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Abstract: This paper uses quadratic surface Lyapunov functions to eÆciently check
if a double integrator in feedback with a saturation nonlinearity has L2-gain less
than 
 > 0. We show that for many of such systems, the L2-gain is non-conservative
in the sense that they are approximately equal to the lower bound obtained by
replacing the saturation with a constant gain of 1. These results allow the use
of classical analysis tools like �-analysis or IQCs to analyze systems with double
integrators and saturations, including servo systems like some mechanical systems,
satellites, hard-disks, CD players, etc.
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1. INTRODUCTION

There are many control applications that can
be modeled as a plant with a single integrator,
a saturation nonlinearity, and a PI controller
as shown in �gure 1. One of the most simple
one is the position control of a body with a PI
controller and a power limit actuator. In this
case, the force F = m�x + k _x, where m and
k represents the mass of the body and the
coeÆcient of friction, respectively. Typically,
if the position x(t) is to track some reference
command u(t), a PI controller is used. In this
case, P (s) = (ms+ k)�1.
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Fig. 1. PI position control system with power
limited actuator

Not only systems satisfying the Newton's law
F = ma can be modeled as in �gure 1. Many
servo systems, including mechanical systems,
are often modeled this way. A double integra-
tor system may be used as a simple model
for satellite control, modeling the relation be-
tween the angular position and velocity and
the reaction jets. Other examples are the con-
trol of a hard-disk drive head, the laser beam
of a CD, etc.

Analysis of saturation systems with double
integrators has been done for many years. As
explained in (Kao, 2001), in order to perform
robustness analysis the system is typically
transformed into one shown in �gure 2, where
the saturation is treated as an uncertainty.
The problem with this approach is that it
gives us a nominal plant that is marginally
unstable, preventing us to apply some classical
analysis tools such as the Popov criterion, �-
analysis, and Integral Quadratic Constraints
(IQCs).
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Fig. 2. Nominal system and uncertainty

An alternative is to encapsulate the unstable
operator in an arti�cial feedback loop which
de�nes a bounded operator. Robustness anal-
ysis can then be performed on the transformed
system which consists of bounded operators.
Assuming P (s) is stable, this leaves us with
the double integrator and the saturation to
worry about. A possible loop transformation
is shown in �gure 3. In order to analyze the
system, we mush �rst check if � is a bounded
operator. In this case, � is a double integra-
tor in feedback interconnection with a sat-
uration nonlinearity, where the output con-
sists of signals from both the �rst and second
integrator. The question whether the system
�x = sat(�c1x � c2 _x + u) has �nite L2-gain
from u to x, _x, or �x, has been posted as an
open problem (Blondel et al., 1999). It has
been shown, meanwhile, that the L2-gain from
u to x is in�nite (Liu et al., 1996), and the L2-
gain from u to _x is also in�nite (Kao, 2001).
The question as if the L2-gain from u to �x is
�nite is still open. This means the loop trans-
formation in �gure 3 results in an unstable
operator �.
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Fig. 3. Loop transformation with an unstable

operator �

In this paper we propose the loop decomposi-
tion shown in �gure 4, where k1, k2, and G(s)
are functions of kp, ki, and P (s), and G(s) is
stable. The loops of both systems in �gures 1

and 4 are identical and analysis properties can
be inferred from one to another and vice versa.
The low-pass �lter is used to exclude high
frequency content from the feedback loop, as
expected from real applications. In order to
perform analysis on the transformed system
in �gure 4, we need �rst to show that � is a
stable operator. Thus, the goal of this paper
is to give suÆcient conditions to check if the
L2-gain of � is �nite for given k1 > 0, k2 � 0,
and � > 0. We show that our method is not
conservative for many values of k1, k2, and �

since we able to �nd upper bounds of the L2-
gain of � that were approximately equal to
lower bounds obtained when the saturation is
replaced by a unity constant gain. The method
is based on constructing quadratic Lyapunov
functions on the switching surface associated
with the saturation system. The construction
of such Lyapunov functions is done by solving
a set of LMIs.
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Fig. 4. Loop transformation with stable oper-
ators

This paper is organized as follows. The follow-
ing section gives some preliminary de�nitions
and results. Section 3 contains the main result
of the paper. There, conditions in the form of
LMIs are given to check if 
 is an upper bound
of the L2-gain of � in �gure 4. Section 4 con-
tains several illustrative examples and, �nally,
section 5 gives conclusions. Due to space lim-
itations, this paper excludes many important
details, including the proof of the main result.
These can all be found at (Gon�calves, 2001).

