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Abstract

This paper shows how biological oscillations can be rigorously analysed using several anal-
ysis tools from the field of control and dynamical systems theory. Testing for local stability of
the periodic orbit provides information about the system close to the limit cycle. It determines
which modes of the system are harder or easier to control and may lead to a simplification of
the model. Local stability, by definition, does not guarantee stability further away from the
limit cycle. However, the approximation of nonlinear models by piecewise linear systems can
be used to determine more global robustness properties of the system. To illustrate these ideas,
this paper investigates two models of circadian rhythms in Drosophila: one by Gonze et al.
and a more generic model by Vilar et al. that describes the biological clock in Drosophila as
well as other organisms. For both models, local stability analysis shows that most small per-
turbations to initial conditions around the limit cycle disappear after one cycle (24 hours). In
addition, we demonstrate that in each model only two modes are relevant. Thus both models
can be reduced to third-order systems, and the direction of the excitable modes identify the
disturbances which can cause the most harm. Analysing the piecewise linear approximation of
the Gonze-Goldbeter model reveals large regions of stability around the limit cycle, which con-
firms the linear analysis results and offers further insight into the source of robustness in these
systems. In summary, the tools described in this paper should help characterise the mechanisms
underlying the control and regulation of circadian rhythms and other limit cycle behaviours.

1 Introduction

Many aspects of the physiology of living organisms (e.g., body temperature, wake-sleep cycle, etc.)
oscillate with a period of approximately 24 hours, corresponding to the length of a day. These
circadian rhythms are remarkable for their robustness to external and internal disturbances [2, 16].
Experiments have uncovered the molecular basis for the clock underlying these rhythms in several
organisms from the fungus Neurospora [3] to Drosophila (the common fruit fly) [17] to mam-
mals [15]. Simulations of mathematical models constructed from these data reproduced key char-
acteristics of the oscillations [4, 12], but a more in-depth understanding has been impeded by the
complexity of the models and the challenge of rigorous robustness analysis.

Figure 1 represents a simplified mechanism for producing circadian rhythms in Drosophila [8,
9]. Two main cycles, one regulatory and one autocatalytic, maintain the system with an extremely
robust periodicity close to 24 hours. Two genes per and tim are transcribed and translated into
the proteins PER and TIM which will then form the PER-TIM complex. This complex enters
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Figure 1: Circadian rhythms in Drosophila [8, 9], showing the negative feedback loops (yellow) and
the positive feedback loops (red).

the nucleus and inhibits the transcription of both per and tim genes. This is the main regulatory
negative feedback loop. As both PER and TIM concentrations increase, the complex activates the
transcription of the gene clock which is transcribed and translated into the CLOCK protein. CLOCK
then binds with CYCLE and this complex activates both per and tim, forming a positive feedback
loop.

This paper introduces rigorous tools from control theory to gain new insights into how circadian
rhythms work, and to better understand the source of robustness of such systems. To illustrate
these tools, we investigated two models of Drosophila circadian rhythms, one devised by Gonze,
Goldbeter and colleagues [7], and another more generic model by Vilar and colleagues [1].

This paper is organised as follows. Section 2 analyses the model by Gonze et al. [7] and section
3 analyses the model by Vilar et al. [1]. Both sections include subsections on the analysis of each
model. First, the Poincaré map is linearised to determine which modes dominate the system close
to the limit cycle, and to help reduce the models. Then, one of the models (Gonze-Goldbeter) is
approximated by a piecewise linear system which can be analysed to conclude about more global
robustness properties. Conclusions can be found in Section 4. The Appendix contains more detailed
descriptions of both models, and several previously published technical results are reprised for the
sake of completeness.

2 Model with regulatory feedback

A schematic description of the Gonze-Goldbeter model [7] is provided on the left of Figure 2.
This model captures the negative feedback loop between genes per and tim and their associated
proteins PER and TIM in Figure 1, but not the positive feedback. It consists of 10 state variables,
[MP P0 P1 P2 MT T0 T1 T2 C CN ] (see Appendix A.1.1) that capture the dynamics of the PER and
TIM proteins and the per and tim mRNAs. Simulations, seen on the right of Figure 2, show that the
system has a limit cycle oscillation with a period of approximately T ∗ = 24 hours.

