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Abstract

Many systems like servo systems, satellites, hard-
disks, and CD players, can be modeled as linear sys-
tems with a single integrator and a saturation. Many
times, such systems are controlled with a PI con-
troller resulting in a feedback interconnection with
a double integrator and a saturation. In this pa-
per, we propose a loop transformation that results
in bounded operators so that classical analysis tools
like � -analysis or IQCs can be applied. In order to
show boundedness of all operators, we use quadratic
surface Lyapunov functions to efficiently check if a
double integrator in feedback with a saturation non-
linearity has ��� -gain less than ��� � . We show
that for many of such systems, the �	� -gain is non-
conservative in the sense that this is approximately
equal to the lower bound obtained by replacing the
saturation with a constant gain of 
 .

1 Introduction

There are many control applications that can be
modeled as a plant with a single integrator, a satu-
ration nonlinearity, and a PI controller as shown in
figure 1. One of the most simple one is the position
control of a body with a PI controller and a power
limit actuator. In this case, the force �������������� ,

where � and � represents the mass of the body and
the coefficient of friction, respectively. Typically, if
the position ������� is to track some reference com-
mand � ����� , a PI controller is used. In this case, �"!#� � � � !$���%�'&)( .
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Figure 1: PI position control system with power lim-
ited actuator

Not only systems satisfying the Newton’s law �*�
�,+ can be modeled as in figure 1. Many servo sys-
tems, including mechanical systems, are often mod-
eled this way. A double integrator system may be
used as a simple model for satellite control, mod-
eling the relation between the angular position and
velocity and the reaction jets. Other examples are
the control of a hard-disk drive head, the laser beam
of a CD, etc.

Analysis of saturation systems with double integra-
tors has been done for many years. As explained
in [6], in order to perform robustness analysis the
system is typically transformed into one shown in
figure 2, where the saturation is treated as an un-
certainty. The problem with this approach is that it
gives us a nominal plant that is marginally unstable,
preventing us to apply some classical analysis tools



such as the Popov criterion, � -analysis, and Integral
Quadratic Constraints (IQCs).
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Figure 2: Nominal system and uncertainty

An alternative is to encapsulate the unstable oper-
ator in an artificial feedback loop which defines a
bounded operator. Robustness analysis can then be
performed on the transformed system which consists
of bounded operators. Assuming

 � ! � is stable, this
leaves us with the double integrator and the satura-
tion to worry about. A possible loop transformation
is shown in figure 3. In order to analyze the system,
we mush first check if

�
is a bounded operator. In

this case,
�

is a double integrator in feedback in-
terconnection with a saturation nonlinearity, where
the output consists of signals from both the first and
second integrator. The question whether the system
�� � ! + � ��� � ( ��� � � �� � � � has finite �$� -gain from �
to � , �� , or �� , has been posted as an open problem [2].
It has been shown, meanwhile, that the �	� -gain from
� to � is infinite [7], and the ��� -gain from � to �� is
also infinite [6]. This means the loop transformation
in figure 3 does not result in a finite ��� -gain operator�

.
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Figure 3: Loop transformation with an unstable op-
erator

�
In this paper, we propose the loop decomposition
shown in figure 4, where � ( , � � , and � � ! � are func-
tions of ��� , �	� , and

 � ! � , and � � ! � is stable (see
appendix A for details). The loops of both systems
in figures 1 and 4 are identical and analysis prop-
erties can be inferred from one to another and vice

versa. The low-pass filter is used to exclude high fre-
quency content from the feedback loop, as expected
from real applications. In [3], it is shown that for
� ( � � � � 
 and 
�� � , the �$� -gain of

�
is finite,

but no upper bound of this gain is given. The goal of
this paper is, for given � ( � � , � ��� � , and 
 ��� , to
give sufficient conditions to (1) check if the �	� -gain
of
�

is finite and (2) find upper bounds on the � � -
gain of

�
. We show that our method is not conser-

vative for many values of � ( , � � , and 
 since we are
able to find upper bounds on the �	� -gain of

�
that

are approximately equal to lower bounds obtained
when the saturation is replaced by a unity constant
gain. The method is based on constructing quadratic
Lyapunov functions on the switching surface associ-
ated with the saturation system. The construction of
such Lyapunov functions is done by solving a set of
LMIs.
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Figure 4: Loop transformation with stable operators

This paper is organized as follows. The following
section contains the main result of the paper. There,
conditions in the form of LMIs are given to check if
� is an upper bound of the ��� -gain of

�
in figure 4.

