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Abstract

Many systems of interest are dynamic systems whose behavior is determined by the

interaction of continuous and discrete dynamics. These systems typically contain
variables or signals that take values from a continuous set and also variables that
take values from a discrete, typically �nite set. These continuous or discrete-valued

variables or signals depend on independent variables such as time, which may also be
continuous or discrete. Such systems are known as Hybrid Systems. Although widely
used, not much is known about analysis of hybrid systems. This thesis attempts to

take a step forward in understanding and developing tools to systematically analyze
certain classes of hybrid systems. In particular, it focuses on a class of hybrid systems

known as Piecewise Linear Systems (PLS). These are characterized by a �nite number
of aÆne linear dynamical models together with a set of rules for switching among these
models. Even for simple classes of PLS, very little theoretical results are known. More

precisely, one typically cannot assess a priori the guaranteed stability, robustness, and
performance properties of PLS designs. Rather, any such properties are inferred from

extensive computer simulations. In other words, complete and systematic analysis
and design methodologies have yet to emerge.

In this thesis, we develop an entirely new constructive global analysis methodology

for PLS. This methodology consists in inferring global properties of PLS solely by
studying their behavior at switching surfaces associated with PLS. The main idea is

to analyze impact maps, i.e., maps from one switching surface to the next switching

surface. These maps are proven globally stable by constructing quadratic Lyapunov

functions on switching surfaces. Impact maps are known to be \unfriendly" maps
in the sense that they are highly nonlinear, multivalued, and not continuous. We

found, however, that an impact map induced by an LTI 
ow between two switching

surfaces can be represented as a linear transformation analytically parametrized by a

scalar function of the state. Moreover, level sets of this function are convex subsets of

linear manifolds. This representation of impact maps allows the search for quadratic
Lyapunov functions on switching surfaces to be done by simply solving a set of LMIs.

Global asymptotic stability of limit cycles and equilibrium points of PLS can this

way be eÆciently checked. The classes of PLS analyzed in this thesis are LTI systems

in feedback with an hysteresis, an on/o� controller, or a saturation. Although this

analysis methodology yields only suÆcient criteria of stability, it has shown to be
very successful in globally analyzing a large number of examples with a locally stable
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limit cycle or equilibrium point. In fact, it is still an open problem whether there

exists an example with a globally stable limit cycle or equilibrium point that could

not be successfully analyzed with this new methodology. Examples analyzed include

systems of relative degree larger than one and of high dimension, for which no other

analysis methodology could be applied. We have shown that this methodology can be

eÆciently applied to not only globally analyze stability of limit cycles and equilibrium

points, but also robustness, and performance of PLS. Using similar ideas, performance

of on/o� systems in the sense that bounded inputs generate bounded outputs, can also

be checked. Among those on/o� and saturation systems analyzed are systems with

unstable nonlinearity sectors for which classical methods like Popov criterion, Zames-

Falb criterion, IQCs, fail to analyze. This success in globally analyzing stability,

robustness, and performance of certain classes of PLS has shown the power of this

new methodology, and suggests its potential towards the analysis of larger and more

complex PLS.

Thesis Supervisor: Munther A. Dahleh
Title: Professor

Thesis Supervisor: Alexandre Megretski
Title: Associate Professor
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Chapter 1

Introduction

The purpose of this �rst chapter is to give some background and discuss previous work

and related literature as well as to introduce the problem we propose to solve. This
chapter is divided into six parts. The �rst three introduce three major concepts in this

work: feedback systems, nonlinear systems, and hybrid systems, respectively. They
also express the need for analysis tools for these classes of systems. The following
two parts introduce a class of hybrid systems known as piecewise linear systems and

describes the kind of problems we propose to solve in the thesis. Finally, part six of
this section is dedicated to give an outline of how this thesis is organized.