2.1 Linear analysis and model reduction

2.1.1 Poincaré maps

Analysis of oscillations in nonlinear or hybrid systems systems is typically done with the so-called
Poincaré map (see, for example, [11]). Figure 3 shows an example of a limit cycle oscillation of
some nonlinear system. Take a hyperplane S transversal to the limit cycle trajectory and let x∗ ∈ S
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Figure 2: Model for circadian rhythms in Drosophila from [7] (left). Simulation showing the limit
cycle oscillations (right).

be the intersection of the limit cycle with S. Then, take some initial condition x0 ∈ S in some
local section containing x∗. The Poincaré map is defined as the map from x0 to the return of the
trajectory to x1 also in that local section in S. Basically, a Poincaré map reduces the study of an
n-dimensional system to a discrete n− 1-dimensional system in a manifold. The idea is to check
whether the distance from x1 to x∗ is smaller than the initial distance from x0 to x∗. This would show
that the Poincaré map is contracting, and thereby proving stability properties of the original limit
cycle trajectory.
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S

Figure 3: Limit cycle oscillation and Poincaré maps.

The problem with Poincaré maps is that, in general, they cannot be found explicitly and are
typically nonlinear, multivalued, and not continuous. However, it is possible to study linearisations
of Poincaré maps [13] and to analyse Poincaré maps for piecewise linear systems [6, 5]. We start
with linear analysis of Poincaré maps of the Gonze-Goldbeter model.

2.1.2 Linearisation of Poincaré maps

Poincaré maps can be linearised using the results from [13]. For completeness, those results are
reproduced in Appendix B. Denote P as the Poincaré map from some transversal surface S to S, and
DP as the Jacobian of the Poincaré map.

The only nonzero eigenvalues of the matrix DP for the Gonze-Goldbeter model are λ1 = 0.0000452
and λ2 = 0.000000201. This shows that limit cycle is locally stable and that the rate of convergence
after a complete cycle of any initial condition close enough to the limit cycle is extremely fast. It also
shows that only two states of the Poincaré map are interesting. The others states of the linearised
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map return to the limit cycle just after one cycle.
This results also shows where the system is most vulnerable (i.e., which initial conditions close

to the limit cycle give rise to the largest disturbances). The corresponding eigenvectors associated
with λ1,λ2 in ΦT ∗(x∗) (the linearised transition matrix along the limit cycle, defined in Appendix B)
are:

v1 =

































0.5417
0.1973
0.2186
0.2558
0.5417
0.1973
0.2186
0.2558
0.1498
−0.2939

































v2 =

































−0.2417
−0.1000
−0.1685
−0.6349
0.2417
0.1000
0.1685
0.6349

0
0

































(1)

Notice that a close enough initial condition to the limit cycle along an eigenvector of ΦT ∗(x∗) will
result in a trajectory that only excites the associated mode.

The first mode is of greater interest since it is associated with the largest eigenvalue. A closer
look at v1 reveals that entries 1 to 4 are point-wise equal to entries 5 to 8. Thus, the circadian clock
is maximally perturbed when the concentrations of MP,P0,P1,P2 are perturbed the same way as the
concentrations of MT ,T0,T1,T2, in the appropriate relation given by entries 1 to 4 and with C and
CN also with the appropriate relation given by the last two entries in v1. In other words, the worst
perturbation is along the same (or opposite) direction of v1.

In the second mode, entries 1 to 4 are point-wise symmetric to entries 5 to 8. Thus, the second
mode is optimally excited when the concentrations of MT ,T0,T1,T2 are perturbed symmetrically
when compared with the concentrations of MP,P0,P1,P2, in the appropriate relation given by entries
1 to 4 and with C and CN not perturbed.

Since any small perturbation ∆ to the system at x∗ can be written as a linear combination of the
eigenvectors vi of ΦT ∗(x∗), i.e., ∆ = α1v1 + · · ·+αnvn, any perturbation to the limit cycle at x∗ such
that α1 = α2 = 0 results in trajectories that return to the limit cycle just after one cycle.