This section also contains several illustrative exam-
ples. Section 3 proves the main result and section 4
gives conclusions. Finally, computational details can
be found in appendix. A preceding version of this
work can be found in [4].

2 Main Results

2.1 Preliminaries

Let �$� denote the space of all functions  ��
����� ��� IR which are square summable, i.e.,

�  � � ������  � � ����� ��� �



The extended space ����� consists of all functions  �����
which satisfy

 ��  ������� � � , for all ��� � , where
 ��

is a truncation operator defined as �  ��  � ����� �  �����
if �
	 � and �  ��  � ����� � � otherwise.

We say that the ��� -gain from input � to output � of
some system is less than � � � if

�
�
� � � ������� ��	 � � �� � � � ����� � (1)

for all � � � , and all � � ����� . The ��� -gain �� of
the system from � to � is the infimum over all � such
that (1) is satisfied.

Consider the operator
�

in figure 4. For given
� ( � � ��� 
 , we are interested in finding an upper bound
of the ��� -gain of

�
. The following proposition gives

an easy way to find a lower bound of the �	� -gain of�
. The proof, based on the fact that the saturation

behaves linearly for small inputs, can be found in
appendix B.

Proposition 2.1 Consider the system
�

in figure 4.
The �$� -gain ��� of the same system but with the sat-
uration replaced by a constant gain of 
 is a lower
bound of the �$� -gain of

�
, i.e., � 	 ��� 	 �� .

Note that when the saturation is replaced by a con-
stant gain of 
 , the system becomes linear. Thus, ���
is simply the square of the � � -norm of the linear
system � � ! �� �"!#� � ! �

� 
 ! � 
 � � ! ��� � ( ! ��� � �
From this expression we immediately see that it is
necessary � ( � � , � � � � , and 
 � � , or other-
wise ��� � � . When � � � � the original system
is reduced to a single integrator which was studied
in [5, 9]. Hence, this case will just be briefly dis-
cussed in section 2.4. The proof of the following
proposition can also be found in appendix B.

Proposition 2.2 Consider the system
�

in figure 4.
If there exists an 
�� 
 ( � � such that the ��� -gain
of
�

is finite then the ��� -gain is finite for any 
 � � .

A state-space representation of system
�

in figure 4
is ����� ����

�� ( � � � � �
�� � � �
�� � � (� ��� (� �� � ! + � � � � ( � � ( � � ��� � (2)

Let � �
� � ( � � ���! and " �

�

 � ( 
 � . In the state-

space, the system can be seen as a piecewise linear
system, with # cells and two switching surfaces (see
figure 5). The switching surfaces are$ �&% �'� IR (��)" � �
+*
and

$ � � $ . When " � � 
 , �� � � � 
 , when" �,	 � 
 , �� � �
 , and, finally, when � 
 	 " �'	 
 ,
�� ��� � " � .

x0

x1
S

.
2V (  )

V (  ).1 0−x

x

x2b

2a

S y=−Cx
y=

y=−1

1
2b

Figure 5: Possible trajectories in the state-space

2.2 Double Integrator

Assume that � � � � . The following matrices will be
needed in the main result. For some � ��� , let

-/. � � � � 01112
354376 � �

�
�354376 � �
�

�

8:999; � -/< � � � � 01112
� (3=6 � (376 �

 �� (3=6 � (376 �
� 


8:999;
and -?> � � � � @ � 



 �BA & 6DCEGF 
�HA & C EHI � 
 �HA & C E �
Define alsoJ � 012 � � � �� 
 � � ( � 


� � � (�
8:9; �LK� 012 ��

(�
8:9;

and the Hamiltonian matrixM � F J KNK  PO �� "  " � J  I (3)



