z defined above is not continuous and it is

multivalued. This is illustrated in example 3.1 in [1]. This is, however, just one way of thinking about (2). Fortu-
2Theboundaryof X is the set of all limit pointg of X such thap ¢ X. nately, there are, Other Ways,to fapproach equation (2) Assume,
3% denotes theclosure of X, ie the set X x u for now, the switching time is fixed. The result: the impact

{p| pis alimit point of X }. map (2) would be linear! But, what does it mean having the




switching timet fixed? In other words, what are the set 0bf A andt, the switching time associated witky . Letz(0) =
pointsz + A, in the switching surfaceS, such that every zo € S¢. Integrating the differential equation (1) gives
point in that set has a switching time & In that set, the im- ¢
pact map (2) is linear. z = el +/ eAt=T) Bdr

0

It turns out that the set of points ifif that have a switching Sincer; — 2* + A, i = 0.1

time of ¢t is a convex subset of a linear manifold of dimension t

n &2 (see figure 3). Le§, be that set, that is, the setof points A1 = e Aq +etaf + / A" Bdr af
Ty + A¢ € S& such thatt € ta,. In other words, a trajec- At 0

tory starting atr, € S; satisfies both:(7) € X on[0,], and = Ao +u5(t) Sy

Cyxz(t) = d;. Note that since the impact map is multivalued, a .
point in S¢ may belong to more than one st From the facC, A, = 0 andCy 27 = dy we get

Cie Ay = dy ©Czh(t) (3)
Since, by assumptioryz§(t) # d; for all t € T, the last

’ . expression can be written as

w(t)Ag =1 (4)
which means\; reduces t@* A, + (z(t) ) w(t)Ao W

Note that if A is invertible,z(t) can be written as:(t) =
Figure 3: Every point irf; has a switching time of et(zh+ A"'B) A~ B.

Note also that, as € 7 changesy; covers every single point Proof of corollary 3.1: The only thing left to prove is thaf; is

of S, i.e., 53 = {z|z €S, t € T} This follows since every , o pet of 4 linear manifold of dimensioms2. Letz, = 3+
pointAq € S0 &ag can switch for the first time a$f, and o € Si. SinceCha(t) = di, Ao must satisfy equation (3),
thereforgtA0 is always a nonzero set. These results can all @ﬁd Colo = 0 sinceAy € Sy &z, which are both linear
summarized in the following corollary. equalities. A, also satisfies a set of linear inequalities from
Corollary 3.1 Under the assumptions of theorem 3.1, for the fact thatzy € S¢, z(t) € Sf, andz(r) € X on|0,1].
givent € 7T, the impact map fromd\, € S; <z to A; € ThereforeS; <xzg has at most dimension <2 and is linear.
Sy &xf, given byA; = H(t)Ay, is a linear map. Moreover, B

i bset of a li ifold of di i 2, and . )
Si 1s a subset of a linear manifold of dimensienc2, an 4 Quadratic surface Lyapunov functions

S§={z|z €S, teT}
As we will see in section 4, this result is fundamental in thce:onstrucuon of LV?P“”OV functions for nonlinear ;ystems 1S,
. ) . .~ and has been, a difficult, and sometimes, frustrating task. As
analysis of PLS using quadratic surface Lyapunov functions, _, . : .
; I . explained before, there has been some results in constructing
It allows us to find conditions in the form of LMIs that, when_: . . ;
o . lecewise guadratic Lyapunov functions for PLS. Although
satisfied, guarantee stability, robustness, and performance, 0 S ; .
PLS hese results are able Fo analyze equilibrium points of certam
' classes of PLS, many important PLS cannot be analyzed this
Before moving onto the proofs of the above results, it is imvay because either they have limit cycles or the method is com-

portant to understand the meaning of the assumption in tiperationally too expensive.