2.1.3 Model reduction

For small perturbations around the limit cycle, only two states are of interest. Thus, the Poincaré
map close to the limit cycle can be reduced to a 2nd-order system. Let V = [v1 · · ·vn] and Λ =
diag(λ1 · · ·λn) be the eigenvectors and eigenvalues of DP, respectively. Using the notation from
Appendix B, define

W = I −
1

C f (x∗)
f (x∗)C

Then, DP = WΦT ∗(x∗) and Λ = V−1DP V . In the V basis, the reduced second order system is
{

x1[t +1] = 0.0000425x1[t]
x2[t +1] = 0.000000201x2[t]

with initial condition x[0] = x0, where x = (x1 x2 )′. These two states are associated with v1 and v2,
respectively. Perturbing first state x1 is equivalent to perturb the original system along the direction
of v1. Similarly, perturbing the second state x2 is equivalent to perturbing the original system along
v2.
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2.2 Approximation by piecewise linear systems

Besides local stability, typically not much more can be said rigorously about stability and robustness
of Poincaré maps. Recent results in piecewise linear systems (PLS), however, allow one to study the
limit cycle behaviour of nonlinear systems approximated by PLS. In this section, we explore several
such approximations to identify regions of stability around the limit cycle. A brief introduction to
PLS is given in Appendix C.

The first step is to find an approximate PLS of the original nonlinear system. One approach is to
approximate each nonlinearity in the system dynamics by piecewise linear functions. It should be
noted that every nonlinearity can be arbitrarily well approximated by refining the piecewise linear
functions.

A common nonlinearity in the Gonze-Goldbeter model and other biological models using Michaelis-
Menten kinetics is the following (see Figure 4):

f (x) =
x

K + x
=

1
1+ K

x

There are clearly three regions: a linear region for small values of x, an intermediate region, and
a saturated region for large x. If during a cycle, a nonlinearity associated with some concentration
x has either only small or large values, then it can be approximated by a linear function or by a
constant, respectively (see Figure 4). If x takes values in three regions then it can be approximated
by a piecewise linear function as illustrated by two examples in Figure 4.

1

0.5

x

f(x)

0.5

or

K

K

Figure 4: Nonlinearity and possible approximations depending on the range of x.

To illustrate these ideas, we study a simplified version of the circadian rhythm model from [7].
The limit cycle oscillations on the right of Figure 2 show how several concentrations have the same
value: MP = MT , P0 = T0, P1 = T1, P2 = T2. A simplified model assumes that initial conditions of
these concentration’s pairs are equal. Due to the symmetry of the system, this guarantees that the
pairs always vary in the same way, even away from the limit cycle oscillation. This reduces the
model to a 6th–order system which can be found in Appendix A.1.2.

A special case of having the above concentration’s pairs with equal initial conditions is when we
study small enough perturbations (so that the linearisation holds) along the direction of eigenvector
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v1 in (1). As above, the above concentration pairs would have the same value for all time. Remember
that v1 is the direction associated with the highest eigenvalue of the linearised Poincaré map, the
mode that takes longer to disappear and can cause more damage to the system.

By looking at the model in Appendix A.1.2 and the right of Figure 2, we can have an idea of
the range of values each concentration has along one cycle. This allows to choose which type of
approximation to use in Figure 4. For example, in the first nonlinearity of the differential equation
dP2/dt, K3P = 2 and the range of values for P2 along a cycle is approximately [0 1]. From Figure 4,
this lead us to conclude that this nonlinearity is mostly in the linear regime, and can be approximated
by a linear function. On the other hand, the nonlinearity involving the term KdP = 0.2 goes from the
linear region to the saturated regime. Thus, it requires a piecewise linear approximation as in the
two examples in the middle of Figure 4.

For purposes of visualisation, in the following piecewise linear approximation of the simplified
model in appendix A.1.2, the switches are employed with only two state variables: MP and P2. This
allows us to visualise the PLS system projected into the subspace of dimension 2 consisting of the
state variables MP and P2 (see the right side of Figure 5).
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Figure 5: Approximation of the simplified model by a piecewise linear system: limit cycle oscil-
lation (left); and limit cycle in the state-space projected into the 2nd dimensional subspace of state
variables MP and P2 (right).