Let A � > � � � be # by # matrices obtained from parti-
tioning A�� � and-�� � � � � F � ( � � � � ( � � ��  ( � � � � � � � � I
where

�
( � � � � A � � A &)(( � ,

� � � � � � A &)(( � A ( ( , and� ( � � � � � A � ( ��A � � A &)(( � A ( ( � � A &)(( � �  �� O @ , where the
notation A�� > � A � > � � � was used for simplification.
Finally, define

-
( �

0111111112


�
�


�
�

8:99999999; � - �$�
0111111112
��� ( � 
 � �

 � � �
� 
 � �
� � � � ( � 

� � 
 �
� � � 


8:99999999;
and

- ( � ��� 
 � � 
 � � �  .
We are now ready for the main result of the paper. In
this result, we drop the argument � � � for simplifica-
tion.

Theorem 2.1 Consider the system
�

in figure 4.
Given � ( � � � ��
 � � , let � � ��� . Let also � ���
be a @ by @ diagonal matrix and 	 � IR � . Define

 � F � �
� � � I � � � F 	� 	 I ��
� � F � 	� 	 I

and � ( � � � � � � � � -  .  -L. � @ -  . � , � ( ( � � � �� -  < �  -L. � � � , � � ( � � � � -  � -�� - ( � � , and� (�( � � � � -  � -� - ( � 
� . If

�
( � � �������� F -?> � -  <  -L< � ( ( � � ��  ( ( � � � � ( � � � � I ��� (4)

� � . � � � ������ F -  � -�� - � �  � � ( � � ��  � ( � � � -  ( -� - ( I � � (5)

� � < � � �������� F -  � -�� - � �  � (�( � � ��  (�( � � � -  ( -� - ( I ��� (6)

for all � � � then the ��� -gain of
�

is less or equal
than � .

The last theorem gives us a set of infinite dimen-
sional LMIs that, when satisfied, guarantee that

�
not only has finite ��� -gain, but also that this is upper

bounded by � . This allows us to write an IQC of the
form �

�
� � � � ����� ��	 � � �� � � ������� � (7)

which, in turn, allows us to perform robustness and
performance analysis on the system in figure 4 or,
equivalently, on the original system in figure 1.

The method of proof is as follows. First, inequal-
ity (7) is satisfied if for every � � �	��� there exists a
Lyapunov function � ��� � such that the solution �������
from the initial state ��� � � � � satisfies

�
�������� � � � � ��� � � � ������� � � � � ����� �"! ��� � � ����� � � ��� (8)

for all � 	 � � 	 �#! . To see this, let � � � � . Then,� ����� � � � � � and � ����� �#! � � � � , since � is a Lya-
punov function.

Figure 5 shows possible trajectories of (2) starting
at
$

. Depending on the control input � , a trajectory
may enter the region where ��� � 
 . Since � � �	��� ,
a switch must eventually occur at some point � ( � $ .
The control � may also be such that the trajectory en-
ters the linear region where �,� � " � . In this case,
there are three possibilities: the trajectory does not
switch again and goes to zero as � � � , it returns to$

, or it intersects
$

. Since the system is symmetric
around the origin, for analysis purposes, any other
trajectories can be reduced the ones just described.