1.1 Analysis of Feedback Systems

The main purpose of most feedback loops created by nature is to reduce the e�ect
of uncertainty on vital systems functions. For example, consider a man walking

down a corridor with no sensors, i.e., no vision, no ear, etc. Even if the man starts
walking perfectly aligned with the corridor, he will sooner or later bump into a wall
if this corridor is long enough. This is because the controller in our brain is not

perfect. If it were, the man would make it all the way to the end of the corridor

(independent of its length) without hitting any wall. Now, if he opens his eyes,

the controller in his brain receives information about his position relatively to the
walls and sends command instructions to the muscles. Thus, by using feedback he

counteracted against uncertainty and, as a result, he is able to walk down the corridor

without hitting the walls.

With the same principle, engineers design feedback loops to reduce the e�ect
of uncertainty. Indeed, feedback as a design paradigm for dynamic systems has the

potential to counteract uncertainty. Through feedback, one can obtain the desired be-

havior with only partial and imprecise knowledge of the plant. For standard references
on examples and general theory for feedback systems see, for instance, [48, 38, 19, 36].

But, design is not an easy task. Often the engineer �nds himself/herself in sit-

uations where no design tools exist. In those circumstances, ad hoc heuristics and
trial-and-error are common techniques used to build feedback loops. In general, no

guarantees can be given that the system will perform as desired or will be robust to
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uncertainties. In fact, there are no guarantees that it will even be stable. In some

cases, such as the design of a on-o� controller for a typical heating system, one can

just test and adjust the feedback loop until it performs satisfactorily. This adjustment

may simply be choosing Tmin and Tmax, where Tmin is the temperature that makes

the controller turn on the heating system if T < Tmin (T is the temperature in the

room), and Tmax is the temperature that makes the controller turn o� the system

if T > Tmax. If Tmin and Tmax are too close, the controller switches many times

which may lead to its premature failure. If they are too much apart, it may lead to

overheating or causing the room to be too cold. A solution is to choose the di�erence

between Tmax and Tmin relatively large and then make it smaller until the system

behaves satisfactory. In many cases, like this one, failure of the designed controller is

not expensive. If it does not work, we just make the appropriate modi�cations and

try it again. But, in other cases failure is just too expensive. For example, if an en-

gineer designs a controller for an autopilot of a commercial airplane, then he/she has
to guarantee somehow the system will work {be stable{ once the autopilot is switched

on during a 
ight, even in the presence of severe weather. Failure is not an option
here. Therefore, it is essential to know beforehand whether a certain feedback system
is reliable (stable) or not.

Experiment

There are several ways to check if a feedback system is stable. The oldest and most

basic method is experiment. Basically, if you want to see if something works, just
turn it on and see what happens. In many situations this is a reasonable thing to
do. Like tuning an air conditioner controller: after building it, just test it through

experiments. But, there are several problems with this widely used approach. First,
the engineer cannot (or should not) just send an airplane up to test if a certain
controller works. The pilot's life and the cost of the airplane are crucial factors that

make experiment the last resort. Second, even if the feedback system is tested in
a large number of di�erent situations and initial conditions, these will always be a

�nite number of experiments. The fact that a certain experiment worked in a certain
setting does not mean it will work even when those settings change slightly.

Simulation

Another way of checking stability of a feedback system is using simulation. In this

case, a model of the physical system is needed. With the help of computers, several
scenarios can be recreated. On one hand, simulation losses over experiment since the

simulation models can never capture the complete dynamics of the physical system.

On the other hand, simulation gains over experiment since it can be much cheaper

and safer. But, as in experiment, we still have the problem that only a �nite number

of scenarios can be simulated and there is no guarantee that other scenarios (even
very similar to the ones simulated) will be stable. Nevertheless, in spite of all this,

simulation is fairly used when the dynamics of the feedback system are too compli-

cated and no analysis tools are available [53]. And even if analysis tools exist, as a

�rst test, simulation can help understand inherent properties of the physical process

we have in our hands and also give an idea about the stability of the feedback system.
A big advantage of simulation is when a scenario is found to make the system unsta-
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ble. When this happens, it can immediately be concluded that the feedback system

is not stable.