The left side of Figure 5 shows the limit cycle oscillations for the PLS model. When compared
with the limit cycle oscillations of the original model on the right of Figure 2, both plots seem
similar in terms of the trajectories of the various variables, which suggests that the approximation is
reasonable.

The right side of Figure 5 shows the limit cycle projected into the two–dimensional subspace of
the state variables MP and P2. Since these are the only two variables that have associated nonlinear-
ities with switches, this two–dimensional subspace shows the four regions in which the state–space
is divided: four linear systems divided by hyperplanes. The limit cycle intersects all of the four
regions.

As in nonlinear systems, local stability of limit cycles of PLS can be easily checked. However,
local stability only gives us information about the system in an arbitrarily small neighbourhood
around the limit cycle. Using the results from [5], we were able to characterise regions of stability
around the limit cycle for the PLS approximation. The right side of Figure 5 shows such regions of
stability: at every intersection of the limit cycle with a switching surface, there is a thicker region on
the switching surface that guarantees any trajectory starting in that region converges asymptotically
to the limit cycle. As Figure 5 shows, this region is reasonably large which confirms our assumptions
(mostly derived from simulation) that the system is robust.
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As we change system parameters or the system network structure, this tool allows us to see how
this region changes. This information may help explain what parameter or part or structure of the
network is responsible for the robustness that is known to prevail in circadian rhythms.

3 Model with both regulatory and autocatalytic feedback

A schematic description of the Vilar model [1] is provided on the left of Figure 6. This model
differs from from the Gonze-Goldbeter model in that it captures both the negative feedback loop
and the positive feedback loop introduced in Figure 1. The model involves two genes: an activator
A and a repressor R, which are transcribed into mRNA and subsequently translated into protein.
The activator A binds to the A and R promoters, which increases their transcription rate. Thus, A
acts as a positive feedback in transcription. On the other hand, R acts as a regulatory (negative)
feedback by binding with A (to produce an inactive complex C) reducing activity of the activator A
(see Figure 6). The model consists of 7 state variables [D′

A D′
R MA A MR R C] and can be found in

Appendix A.2.
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Figure 6: Model for a generic circadian oscillator [1] (left); Simulation showing the limit cycle
oscillation (right—in this plot, the concentrations of DA and DR were scaled by 250, and MA and
MR by 10 for purposes of visualisation).

This model slightly differs from the system in Figure 1 since it represents a generic genetic
oscillator. The most basic differences are the facts that the repressor R represents both proteins
PER an TIM, R does not regulate itself directly, and A activates itself. Simulations of this model,
seen on the right of Figure 2, show that the system has a limit cycle oscillation with a period of
approximately T ∗ = 25 hours.

3.1 Linear analysis and model reduction

As in Section 2.1.2, the Poincaré map associated with the limit cycle can be linearised. Here,
the only nonzero eigenvalues of the matrix DP are approximately λ1 = 0.00000322 and λ2 =
0.00000000686. This shows that limit cycle is locally stable and that the rate of convergence after a
complete cycle of any initial condition close enough to the limit cycle is extremely fast. In fact, the
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largest eigenvalue of the system is over 10 times smaller than the largest eigenvalue of the model
in [7], showing that locally this model converges faster to the limit cycle than the Gonze-Goldbeter
model.

Again, only two states of the Poincaré map are interesting. The others states of the linearised
map return to the limit cycle just after one cycle. The directions associated with the above eigenval-
ues are, respectively,

v1 =





















0.000278
0.000143
0.0127
0.0148
0.082
−0.714
0.695





















v2 =





















0.000122
0.0000628
0.00582
0.00645
−0.0675
−0.307
0.949





















(2)

These eigenvectors (associated with the only two nonzero eigenvalues) of the Jacobian of the
Poincaré map, show that perturbations in both D′

A and D′
R have little effect in the system. Also, both

eigenvectors reveal that the most destabilising concentrations are the concentrations of R and C.
The first eigenvector v1, associated with λ1, is the most destabilising direction, since it is associated
with the largest eigenvalue. This circadian clock is worst perturbed when the concentrations are
perturbed with the proportion given by v1. Similarly for v2.