Second, define two Lyapunov functions � ( and �)� on
the switching surface

$
. Condition (8) is satisfied if

�
� 4� � � � � ( ����� � � � � ��� � � � � �)� ��� ( � � � ( ��� � � (9)

�
� 6%$� � � � �� . � ��� � � � ����� � � � �&� ( � � � . �	� � � � � ( � (10)

�
� 6('� � � � �� < ����� � � � ����� � � � � � ( ���	� � < � � � � � � ( � (11)

for all � � � � ( � � � . � �	� � < � $
, and � ( �=� � . �7� � < �*� ,

and where � ( �����G� �$� is such that a trajectory
starting at � � satisfies � ( � ��� � ( � and � � � 
 ,
� � �

���=� ( � , and � � � ��� � �$� , ) � @ + � @+* is such that
a trajectory starting at � ( satisfies � � � ��� � � � and� � � " � , ��� �

���=� � � .
Finally, under certain assumptions, the inputs � � ,)	� 
 � @ + � @+* , that minimize the integrals on the left



side of the above inequalities can be explicitly found.
If the Lyapunov functions are chosen to be quadratic
functions, the result are conditions (4)-(6). The de-
tails of the proof can be found in section 3.

2.3 Examples

In order to solve an infinite dimensional set of LMIs,
there are some extra steps we need to take to make
this solution computationally attractive. Obviously,
it is not possible to solve the three quadratic inequal-
ities for all � � � . The idea is to find a finite se-
quence of times � � ��� defined on some bounded set� � � ���=��� � such that it is sufficient (4)-(6) are sat-
isfied in

�
to prove the desired result. It is then nec-

essary to guarantee they are also satisfied in � �
� ��� ��� � , and � �*� � � �=� � � ( � for all � � �=� � � ( � �

.
The latest can be guaranteed by estimating bounds
on the derivative of each condition (4)-(6) between� � �=� � � ( � �

. Conditions to guarantee that (4)-
(6) are also satisfied in � � � ��� � � � , for some
� � ��� � � , are given in propositions C.1 and C.2.

The following examples were processed in matlab
code. The latest version of this software is avail-
able at the author’s web page. Before presenting the
examples, we briefly explain the matlab function
we developed. The user supplies � ( � � , � � � �
(the case when � ��� � results in the single inte-
grator which will be dealt in the next section), and
 � � . If all three conditions (4)-(6) are satisfied
for all � � �

, the function returns a graphic show-
ing the minimum eigenvalues of each

� � � � � , which,
obviously, must be positive for all � � �

.

Example 2.1 Let � ( � ���
	 , � � � @ , and 
�� @ . In
this example, we find the smallest upper bound � of
the �$� -gain of

�
in figure 4 using theorem 2.1. A

lower bound can be found by computing the linear
gain, i.e., the �$� -gain of

�
when the saturation non-

linearity is replaced by a constant gain of 
 . Here,
this is ��� � �������� @ @ ��� . Using the software de-
scribed above, we found an upper bound of the � � -
gain of

�
of �,���������� @ @ ��� . Note that the difference

between the upper and lower bound is smaller than@�� 
 � &�� , i.e., the precision is less than @ � 
�	 � 
 � &���� .

Figure 6 shows the minimum eigenvalues of
� � � � � ,
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Figure 6: Minimum eigenvalues of
� � � � � , ) �


 � @ + � @+*
) � 
 � @ + � @+* . For visualization purposes, the mini-
mum eigenvalues of

� � . � � � and
� � < � � � were scaled

by @�� 
 ��� .

Example 2.2 Let � ( � � � � 
 . In this example
we find the smallest upper bound � of the �	� -gain
of

�
for different values of 
*� � . The left side

of figure 7 shows the lower bound � � and the upper
bound � on the ��� -gain of

�
. The right side of fig-

ure 7 plots � � ��� . Logarithmic scales were used for
better visualization.
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Figure 7: � and ��� as a function of 
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From this figure we can see that the difference be-
tween the upper and lower bound goes to zero as 

goes to infinity. In fact, for 
 � ���
	 the difference
between � and ��� is less than ������� � . For 
 ��	 this
difference is already smaller than ��� � ��� � and less
than � � 
 �

&� �� for 
 � 
 � � .
If � ���� is chosen small enough, the Hamiltonian



matrix
M

in (3) has pure imaginary eigenvalues. For
 �*����	 , it turns out that for all ��� � � such that
H has no pure imaginary eigenvalues, it was always
possible to find � � 	 such that conditions (4)-(6) are
satisfied. In other words, numerically we found that
for 
 � ���
	 conditions (4)-(6) are satisfied if and
only if H has no pure imaginary eigenvalues. Thus,
for 
 ������	 , figure 7 also shows the smallest � such
that

M
does not have pure imaginary eigenvalues.