Analysis

A di�erent approach is analysis. As in the case of simulation, analysis requires a model

of the physical plant. Mathematical analysis tools do not exist for every feedback

system. In fact, even very simple nonlinear dynamic equations can exhibit complex

behaviors and be extremely hard (if not impossible) to analyze. However, for certain

classes of systems, there exist many mathematical analysis tools that can be used

(see for example [48, 19, 15, 67]). For some of these systems, it is often possible

to determine if they are stable for any initial condition or at least for some sets of

initial conditions. In some cases, it is also possible to tell if the system is unstable.

However, analysis can reveal a lot more about feedback systems. Sometimes, it can

characterize, for example, sets of initial conditions that result in stable trajectories
and sets of initial conditions that result in unstable ones. Or it can determine which
trajectories will converge faster to the desired objective. The biggest advantage of

analysis versus experiment and simulation is that in many cases stability can be
guaranteed for an in�nite number of initial conditions. In addition, sometimes this is
true even in the presence of perturbations and uncertainty.

Robustness Analysis

In general, what analysis can show about a certain feedback system depends on what

class of systems it �ts in and what kind of analysis tools are available for that class
of systems. Unfortunately, only a few classes of systems have useful analysis tools.
This is the main reason why, due to the complexity of most plants, one is forced

to construct oversimpli�ed and approximate models for the purpose of analysis and
design of a feedback control systems. This leads us to robustness theory. Broadly

speaking, robustness is a property, which guarantees that essential functions of the
designed system are maintained under adverse conditions in which the model no
longer accurately re
ects reality. In modeling for robust control design, an exactly

known nominal plant is accompanied by a description of the plant uncertainty, that
is, a characterization of how the \true" plant might di�er from the nominal one.

Although the basic robust synthesis and analysis problem has been studied for

many years, only in last few decades has received the proper attention. In 1932,

with his now classical stability criterion, Nyquist [47] presented a simple frequency
domain criterion to determine the stability of feedback systems in terms of its loop

gain. The Nyquist theory dictated how large the loop gain could possibly be if the
closed-loop stability was to be achieved. In [9], with the goal of analyzing networks

and designing feedback ampli�ers for electronic circuits, Bode developed a theory of

robust system design. In 1966, Zames [69] presented for the �rst time the so-called
small gain theorem. Later, in the book by Desoer and Vidyasagar [17], quite an

extensive treatment and applications of this theorem in various forms are presented.

A collection of important results from the eighties ranging from robust stability theory

and performance design (with di�erent approaches discussed) to applications can be

found in [18]. Some recent results in robust control theory of linear systems under

various uncertainty assumptions and perturbations may be found in [15, 70, 44].
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1.2 Nonlinear Systems

It is often possible to linearize a system, i.e., to obtain a linear representation of its

behavior. That representation may approximate the true dynamics well in a small

region. For example, the true equations of the pendulum are never linear but, for

very small deviations (a few degrees) they may be satisfactorily replaced by linear

equations. In other words, for small deviations, the pendulum may be replaced by a

harmonic oscillator. This ceases to hold, however, for large deviations and, in dealing

with these, one must consider the nonlinear equation itself and not merely a linear

substitute.

Basically, most physical systems are nonlinear from the outset. The linearizations

commonly practiced are approximating devices that are good enough or quite satisfac-

tory for most purposes. There are, however, certain cases in which linear treatments

may not be applicable at all. Frequently, many phenomena occur in nonlinear sys-

tems that cannot, in principle, occur in linear systems. In these cases, the engineer is
forced to make use of the nonlinear dynamics in order to do design or analysis. The
problem is that there does not exist a general theory capable of robustly synthesize

and analyze nonlinear systems. There are, however, several tools that can be applied
to certain classes of nonlinear systems. The following is a list of some of these tools
in no particular order:

� Linearization [36]. Linearization of nonlinear systems is a common practice as
approximating devices since for this class of systems there are many available

analysis and design tools [15, 70]. This is a good technique if the system is
evolving \close" to the equilibrium point from which the system was linearized.
Here, \close" depends on the nonlinearities of the system.