orem 3.1. This says the trajectary(¢) cannot intersect the . . . .
s . . An alternative to constructing Lyapunov functions in the state
switching surfaces; for all ¢ € 7. With a careful choice of : . oo
. S " . space is to construct Lyapunov functions on switching surfaces.
xy € Sp (the initial condition ofz(t)), there are many CaseSy oo th drati f . h tchi
when this assumption is always satisfied, as explained in [1] efine then two quadratic Lyapunov unctions onF e switching
' SurfacesS¢ andS¢. Respectively, let;, andV; be given by
There are, however, cases where no choicg;af S, satisfies
the assumption. Or, in other case$,is fixed a priori (like in _
RFS [4], where the location af* in S, cannot be freely cho- whereP; > 0, for i = 0,1. These are Lyapunov candidates
sen), and it may not satisfy the assumption. In these worst cdééined of the switching surfaces with paramet@ss> 0, g;,
scenarios, there is at least anec 7 such that; zj(t,) = d;. anda;, to be found.
This does not mean we cannot obtain the desired linear re
sentation for the impact map. For some PLS, like RFS |
w(t) is defined via continuation, at some= ¢,, and the the-

Vi(z) = 2' Pix &22'g; + oy (5)

Rfxt, we want to show an impact map frafff C S to S¢ C
4}_17'1 is contracting in some sense. In particular, an impact map

Rt is quadratically stable if there exigt > 0, g;, «; such that
orem follows. If this is not the case, the theorem needs to be

slightly modified. Basically, at = ¢,, the impact map can Vi(A1) <Vo(Ag) forall Ay € S§ &uap (6)
still be written as a linear transformation but parameterized Pyt p < ¢ on S stand forz' Pz > 0 for all nonzerar € S. As a
another variable at, i.e., Ay = H;(ts,0) Ao, With Ao € St.. short hand, we will be using; for H (¢) andw; for w(t). The

Proof of theorem 3.1: We start by expressing; as function following theorem takes advantage of the results from section 3
to derive a set of matrix inequalities equivalent to condition (6).



Theorem 4.1 Define impact maps associated with a PLS to globally analyze the sys-
R(t) = Py &H,PLH, <2 (go ©Hlg1) w; + whaw ten_1? There are several _different issues that arise. when ana-
lyzing PLS using quadratic surface Lyapunov functions. This
section explains the three main steps to globally analyze a PLS.
These consist on (1) characterization of impact maps, (2) def-
inition of quadratic Lyapunov functions at switching surfaces,
R(t) >0 on S; &g (7)  and finally (3) solution of stability conditions. These steps con-
for all expected switching timese 7. sist on (see [1] for more details):

Basically, all this theorem does is substitute (2) in (6), and uSeep 1 Impact Maps

both facts that the map, to A, is linear inS; and that, a3 1 |dentification of all impact maps associated with the PLS.
ranges ovef’, S; covers every point i . If the system hasn switching surfaces then there are at
4.1 Approximation by a set of LMIs the molem.2 impact maps. The actual pumb_er of impact
maps required to analyze the system is typically smaller
due to certain properties of a system, like symmetry (see
relay feedback systems [4] or saturation systems [1]) or
just the fact that not all switches are possible.
Characterization of domains of impact maps.

. Necessary conditions. Certain conditions need to be
ALR(t)Ag > 0 forall Ag € S < checked in order to guarantee that a trajectory, starting

If this condition is satisfied then (7) follows sinde c Sd. A in a switching surface, does not grow unbounded without
trivial way to obtain a set of LMIs is to further relax the con-  Switching (as in the left of figure 1).
straints om\,. On one hand, this results in a more conservative®- Linear decomposition. For each impact map, we need to

condition. On the other hand, such condition is computation- find anzg belonging to the switching surface where the
ally efficient. domain of an impact is defined, such that the assump-

tion of theorem 3.1 is satisfied. If this is not possible, the
switching times where the assumption is not satisfied need
to be characterized, and then proceed as explained in [3].