For 
 � ����	 , however, we encountered several nu-
merical problems and � tended to be higher than the
smallest � such that H has no pure imaginary eigen-
values.

Several questions can now be raised: is the gap be-
tween � and ��� increasing as 
 approaches zero due
to numerical errors, conservatism of the method, or
the fact that the ��� -gain of the system is just larger
than ��� , and this gap increases as 
 approaches zero?
Or is true that � ����� or ��� ��� for all 
�� � ? An-
swers to such questions are currently under investi-
gation.

For sure, this example shows that our method is not
conservative, except maybe for small values of 
 ,
since the upper and lower bounds of the �	� -gain of�

are almost identical.

2.4 Single Integrator

When � � � � , the system reduces to a single in-
tegrator. This class of system has been studied be-
fore in [5, 9]. For completeness, in this section we
briefly explain how some matrices and vectors in
conditions (4)-(6) can be changed in order to allow
to check for the ��� -gain of systems with a single in-
tegrator. For some � � � , let

- . � � � � � � ( � � �  
and

-/< � � � � � 
 
 �  . Define alsoJ � F � � ( � 

� � (� I �LK � F � (� I

and, finally,

-
( �

01112
(3 4
�
(3 4
�

8:999; � - � � 01112
� (3 4 �

 �
� � (354
� 


8:999; � - ( �
01112
� (3 4
�
(3 4
�

8:999;
With all the other variables defined as in section 2.2,
we have a result similar to theorem 2.1, but with
� � � � .

Theorem 2.2 Consider the system
�

in figure 4.
Given � ( � � , � � � � , and 
 � � , let � � ��� .
Let also � ��� and 	 be real numbers. Define

 � F � �
� � � I � � � F 	� 	 I � 
� � F � 	� 	 I

and 
� ( � � � � � � � � -  . � -?> �  � -L. � @ -  . � ,
� ( ( � � � � -  < � � -?> �  � -L. � � � . If

F -  < � - > �  � -/< 
� ( ( � � �
�  ( ( � � � 
� ( � � � � I ���� � . � � � � �� � < � � � � �
for all � � � , where

� � . � � � and
� � < � � � are defined

as in (5) and (6), respectively, then the �	� -gain of
�

is less or equal than � .

The proof of this result is similar to the proof of the-
orem 2.1 and is therefore omitted here.

3 Proof of Theorem 2.1

In this section, we show that if conditions (4)-(6) are
satisfied then so are conditions (9)-(11). But, before
we do, consider conditions (9) and (10). If � ( �� � � � � . � $

and � ( � � � . � � then it results that
the left side of both conditions is equal to zero, i.e.,

� � �)� ��� � � � � ( ��� � �
� � � ( ��� � � � �)� ��� � �

which means that � ( ��� � � �)� � � � , i.e., the Lyapunov
functions must be identical. So, from now on, we
consider � � � � � � ( ��� � � �)� � � � .
A notion that will be usefully throughout the rest of
the proof is the notion of impact map. An impact
map is simply a map from one switching surface to
the next switching surface. There are three impact
maps of interest associated with a saturation system
(see figure 5). The fist impact map (impact map 
 )
takes points � � � $

and maps them back to � ( �$
such that the trajectory stays in the region where� � � 
 . The second impact map (impact map @ + )takes points from � ( � $

and also maps them back
to � � . � $

, but this time the trajectory stays in the



region where � � � " � . Finally, the third impact
map (impact map @ * ) takes points from from � ( � $
and maps them to � � < $ such that the trajectory stays
in the region where � � � " � .

Each of these impact maps is associated with each
condition (9)-(11). We will start with impact map 

and condition (9).