2. PRELIMINARIES

Let L2 denote the space of all functions f :
[0;1)! IR which are square summable, i.e.,



kfk2 =

1Z
0

f2(t)dt <1

The extended space L2e consists of all func-
tions f(t) which satisfy PT f(t) 2 L2, for all
T � 0, where PT is a truncation operator
de�ned as (PT f)(t) = f(t) if t � T and
(PT f)(t) = 0 otherwise.

We say that the L2-gain from input u to
output y of some system is less than 
 � 0
if

TZ
0

y2(t)dt � 


TZ
0

u2(t)dt (1)

for all T � 0, and all u 2 L2e. The L2-gain 

�

of the system from u to y is the in�mum over
all 
 such that (1) is satis�ed.

Consider the operator � in �gure 4. For given
k1; k2; �, we are interested in �nding an up-
per bound of the L2-gain of �. The follow-
ing proposition gives an easy way to �nd a
lower bound of the L2-gain of �. The proof,
based on the fact that the saturation behaves
linearly for small inputs, can be found in ap-
pendix B in (Gon�calves, 2001).

Proposition 2.1. Consider the system � in
�gure 4. The L2-gain 
L of the same system
but with the saturation replaced by a constant
gain of 1 is a lower bound of the L2-gain of �,
i.e., 0 � 
L � 
�.

Note that when the saturation is replaced by a
constant gain of 1, the system becomes linear.
Thus, 
L is simply the square of the H

1
of

the linear system

Y (s)

U(s)
=

s2

(�s+ 1)(s2 + k1s+ k2)

From this expression we immediately see that
it is necessary k1 > 0, k2 � 0, and � >

0, or otherwise 
L = 1. When k2 = 0
the original system is reduced to a single
integrator which was studied in (J�onsson and
Megretski, 2000; Megretski, 2001). The proof
of the following proposition can also be found
in appendix B in (Gon�calves, 2001).

Proposition 2.2. Consider the system � in
�gure 4. If there exists an � = �1 > 0 such

that the L2-gain of � is �nite then the L2-gain
is �nite for any � > 0.

A state-space representation of system � in
�gure 4 is8>>><

>>>:

_x1 = k2x2
_x2 = y

_v = �
1

�
v +

1

�
u

y = sat(�x1 � k1x2 � v)

(2)

Let x = [x1 x2 v]0 and C = [1 k1 1].
In the state-space, the system can be seen
as piecewise linear system, with 3 cells and
two switching surfaces (see �gure 5). The
switching surfaces are

S = fx 2 IRn : Cx = 1g

and S = �S. When Cx � 1, _x2 = �1,
when Cx � �1, _x2 = 1, and, �nally, when
�1 � Cx � 1, _x2 = �Cx.
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Fig. 5. Possible trajectories in the state-space

3. DOUBLE INTEGRATOR

Assume that k2 > 0. The following matrices
will be needed in the main result. For some
T > 0, let

Wa(T ) =

0
B@
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� T

2

0
k1
k2

+ T
2

0

1
CA ;Wb(T ) =
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1

k2T
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1
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2
�

1� e�
2T
�

�
1

�e�
T
�

��
1 �e�

T
�

�

De�ne also

A =

0
@ 0 k2 0
�1 �k1 �1
0 0 � 1

�

1
A ; B =

0
@ 0

0
1

�

1
A



and

H =

�
A BB0=


�C 0C �A0

�
(3)

Let eij(T ) be the square matrices of dimension
3 by 3 obtained from eHT and

Wt(T ) =

�
E1(T ) E3(T )
E0

3(T ) E2(T )

�

where E1(T ) = e22e
�1

12
, E2(T ) = e�1

12
e11,

and E3(T ) =
�
e21 � e22e

�1

12
e11 � (e�1

12
)0
�
=2,

where the notation eij = eij(T ) was used for
simpli�cation. Finally, de�ne

W1 =

0
BBBBB@

1
0
0
1
0
0

1
CCCCCA
; W2 =

0
BBBBB@

�k1 �1 0 0
1 0 0 0
0 1 0 0
0 0 �k1 �1
0 0 1 0
0 0 0 1

1
CCCCCA

and W3 = (�1 0 0 1 0 0 )
0

.