R(t) >0 on Sy &xp (8)  step 2 Quadratic Surface Lyapunov Functions

for.aII expected SW't.Chmg timgse 7. _ _ 1. Define all quadratic surface Lyapunov functions on the
This result uses the ideas from the previous section to showthat respective domains of impact maps. There are at the

the problem of quadratic stability of an impact map reduces to  most2m Lyapunov functions, where: is the number of
the solution of a infinite dimensional set of LMIs. As shownin  switching surfaces of the PLS.

several examples in [4] and [1], although condition (8) is more2, Constraints on quadratic surface Lyapunov functions:
conservative than (7), in many situations this is enough to ef-  continuity issues, and limit cycles and equilibrium points.
ficiently and successfully globally analyze PLS. Condition (8)3. Switching times and switching time bounds. For each im-
can be written as an equivalent set of LMIs by noticing that  pact map, we have a quadratic inequality that must be sat-
impact maps are < 1-dimensional maps. See [1] for details. isfied for all expected switching timeg associated with
the impact map. In many situations, however, it is not nec-
essary to check if a quadratic inequality is satisfied for all
t € T, butitis enough that this is true only on a bounded
subset of7".

Step 3 Stability Conditions

1. Write stability conditions as LMIs using corollary 4.1, for
each impact map.

wherea = ag <a;. The impact map fromy, € S¢ <z to
A, € 8§ &7 is a contraction if there exisPy, P, > 0 and
Jo, g1, @ such that

There are many ways to approximate condition (7) with a set of
LMIs, which can be efficiently solved using available software.

By definition, condition (7) is equivalent th{ R(¢) Ay > 0 for

all Ag € S; &zf. A more conservative condition results when 2
Ay is relaxed: 3'

Corollary 4.1 The impact map from\, € S§ &zf t0 A} €
S¢ a7 is a contraction if there existy, P, > 0 andgo, g1, «
such that

Itis possible to make condition (8) less conservative at a cost of
increase computations. This condition takes only into account
that Ay € Sp <. In [1], we explain how to approximate
condition (7) with less conservative sets of LMIs than (8).

4.2 Proof of Results
Proof of theorem 4.1: From (6) and using (2) and corol-

lary 3.1, we have 2. Improvements of stability conditions. If there is no fea-
ALPIA; &2A g1 + a1 < AJPyAg ©2A4g0 + sible solution to the LMIs described in the previous item,
& Al (Py &H!P H;) Ay 2A) (go ©Hlg1) +a >0 we can use less conservative conditions (see [1]).
3. An alternative to solving all the LMIs described above is
forall Ag € S; ©zf. Finally, using (4) the result follows. m to add LMIs until all quadratic constraints are satisfied,

since checking if a quadratic inequality is satisfied is much

Proof of corollary 4.1: The result follows sincé; C S;. = casier than solving the correspondent LMIs.

5 Global analysis of PLS Before attempting to analyze general classes of PLS with
We have seen how global analysis of a single impact map a@mdratic surface Lyapunov functions using this algorithm, it is
be done using quadratic Lyapunov functions defined on switdmportant to fully understand in detail each of the steps in the
ing surfaces. The next question is how to combine differealgorithm. For that purpose, we have analyzed several classes



of PLS by increasing order of complexity [4, 1]. Each of thedemit cycles of several classes of piecewise linear systems
classes was carefully chosen to (1) separately deal with diff@PLS): relay feedback systems, on/off systems, and saturation
ent issues in each step of the algorithm and (2) to illustraggstems. A large number of examples of these classes of PLS
with examples the efficiency of this new methodology. Bwith a locally stable limit cycle or equilibrium point were suc-
increasing complexity, we first analyzed relay feedback sysessfully globally analyzed using this analysis methodology. In
tems [4], then on/off systems [1], and finally saturation syfact, it is still an open problem whether there exists an exam-
tems [1]. The success in globally analyzing a large number@é with a globally stable limit cycle or equilibrium point that
examples of these classes of PLS demonstrated the potemtiaild not be successfully analyzed with this new methodology.
of these new ideas in globally analyzing other, more complex
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The success and power of this new methodology has been
demonstrated in globally analyzing equilibrium points and