3.1 Impact Map 


The first map we consider is the map that leaves
$

and returns to
$

and the trajectory remains in the
region where " � � 
 . Here, � � � 
 and therefore
�� �$� � 
 . Let � � � � ( � $ and � � � . For simplicity,
write ��� � � � � � � � � ( � � � � � � �  and ��� � � � � � �� � ( � � � � � � �! . Note that, in this region, only the last
state � is controllable. The first two states � ( and
� � do not depend on the input. Integrating, we get
� � � ��� � � � � � � � and, at � � � ,

� � � � � � � � � �
This means that �� ( ����� � ��� � � � � � � � � . Integrating,
and evaluating at � � � we get

� (
� � ��� � � �@ � � � � � � � � � ( �

Since � � � � ( � $ , it is also true that� � ( � � � ( � � � � � � � 
� (
� � � ( � � � � � � �


This gives us four equations with six variables. Let
the free variables be � � and � � and define

F � (� � I ������
01112
� � �� �
� � �� �

8 999; � -/. � � � � -/< � � � F � �� � I
Next, we solve the following minimization problem

�  ��������
	�� 6 � �� � � � � � ��� � � � ��� � � �
subject to �� � � (� �)� (� � , � � � � � � � , � � � � � � � , and
� is such that " ������� �
 , � � �

���=� � . In order to find
an explicit solution for � , we simplify the problem
and ignore the fact that " ������� � 
 , � � �

���=� � . The

problem then becomes a standard � � optimization
problem where the solution can be found in many
text books like [1, 8]. In this case,

�  � F � �� � I  - > � � � F � �� � I � �
Define a quadratic surface Lyapunov function � ��� �
in
$

as � � � � � � �  � � � � � @ �  � 	
where � � �  � � . Hence,

� � � ( � � � � � � � � F � (� � I   F � (� � I � @ F � (� � I  �
� F � �� � I  -  <  -L< F � �� � I

� @ F � �� � I  -  < �  -/. � � �)� -  .  -/. � @ -  . �
where

-L. � -L. � � � and
-/< � -L< � � � were used

for simplification. Finally,

�  � � � � ( � � � � � � �
is equivalent to (4).

The reason why ��� � is chosen a diagonal matrix
versus a symmetric one comes from the following
proposition.

Proposition 3.1 Let

� � F � ( � (� ( �)� I � �
If � (�� � then (4) is never satisfied for large enough
values of � � � .
The proof can be found in appendix C.1.

3.2 Impact Map @ +
The next map we consider is the map that leaves$

and returns to
$

and the trajectory remains in
the region where where � 
 	 " � 	 
 . This
means � � � " � , or �� � � � " � . In this region,
the system is linear given by �� � J � � K � . Let
� ( �

� � ( � � � � � � �  � � � . � � � ( � � � � � � �  � $
and� � � . Since all the states are controllable, to find



the optimal cost
�  all we need is solve the standard� � optimization problem [1, 8], yielding

�  � F � � .� ( I  -�� � � � F � � .� ( I
Since � ( � � � . � $

F � � .� ( I � -
( �

- � F � � .�
( I

where
�
( �

� � � � � � �! and
� � . � � � � � � � �  . Hence

�  � F � � .�
( I  -  � -� - � F � � .�

( I
� @ F � � .�

( I  -  � -�� - ( � -  ( -�� - (
On the other hand,

� � � � . � � � � � ( � � F � � .�
( I   F � � .�

( I � @ F � � .�
( I  �

Finally, �  � � � � � . � � � � � ( �
is equivalent to (5).

3.3 Impact Map @+*
The last map we consider is the map from

$
to
$

and
where the trajectory remains in the same region as
the previous map. The proof for this map is similar
to the one from impact map @ + . The difference is
that F � � <� ( I � -

( �
- ( F � � <�

( I
since � ( � $

and � � < � $
. This means �	� � < � $

which results in

�  � � � � � � < � � � � � ( �
which is equivalent to (6).