For small perturbations around the limit cycle, only two states are of interest. Following the
same procedure as in Section 2.1.3, the Poincaré map close to the limit cycle can be reduced to the
following 2nd-order system, in the V basis

{

x1[t +1] = 0.00000322x1[t]
x2[t +1] = 0.00000000686x2[t]

with initial condition x[0] = x0, where x = (x1 x2 )′. These two states are associated with v1 and v2,
respectively. Perturbing first state x1 is equivalent to perturb the original system along the direction
of v1. Similarly, perturbing the second state x2 is equivalent to perturbing the original system along
v2.

This model reduction provides a reference for examining the accuracy of other attempts at model
simplification. For example, in [1], the authors derive a nonlinear second order continuous model
by focusing on the two slow variables R and C. Although the reduced linearised Poincaré map is
2nd-order (translating into a 3rd-order system in the original state-space), it is clear that λ2 << λ1
arguing that a first-order Poincaré map or 2nd-order state-space model can furnish a reasonable
approximation. In addition, examining v1 does indeed confirm that R and C are the two key variables
which make the most significant contributions to the limit cycle behaviour. However, the above
analysis also highlights limitations to the Vilar approximation, namely, excluding the minor mode
v2 and not taking into account variables such as MR that exert a modest influence on the dynamics.

In the analysis above we have not performed any time-scale separation. Vilar et al. assume
that the fast variables in the system (everything but R and C) are at quasi-steady-state so that their
time derivatives are zero. We examined this assumption by plotting the time derivatives of the state
variables during the progression of the limit cycle. Indeed, the derivatives were modest compared
to dR/dt and dC/dt with the exception of dA/dt. Thus, setting dA/dt = 0 is not justified and could
limit the accuracy of the approximation.
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Figure 7: Derivatives of concentrations along the limit cycle oscillation for the model in [1].

4 Conclusions

The goal of this paper is to explain how oscillations can be analysed via linearisation of the Poincaré
map and approximating the nonlinear dynamics by piecewise linear systems. In the model of
Drosophila circadian rhythms by Gonze, Goldbeter and colleagues [7] and in the generic genetic os-
cillator model of Vilar and colleagues, we showed that the dynamics can be reduced to studying two
modes that dominate the system. Then, a piecewise linear approximation of the Gonze-Goldbeter
model confirmed that the system is robust to sizable perturbations in initial conditions by describing
large regions of stability around the limit cycle.

In circadian rhythms, as in many other biological applications, we are interested in understand-
ing how or what in the system network is responsible for the robustness to both external and internal
perturbations. Linearisation helps understand the system close to the limit cycle, including identi-
fying which modes are dominant and how fast they converge to the limit cycle. Piecewise linear
approximations show whether global regions of stability exist. Then by varying the system pa-
rameters or network configuration, one can examine how such changes affect the local and global
stability. In this manner, we can explore both the vulnerabilities and the strategies for increasing
robustness in oscillatory systems.

A Models

A.1 Model with regulatory feedback

A.1.1 Full model

The model considered here is taken from [7]:

dMP

dt
= vsP

Kn
IP

Kn
IP +Cn

N
− vmP

MP

KmP +MP
− kdMP

dP0

dt
= ksPMP −V1P

P0

K1P +P0
+V2P

P1

K2P +P1
− kdP0

dP1

dt
= V1P

P0

K1P +P0
−V2P

P1

K2P +P1
−V3P

P1

K3P +P1
+V4P

P2

K4P +P2
− kdP1
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dP2

dt
= V3P

P1

K3P +P1
−V4P

P2

K4P +P2
− k3P2T2 + k4C− vdP

P2

KdP +P2
− kdP2

dMT

dt
= vsT

Kn
IT

Kn
IT +Cn

N
− vmT

MT

KmT +MT
− kdMT

dT0

dt
= ksT MT −V1T

T0

K1T +T0
+V2T

T1

K2T +T1
− kdT0

dT1

dt
= V1T

T0

K1T +T0
−V2T

T1

K2T +T1
−V3T

T1

K3T +T1
+V4T

T2

K4T +T2
− kdT1

dT2

dt
= V3T

T1

K3T +T1
−V4T

T2

K4T +T2
− k3P2T2 + k4C− vdT

T2

KdT +T2
− kdT2

dC
dt

= k3P2T2 − k4C− k1C + k2CN − kdCC

dCN

dt
= k1C− k2CN −KdCC

The parameters used (again, from [7]) are: n = 4, vsP = 1nMh−1, vsT = 1nMh−1, vmP =
0.7nMh−1, vmT = 0.7nMh−1, vdP = 2nMh−1, vdT = 2nMh−1, ksP = ksT = 0.9h−1, k4 = 0.6h−1,
KmP = KmT = 0.2nM, KIP = KIT = 1nM, KdP = KdT = 0.2nM, K1P = K1T = K2P = K2T = K3P =
K3T = K4P = K4T = 2nM, V1P = V1T = 8nMh−1, V2P = V2T = 1nMh−1, V3P = V3T = 8nMh−1,
V4P = V4T = 1nMh−1, kd = kdC = kdN = 0.01nMh−1.

A.1.2 Reduced model

This is the model used in section 2.2 to illustrate a piecewise linear approximation. In this simplifi-
cation, MP = MT , P0 = T0, P1 = T1, P2 = T2, so the state variables are MP,P0,P1,P2,C,CN .

dMP

dt
= vsP

Kn
IP

Kn
IP +Cn

N
− vmP

MP

KmP +MP
− kdMP

dP0

dt
= ksPMP −V1P

P0

K1P +P0
+V2P

P1

K2P +P1
− kdP0

dP1

dt
= V1P

P0

K1P +P0
−V2P

P1

K2P +P1
−V3P

P1

K3P +P1
+V4P

P2

K4P +P2
− kdP1

dP2

dt
= V3P

P1

K3P +P1
−V4P

P2

K4P +P2
− k3P2

2 + k4C− vdP
P2

KdP +P2
− kdP2

dC
dt

= k3P2
2 − k4C− k1C + k2CN − kdCC

dCN

dt
= k1C− k2CN −KdCC

A.2 Model with both regulatory and autocatalytic feedback

The following model is taken from [1]. The 7 state variables represent the concentrations of the acti-
vator genes D′

A,D′
R, the messenger RNA MA,MR, and the proteins A,R,C. The differential equations

are given by

dD′
A

dt
= γA(1−D′

A)A−θAD′
A
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dD′
R

dt
= γR(1−D′

R)A−θRD′
R

dMA

dt
= αA +(α ′

A −αA)D′
A −δMAMA

dA
dt

= βAMA +D′
A(θA + γAA)+D′

R(θR + γRA)− (γA + γR +δA)A− γCAR (3)

dMR

dt
= αR +(α ′

R −αR)D′
R −δMRMR

dR
dt

= βRMR +δAC−δRR− γCAR

dC
dt

= γCAR−δAC

The parameters used (again, from [1]) are: αA = 50h−1, α ′
A = 500h−1, αR = 0.01h−1, α ′

R =
50h−1, βA = 50h−1, βR = 5h−1, δMA = 10h−1, δMR = 0.2h−1, δA = 1h−1, δR = 0.2h−1, γA =
1mol−1hr−1, γR = 1mol−1hr−1, γC = 2mol−1hr−1, θA = 50h−1, and θR = 100h−1.

B Linearisation of Poincaré maps

The content of this appendix section is taken from [13]. Consider the nth-oder system

ẋ = f (x), x(0) = x0

with solution φt(x0), i.e.,
φ̇t(x0) = f (φt(x0)), φ0(x0) = x0 (4)

Differentiate (4) with respect to x0 to obtain

Dx0 φ̇t(x0) = Dx f (φt(x0))Dx0φt(x0), Dx0φ0(x0) = I (5)

Define Φt(x0) = Dx0φt(x0). Then (5) becomes

Φ̇t(x0) = Dx f (φt(x0))Φt(x0), Φ0(x0) = I

which is the variational equation.
Consider a point x1 ∈ IRn that is mapped by the flow to x2 in T seconds, that is, x2 = φT (x1).