We are now ready for the main result of the
paper. In this result, we sometimes drop the
argument (T ) for simpli�cation.

Theorem 3.1. Consider the system � in �g-
ure 4. Given k1; k2; � > 0, let 
 � 
L. Let also
p > 0 be a 2 by 2 diagonal matrix and g 2 IR2.
De�ne

P =

�
p 0
0 �p

�
; G =

�
g

�g

�
; �G =

�
�g
�g

�

and r12(T ) = �T�W 0

aPWa�2W
0

aG, r13(T ) =
�W 0

b(PWa+G), r23(T ) =W 0

2WtW1�G, and
r33(T ) =W 0

2WtW3 � �G. If

R1(T )
def
=

�
Wj �W 0

bPWb r13(T )
r013(T ) r12(T )

�
> 0 (4)

R2a(T )
def
=

�
W 0

2WtW2 � P r23(T )
r023(T ) W 0

1WtW1

�
> 0(5)

R2b(T )
def
=

�
W 0

2WtW2 � P r33(T )
r033(T ) W 0

3WtW3

�
> 0(6)

for all T > 0 then the L2-gain of � is less or
equal than 
.

The last theorem gives us a set of in�nite
dimensional LMIs that, when satis�ed, guar-
antee that � not only has �nite L2-gain, but

also that this is upper bounded by 
. This
allows us to write an IQC of the form

TZ
0

y2(t)dt � 


TZ
0

u2(t)dt (7)

which, in turn, allows us to perform robustness
and performance analysis on the system in
�gure 4 or, equivalently, on the original system
in �gure 1.

The method of proof is as follows. First, in-
equality (7) is satis�ed if for every u 2 L2e

there exists a Lyapunov function V (�) such
that the solution x(t) from the initial state
x(0) = 0 satis�es

TfZ
Ti

�

u2(t)� y2(t)

�
dt � V (x(Tf ))� V (x(Ti))(8)

for all 0 � Ti � Tf . To see this, let Ti = 0.
Then, V (x(0)) = 0 and V (x(Tf )) � 0, since
V is a Lyapunov function.

Figure 5 shows possible trajectories of (2)
starting at S. Depending on the control input
u, a trajectory may enter the region where y =
�1. Since u 2 L2e, a switch must eventually
occur at some point x1 2 S. The control u
may also be such that the trajectory enters
the linear region where y = �Cx. In this case,
there are three possibilities: the trajectory
does not switch again and goes to zero as
t!1, it returns to S, or it intersects S. Since
the system is symmetric around the origin, for
analysis purposes, any other trajectories can
be reduced the ones just described.

Second, de�ne two Lyapunov functions V1 and
V2 on the switching surface S. Condition (8)
is satis�ed if

T1Z
0

�

u21(t)� y2(t)

�
dt � V2(x1)� V1(x0)

T2aZ
0

�

u22a(t)� y2(t)

�
dt � V1(x2a)� V2(x1)

T2bZ
0

�

u22b(t)� y2(t)

�
dt � V1(�x2b)� V2(x1)



for all x0; x1; x2a;�x2b 2 S, and T1; T2a; T2b >
0, and where u1(t) 2 L2 is such that a
trajectory starting at x0 satis�es x1 = x(T1)
and y = �1, t 2 [0; T1], and ui(t) 2 L2,
i = 2a; 2b is such that a trajectory starting
at x1 satis�es xi = x(Ti) and y = �Cx,
t 2 [0; Ti].

Finally, under certain assumptions, the inputs
ui, i = 1; 2a; 2b, that minimize the integrals on
the left side of the above inequalities can be
explicitly found. If the Lyapunov functions are
chosen to be quadratic functions, the result
are conditions (4)-(6). The complete proof can
be found in section 3 of (Gon�calves, 2001).

4. EXAMPLES

In order to solve an in�nite dimensional set
of LMIs, there are some extra steps we need
to take to make this solution computationally
attractive. Obviously, it is not possible to solve
the three quadratic inequalities for all T > 0.
The idea is to �nd a �nite sequence of times
fTig de�ned on some bounded set T = (0; T+]
such that it is suÆcient (4)-(6) are satis�ed
in T to prove the desired result. It is then
necessary to guarantee they are also satis�ed
in T 2 (T+;1), and T 2 (Ti; Ti+1) for all
Ti; Ti+1 2 T . The latest can be guaranteed
by estimating bounds on the derivative of
each condition (4)-(6) between Ti; Ti+1 2 T .
Conditions to guarantee that (4)-(6) are also
satis�ed in T 2 (T+;1), for some 0 < T+ <

1, are given in propositions C.1 and C.2
in (Gon�calves, 2001).