4 Conclusions

This paper gives conditions in the form of LMIs that,
when satisfied, guarantee a system with a double in-
tegrator in feedback with a saturation nonlinearity
has finite �$� -gain. Moreover, for a large class of

such systems, we showed that the linear �	� -gain of
the system, i.e., the ��� -gain of the same system but
with the saturation nonlinearity replaced by a con-
stant gain of 
 , is approximately equal to the �	� -gain
of the original system. These results allow the use
of classical analysis tools like � -analysis or IQCs to
analyze systems with double integrators and satura-
tions, including servo systems like some mechanical
systems, satellites, hard-disks, CD players, etc.

Appendix

A Loop Transformation to Find Stable
Operators

In this section, we show how to chose � ( , � � , and� �"!#� as functions of � � , �	� , and
 �"! � so that � �"! � is

a proper stable system and the systems in figures 1
and 4 are equivalent, in the sense that both loops are
identical. In other words, analysis properties can be
inferred from one to another and vice versa. First,
let
 �"!#� be written as

 � ! ���������� �"!#�� � ! � � ��� ! � � ����� � � ( ! � � �
!�� ��� � &)( !	� &)( � ����� ��� ( ! �
� �

where � 	 � ,
� � � � or otherwise the system

would have only one integrator, and also � � � � or
otherwise the system would have three integrators
and therefore be unstable (Sussmann and Yang [10]
showed that a chain of � integrators, � � # , cannot
be stabilized by bounded linear feedback).

Proposition A.1 Let

� ( �
� �� � ��� � 
� � � � ( � � � � (� �� �	� � � �$�

� �� � �	�
and the proper system

� �"! � � 
� � ! �� � ! � � 
 ! � 
 �
where the degree of 
� �"! � is strictly less than the de-
gree of � � ! � . Then, the systems in figures 1 and 4 are
have identical loops and analysis properties can be
inferred from one to another and vice versa. More-
over, � � ! � is stable if and only if

 � ! � is stable.



The proof, omitted here, is based on replacing the
above equalities in the system in figure 4 and show-
ing that this loop is indeed identical to the one in
figure 1.

B Proof of Propositions 2.1 and 2.2

Proof of proposition 2.1: Consider the system
� �

obtained from system
�

in figure 4 with the satura-
tion replaced by a constant gain of 
 , and let ��� be
the respective ��� -gain. For simplicity, and without
loss of generality, assume there exist a control input
� � � � � such that

� � � � � � ��� � � � � � (a similar argu-
ment can be applied if such � � � �$� does not exist
by considering a sequence of � ��� �$� resulting in � �
arbitrarily close to ��� ). Since

� � is linear, ��� can
be scaled such that � � � ����� � 	 
 . Hence, by apply-
ing such input ��� to

�
, we obtain

� � � � � ��� � � � � �
since the saturation never leaves the linear region.
This means that ��� is a lower bound of the ��� -gain
of
�

.

Proof of proposition 2.2: Let � ( � � be an upper
bound of the ��� -gain of

�
when 
 � 
 ( � � . Let

now 
 � � and consider the following subsystem� � ! �

� � ! � � 
 ( ! � 

 ! � 


The �$� -gain of this subsystem is 
�,� ����� � 
 ��
 ( O 
 � .
Then, the ��� -gain � of

�
when 
 ��� ( ��� -gain from
� to � ) is upper bounded by 
� � ( , i.e., � 	 
� � ( � � .

C Computational Details

In order to be able to solve for the parameters of the
Lyapunov function, we need to first to solve several
computational issues associated with conditions (4)-
(6) in theorem 2.1. In particular, we need to guar-
antee the conditions are satisfied for large enough
values of � . We start with impact map 
 .

C.1 Impact Map 


We start by proving proposition 3.1.