Choose an (n− 1)-dimensional hyperplane S1 that contains x1 and that is transversal to the flow at
x1 (see Figure 8). Similarly, choose S2 transversal to the flow at x2.

φ (   )x1 x1

x

SS

2

21

t

Figure 8: Generalised Poincaré map

The following results show that there exists a diffeomorphism PS1S2 that maps a neighbourhood
of x1 on S1 to a neighbourhood of x2 on S2, and then find an explicit expression for its derivative.
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Note that the Poincaré map is defined as PSS, basically by making S1 = S2 = S. The results also
prove that the Poincaré map is a local diffeomorphism, and yields an expression for its derivative.
The derivative is then used to show that given a fixed point x∗ of a Poincaré map, the characteristic
multipliers are a subset of the eigenvalues of ΦT (x∗). Without loss of generality, move the origin to
x2. Let C ∈ IR1×n be a vector orthogonal to S2. Then Cy = 0 if and only if y ∈ S2.

Lemma B.1 There exists an open U ∈ IRn with x1 ∈U, and a unique C1 map τ : U → IRn, such that,
for all x ∈U, φτ(x)(x) ∈ S2 and τ(x1) = T .

Furthermore, it follows from the implicit function theorem that

Dτ(x1) =
−1

C f (x2)
C′ΦT (x1)

Lemma B.2 f (x2) = ΦT (x1) f (x1).

Definition B.1 PS1S2 : (U
⋂

S1) → S2 is the impact map, also known as the generalised Poincaré
map, and is defined by

PS1S2(x) = φτ(x)(x)

Theorem B.1 PS1S2 : S1 → S2 is a local diffeomorphism at x1 with

DPS1S2(x1) =

[

I −
1

C f (x2)
f (x2)C

]

ΦT (x1)

Corollary B.1 Let x∗ be a fixed point of a Poincaré map P defined by a cross-section S, and let T ∗

be the period of the underlying limit cycle. Then P = PSS, and

DP(x∗) =

[

I −
1

C f (x∗)
f (x∗)C

]

ΦT ∗(x∗)

Theorem B.2 Let x∗1 and x∗2 be any two points on a limit cycle. Let S1 be an (n− 1)-dimensional
hyperplane passing through x∗1 transversal to f (x∗1). Likewise, define S2 with respect to x∗2. Then
DPS1(x

∗
1) is similar to DPS2(x

∗
2).

Corollary B.2 As long as S is transversal to the limit cycle, the eigenvalues of DP(x∗) are indepen-
dent of the choice of x∗, and the position of S.

Corollary B.3 f (x∗1) is an eigenvector of ΦT ∗(x∗) with eigenvalue 1.

Theorem B.3 Let X∗ be a fixed point of P, and let the eigenvalues of ΦT ∗(x∗) be {m1, ...,mn−1,1}.
Then, the eigenvalues of DP(x∗) are {m1, ...,mn−1,0}.

C Piecewise linear systems

In this appendix, we briefly introduce piecewise linear systems (PLS). More details and results on
analysis of limit cycles of PLS can be found in [6] and [5].

PLS are characterised by a set of affine linear systems

ẋ = Aix+Bi (6)
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where x ∈ IRn is the state, together with a switching rule

i(x) ∈ {1, ...,M} (7)

that captures discontinuous actions in the dynamics resulting from either the controller or system
nonlinearities, and depends on present and possibly also on past values of x. By a solution of (6)-(7)
we mean functions (x, i) satisfying (6)-(7), where i(t) is piecewise constant. t is a switching time
of a solution of (6)-(7) if i(t) is discontinuous at t. We say a trajectory of (6)-(7) switches at some
time t if t is a switching time. In the state space, switches occur at switching surfaces consisting of
hyperplanes of dimension n−1

Si = {x| Cix+di = 0}

where Ci is a row vector and i = {1, ...,N}. Assume that existence of solution is always guaranteed
for any initial condition. See [10] for conditions on existence of solutions for PLS.