� Feedback Linearization [32, 67]. The idea here is to invert the plant dynamics
in order to get a simple and treatable mathematical model.

� Adaptive Control [37, 61]. The basic idea in adaptive control is to estimate un-
certain plant parameters (or, equivalently, corresponding controller parameters)
on-line based on the measured system signals, and then to use those estimated

parameters in the control input computation. This technique gives good results
when a good mathematical model of the physical system, with some uncer-

tain parameters, is available and those uncertain parameters are constant or

slowly varying. For instance, robot manipulators may carry large objects with

unknown inertial conditions. This technique is very often used together with

feedback linearization [61, 57].

� Sliding Mode Control [65]. Sliding mode usually results in discontinuous dy-
namic systems. Here, the design problem is usually reducible to the selection

of surfaces in the state space where all the trajectories tend to. Once in an

invariant surface, the state space trajectories belong to manifolds of lower di-

mension than that of the whole space. As a consequence, these trajectories
should be easier to control. Such performance, however, is obtained at the price

of extremely high control activity.
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� Lyapunov Control Techniques [20, 36, 57]. Although this approach is general

enough to cover all nonlinear systems, there is no assurance that an appropriate

Lyapunov function can be constructed for a given system.

� Gain Scheduling [56, 36]. This is an intuitive approach based on performing

several linearization-based control designs at many operating conditions and

then interpolating the local designs to yield an overall nonlinear controller.

This engine control technique is especially prevalent in 
ight control systems.

Although it is known to be used successfully in many applications, theoretically

there are still many fundamental open questions to be answered. There are,

however, some theoretical results in this area like analysis and design of slow

varying systems [56] and Lyapunov-based procedures [40, 39].

Both [36, 57] give complete introductions to all these and more methodologies. The
problem with all of them is that none alone is suÆcient for satisfactory feedback
design or analysis of general nonlinear systems. Each of them works well only for

speci�c classes of systems. This is because nonlinear systems exhibit a very large
diversity of behaviors. This suggests that, with a single design approach, most of the

results would end up being unnecessarily conservative.

As mentioned before, the methodologies presented above work well for certain

classes of systems. There are, however, many other classes of nonlinear systems that
we do not know how to analyze, or they cannot be eÆciently analyzed with available

methodologies. Simulation and experiment are frequently the only tools available to
check stability, robustness, and performance of such systems. In this thesis, we de-
velop constructive global analysis tools for some of those classes of nonlinear systems.

1.3 Hybrid Systems

Most of the nonlinear systems of interest in this thesis are dynamic systems whose

behavior is determined by the interaction of continuous and discrete dynamics. These
systems typically contain variables or signals that take values from a continuous set

(e.g., the set of real numbers) and also variables that take values from a discrete,

typically �nite set (e.g., the set of symbols fa; b; cg). These continuous or discrete-
valued variables or signals depend on independent variables such as time, which may

also be continuous or discrete. Such systems are known as hybrid systems.

Reducing complexity was, and still is, an important reason for using hybrid models

to represent the dynamic behavior of physical systems. In fact, many physical systems
can be naturally represented as hybrid systems with very simple, but adequate for the

tasks at hand, models of the complex physical phenomena. For example, a very well-

known instance of a hybrid system is a sampled data system (see �gure 1-1). Here, a
continuous-time linear time-invariant plant described by di�erential equations (which

involve continuous-valued variables that depend on continuous time) is controlled by
a discrete-time linear time-invariant plant described by linear di�erence equations

(which involve continuous-valued variables that depend on discrete time). A typical
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application is a digital control system where a computer (evolving in discrete-time)

controls a physical system (evolving in continuous-time).