Proof of proposition 3.1: Assume � ��� is a sym-
metric matrix. The first step is to write

�
( � � � ex-

plicitly. After some manipulation, we find that

�
( � � � � 012 � � � �)� � �376 � � ( � ( � � � � � ( ( � � �� � � A & C E � �376 � � ( � � � � � � � � ( � � �� ( ( � � � � � ( � � � � � (�(

8 9;
where � ( � � � � � � � � A & C E � �376 � � ( , � ( ( � � � �� � 4376 � � 3 4376 � �

� � � ( � 	 � , � � � � � � � � � A & 6DCE �

�)� � �3 6 � � ( , � � ( � � � � (3 6 � ( � � 3 43 6 � �
� � � ( � 	 � ,

� (�( � @ � ( 354376 � @ 	 ( � 
 , and
� � � ��� �

( & �	� 6DCE .

When � is large,
�
( � � � tends to

�
( � � � � 012 @ � 
 � �)� � �3 6 � � ( �

� � (� �376 � � ( �%� �
� � (�

� � ( �
� � ( � � (�(

8:9;
This matrix, however, is not positive definite for
large enough � . To see this, consider the sub-matrix� �)� �

� � (�
� � ( � � @ � ( 354376 � @ 	 ( � 
 � �

Assuming @ � ( 354376 � @ 	 ( � 
 , it is necessary that

�%�
� @ � ( � (� � � @ 	 ( � 
 � � � � �(
 � �

which is not true for large enough � .

Proposition 3.1 establishes that � � � must be a di-
agonal matrix, i.e., � ��� ���� � � ( � �)� � , where � ( � �%� �
� . Hence,

�
( � � � reduces to

�
( � � � � 0112 � � � �)� � � � A & C E � (3=6 � ( � 	 �� � � A & C E � � A & 6DCE � �)� (376 � ( � 	 �� (376 � ( � 	 � (3=6 � ( � 	 � � � (�(

8 99;
From the main diagonal of

�
( � � � , we see immedi-

ately that it is necessary that

� (�( � @ � ( � (� � � @ 	 ( � 
 � � (12)

and
� � �%� � @ � 
 (13)

The next proposition guarantees that if the previous
inequalities are satisfied, for large enough � � �



condition
�
( � � � � � is always satisfied. The proof,

omitted here, is based on showing that for large
enough � all the eigenvalues of

�
( � � � are positive.

Note that
�
( � � � is a # by # matrix. Thus, the charac-

teristic polynomial is of the form � ( � � ��� � � �
( � �� � � � . The roots of this third order polynomial are

all positive if and only if
� � � � , � ( � � , � � � � ,

and
� � � �

(
� � .

Proposition C.1 If both (12) and (13) are satisfied
then there exists a � ( � � �

��� � � such that
�
( � � � �

� for all � � � ( � .

Note that � ( � in the last proposition can be found
explicitly, although this is not done here.

C.2 Impact Maps @ + and @ *
The goal of this section is to give a similar result
to proposition C.1 for impact maps @ + and @+* . Lets
start by decomposing the Hamiltonian matrix

M
inM � ��� � where

� � F � ( ( � ( �� � ( �)� � I ��� � F � �
� � � I �� � F � ( ( �

( �� � ( � � � I
and

�
is such that all its eigenvalues are in the left-

half plane. Define matrices � and � such that- ��� � ���� � � ��� � and
-
( � � �  �  �  . Define

also

�
( � F �  � � � � &)(( � � �

� �  � &)(� � � � ( � I �
� � . � F �  �)� � � &)(( � �

�  � &)(� � � � ( � I � � � < � F � �  �)� � � &)(( � �
�  � &)(� � � � ( � I

and
� ( � �  � � � � � &)(( � � � &)(� � � � ( � � . Denote � . �� and � < � 
� . Then, after some manipulation of� � . � � � and

� � < � � � , we get

� � � � � 	�� ���
 � � � � � � � � F � ( �  � � � � � ��  � � � �  � � ( I
for )�� + � * . Then, the following proposition follows.

Proposition C.2 If
� � � � � � , ) � + � * , then there

exist � � � � �
��� � � such that

� � � � � � � � for all � �� � � , )�� + � * .
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