Unlike linear systems that only have a single equilibrium point, PLS may exhibit multiple equi-
librium points and/or limit cycles. Here, we are interested in limit cycles. For the remainder of
this appendix, assume the PLS (6)-(7) has a limit cycle γ with period t∗, and that this limit cycle
crosses transversely1 k switching surfaces per cycle. For simplicity, and without loss of generality,
assume the trajectory of the limit cycle evolves consecutively from system 1, to system 2, and so
forth until it reaches system k and, finally, after completing one cycle, returns to system 1. Assume
also the switching surfaces are ordered the same way (see Figure 9). This means the trajectory φ(t)
of the limit cycle, starting at x∗1 ∈ S1, satisfies φ(t∗1) = x∗2 ∈ S2. Then system 2 “takes over” until
φ(t∗1 + t∗2) = x∗3 ∈ S3, and so on. The last affine linear system k takes the trajectory φ(t) from x∗k ∈ Sk
back to x∗1 ∈ S1, i.e., φ(t∗1 + t∗2 + · · ·+ t∗k ) = x∗k+1 = x∗1 ∈ S1. Note that t∗ = t∗1 + t∗2 + · · ·+ t∗k . Note also
that there is no loss of generality in this characterisation of a limit cycle. If, for instance, the limit
cycle crosses the same switching surface more than once, we simply have Si = S j for some i, j. For
convenience, indexes k +1 and 1 represent the same object, i.e., x∗k+1 = x∗1, Sk+1 = S1, etc.

S2

S1Sk

x*1

x*2

x*k
System 1

System 2

System k

kSystem   −1

Figure 9: Limit cycle γ .

Conditions for the existence and local stability of limit cycles of PLS can be found in [5]. When
a limit cycle γ is proven locally stable, then there exist a neighbourhood in S1 around x∗1 such that
any trajectory starting in this neighbourhood will converge asymptotically to the limit cycle γ . The
next step is to characterise a reasonably large stable region around a locally stable limit cycle (see
Figure 10). Such results can also be found in [5].
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[6] Jorge M. Gonçalves, Alexandre Megretski, and Munther A. Dahleh. Global analysis of piece-
wise linear systems using impact maps and surface Lyapunov functions. IEEE Transactions
on Automatic Control, 48(12):2089–2106, December 2003.

[7] Didier Gonze, José Halloy, Jean-Christophe Leloup, and Albert Goldbeter. Stochastic models
for circadian rhythms: effect of molecular noise on periodic and chaotic behavior. C. R.
Biologies, 326:189–203, 2003.

[8] Michael Hastings. Circadian clockwork: two loops are better than one. Nature Reviews,
1:143–146, November 2000.

[9] Michael Hastings, Akhilesh Reddy, and Elizabeth Maywood. A clockwork web: circadian
timing in brain and periphery, in health and disease. Nature Reviews, 4:649–661, August
2003.

[10] J. Imura and A. van der Schaft. Characterization of well-posedness of piecewise-linear sys-
tems. IEEE Transactions on Automatic Control, 45(9):1600–1619, Sept 2000.

[11] Hassan K. Khalil. Nonlinear Systems. Prentice Hall, N.J., 2nd edition, 1996.

[12] J.-C. Leloup and A. Goldbeter. Modeling the molecular regulatory mechanism of circadian
rhythms in drosophila. BioEssays, 22:84–93, 2000.

[13] Thomas Parker and Leon Chua. Practical Numerical Algorithms for Chaotic Systems.
Springer-Verlag, 1989.

[14] Pablo A. Parrilo. Structured Semidefinite Programs and Semialgebraic Geometry Methods in
Robustness and Optimization. PhD thesis, California Institute of Technology, Pasadena, CA,
2000.

14



[15] S. M. Reppert and D. R. Weaver. Molecular analysis of mammalian circadian rhythms. Annu.
Rev. Physiol., 63:647–676, 2001.

[16] S. Strogatz. Sync: The emerging science of spontaneous order. New York: Hyperion, 2003.

[17] J. A. Williams and A. Sehgal. Molecular components of the circadian system in drosophila.
Annu. Rev. Physiol., 63:729–755, 2001.

15