Interface
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Figure 1-1: Sampled data system

Another familiar example of hybrid systems (of particular interest to us in this the-
sis) are switching systems. Here, the dynamic behavior of interest can be adequately
described by a �nite number of dynamical models that are typically sets of di�eren-

tial or di�erence equations, together with a set of rules for switching among these
models. A simple application of switching systems is the heating and cooling system

of a house. The furnace (providing the heat) and the air conditioner (providing the
cool), along with the heat 
ow characteristics of the house, form a continuous-time
system which is to be controlled. The thermostat is a simple asynchronous discrete-

event driven system which basically handles the symbols fhot, normal, coldg. The
temperature of the room is translated into these representations in the thermostat
and the thermostat's response is translated back to electrical currents, which control

the furnace and the air conditioner.
For a broad review of hybrid phenomenon we refer to [12]. There, several models

available in the literature are surveyed along with more examples and discussions on
design and analysis issues.

1.4 Piecewise Linear Systems

As described above, switching systems are characterized by a �nite number of dynam-

ical models together with a set of rules for switching among these models. A class of

switching systems we will be particularly interested in this thesis is piecewise linear

systems (PLS). PLS are characterized by having both the logic in the controller and

the nonlinearities in the system model (such as saturations, hysteresis, etc.) appear-

ing as piecewise linear functions, with the system dynamics described by standard

integration elements as with linear systems. Therefore, this model description causes

a partitioning of the state space into cells. These cells have distinctive properties in

that the dynamics within each cell are described by linear dynamic equations. The
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boundaries of each cell are in e�ect switches between di�erent linear systems. Those

switches arise from the breakpoints in the piecewise linear functions of the model. As

we will see in chapter 3, depending if the switching rule associated with the PLS has

memory or not, the cells may or may not intersect each other.

The reason why we are interested in studying this class of systems is to capture

discontinuity actions in the dynamics from either the controller or system nonlineari-

ties. On one hand, a wide variety of physical systems are naturally modeled this way

due to real-time changes in the plant dynamics. On the other hand, an engineer can

introduce intentional nonlinearities to improve system performance, to e�ect econ-

omy in component selection, or to simplify the dynamic equations of the system by

working with sets of simpler equations (e.g., linear) and switch among these simpler

models (in order to avoid dealing directly with a set of nonlinear equations). In the

next two sections we will talk about these two types of occurrences along with some

illustrative examples.

1.4.1 Modeling with Switches

There are numerous examples where a system changes its dynamic equations. For
instance, this can happen due to hitting certain boundaries (like a ball hitting a wall)

or due to certain control actions (like the space shuttle separating itself from the
rockets during a launch). A model for such systems can be seen in �gure 1-2. Here
we have several models and a switch. The purpose of the switch is to decide at every

instant of time which model better represents the physical system. This decision is
based on all available information, which may include present and/or past values of
the states.

Model 1

Model p Switch

Figure 1-2: Switching between di�erent models

Next we have some examples where this model can be naturally used.

� Friction. Another simple example is the modeling of static friction [49]. If an

engineer chooses, for example, the Coulomb model (see �gure 1-3) to describe

friction on a certain physical system, then the dynamics of the system switches

(the friction force changes sign) every time the velocity changes sign. The

Coulomb friction model is an ideal relay that will be discussed in more detail

in chapter 5.

� Hysteresis. Many physical applications can be modeled as an LTI system in

feedback with an hysteresis (see �gure 1-4). Such systems are similar to the

ideal relay, like in the example of static friction, but with the di�erence that
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Figure 1-3: Coulomb friction

the switches from \high" to \low" and from \low" to \high" do not occur at

the same values of y. In other words, the hysteresis di�ers from the ideal relay

in that it introduces memory into the nonlinearity. For instance, the single

information that y(t) = 0 is not enough to decide on the value of u(t). This

is determined not only by present values of y but also by past values of y. If

y(t) = 0 and if u(t� 0) = high then u(t) = high; otherwise, u(t) = low. Since

the switching rule has memory, the two cells, resulting from the two state space
partitions, intersect each other in a region containing the origin. More details
on hysteresis can be found in chapter 5.