The following examples were processed in
matlab code. The latest version of this soft-
ware is available at (Gon�calves' web page,
2001). Before presenting the examples, we
brie
y explain the matlab function we devel-
oped. The user supplies k1 > 0, k2 � 0 (the
case when k2 = 0 results in the single integra-
tor which will be dealt in the next section),
and � > 0. If all three conditions (4)-(6) are
satis�ed for all T 2 T , the function returns a
graphic showing the minimum eigenvalues of
each Ri(T ), which, obviously, must be positive
for all T 2 T .

Example 4.1. Let k1 = 0:5, k2 = 2, and � = 2.
In this example, we �nd the smallest upper
bound 
 of the L2-gain of � in �gure 4 using
theorem 3.1. A lower bound can be found
by computing the linear gain, i.e., the L2-
gain of � when the saturation nonlinearity is
replaced by a constant gain of 1. Here, this is

L = 0:8892297. Using the software described
above, we found an upper bound of the L2-
gain of � of 
 = 0:8892299. Note that the
di�erence between the upper and lower bound
is smaller than 2 � 10�7, i.e., the precision is
less than 2:15� 10�5%.
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Fig. 6. Minimum eigenvalues of Ri(T ), i =
1; 2a; 2b

Figure 6 shows the minimum eigenvalues of
Ri(T ), i = 1; 2a; 2b. For visualization pur-
poses, the minimum eigenvalues of R2a(T ) and
R2b(T ) were scaled by 2� 106.

Example 4.2. Let k1 = k2 = 1. In this exam-
ple we �nd the smallest upper bound 
 of the
L2-gain of � for di�erent values of � > 0. The
left side of �gure 7 shows the lower bound 
L
and the upper bound 
 on the L2-gain of �
using theorem 3.1. The right side of �gure 7
plots 
� 
L. Logarithmic scales were used for
better visualization.

From this �gure we can see that the di�erence
between the upper and lower bound goes to
zero as � goes to in�nity. In fact, for � > 0:5
the di�erence between 
 and 
L is less than
0:76%. For � > 5 this di�erence is already
smaller than 0:009% and less than 6� 10�8%
for � > 100.

If 
 � 
L is chosen small enough, the Hamil-
tonian matrix H in (3) has pure imaginary
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eigenvalues. For � � 0:5, it turns out that for
all 
 > 
L such that H has no pure imaginary
eigenvalues, it was always possible to �nd p; g

such that conditions (4)-(6) are satis�ed. In
other words, numerically we found that for
� � 0:5 conditions (4)-(6) are satis�ed if and
only if H has no pure imaginary eigenvalues.
Thus, for � � 0:5, �gure 7 also shows the
smallest 
 such that H does not have pure
imaginary eigenvalues. For � < 0:5, however,
we encountered several numerical problems
and 
 tended to be higher than smallest 
 such
that H has no pure imaginary eigenvalues.

Several questions can now be raised: is the gap
between 
 and 
L increasing as � approaches
zero due to numerical errors, conservatism of
the method, or the fact that the L2-gain of
the system is just larger than 
L, and this
gap increases as � approaches zero? Or is
true that 
 = 
L or 
 � 
L for all � > 0?
Answers to such questions are currently under
investigation.

For sure, this example shows that our method
is not conservative, except maybe for small
values of �, since the upper and lower bounds
of the L2-gain of � are almost identical.
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5. CONCLUSIONS

This paper gives conditions in the form of
LMIs that, when satis�ed, guarantee a sys-
tem with a double integrator in feedback with
a saturation nonlinearity has �nite L2-gain.
Moreover, for a large class of such systems, we
showed that the linear L2-gain of the system,
i.e., the L2-gain of the same system but with
the saturation nonlinearity replaced by a con-
stant gain of 1, is approximately equal to the
L2-gain of the original system. These results
allow the use of classical analysis tools like
�-analysis or IQCs to analyze systems with
double integrators and saturations, including
servo systems like some mechanical systems,
satellites, hard-disks, CD players, etc.
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