LTI
u y

Figure 1-4: Hysteresis

� Saturation. Every actuator in physical systems eventually saturates if the input

command exceeds certain levels. A very common model of a saturated actuator
can be seen in �gure 1-5. Here, y is the input to the actuator and u is the

approximate input to the plant. Saturation systems will be studied in detail in
chapter 7.

LTI
u y

Figure 1-5: Saturation
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� Collisions. A system where its dynamics change as it hits certain boundaries is

a simple ball in a room under gravity. A usual way of modeling such a system

is to set instantaneously the velocity from v to ��v, where � 2 [0; 1] is the

coeÆcient of restitution, when the ball hits the 
oor.

� Spring with damage protection. Consider a spring connected with a mass. In

order to protect the spring from over extension and avoid its damage, a \stop"

device is placed at a desired position (see �gure 1-6).

Mass

Stop
Spring

Force

Figure 1-6: Mass-spring with damage protection

Once the spring reaches the maximum allowed extension, the dynamics of the

system change. We have then a di�erent model depending if the spring protec-
tion is touching the \stop" or not.

1.4.2 Control with Switches

It is well known that plant models are inherently inaccurate, and controllers regulat-
ing processes described by such models must be able to ensure satisfactory closed-loop
performance in the presence of exogenous process disturbances which cannot be mea-

sured. Modern linear control theories (e.g., pole-placement/observer theory, linear
quadratic theory, H1 theory, and the like) are now very highly developed. Those the-

ories can be used to design controllers with such capabilities for processes admitting

linear models, providing the models uncertainties are time-invariant and \suÆciently
small". However, for \large" model uncertainties derived from real-time changes in

the plant dynamics, common sense suggests (and simple examples prove it) that no
single, �xed-parameter linear controller can possibly regulate in a satisfactory way.

This is the reason why control switching strategies like the ones in �gures 1-7 and 1-8

must be used to control such systems.

Model 1

Controller p

Controller 1

Model p Switch

Figure 1-7: Switching between di�erent pairs of models/controllers
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Figure 1-7 shows a rather common approach in modeling and controlling physical

phenomena. In this case, we have sets of simpler equations and we switch among these

simpler models in order to avoid dealing directly with a set of nonlinear equations. A

controller is then designed individually for each model and a switch decides at every

instant of time which one to use.

SwitchController p

Controller 1

Model

Figure 1-8: Switching between di�erent controllers

In some cases (see �gure 1-8), one model together with several controllers may

be enough (when compared with �gure 1-7). Once again, a switch decides which
controller to use at any given time.

Next we present some examples of control with switches.

� Inverted pendulum. In [4], an inverted pendulum is modeled and controlled
di�erently in two distinct regions of the state space. The �rst objective is to

bring the pendulum close to the upright position. Once there, a linearize model
and controller can be used to keep the pendulum in the upright position.

� Anti-lock brake system (ABS) for a car. The aim of the ABS is to improve the
e�ectiveness of a vehicle to brake by maintaining the tire braking torque at or

near its maximum value. The key factor is the tire adhesion to the road as
braking torque is applied. A typical torque curve can be seen in �gure 1-9.

Adhesion
Tyre

A B Wheel Slip

Figure 1-9: Typical tire adhesion curve for brake control

The tire adhesion is at its highest value between wheel slip A and B in �gure 1-

9. If wheel slip increases beyond B the wheel 'locks', tire adhesion decreases,

and more importantly the driver looses the ability to steer the vehicle, i.e. the

system is considered unstable. The aim of the ABS controller is to keep wheel
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slip between A and B in the �gure. A control strategy is proposed in [52]. There,

a rule-based controller of ten rules was constructed resulting in something like

50 cells dividing the state-space.

� Hopping robots. More complex examples are hopping robots [53] or the dribbling

of a basketball. In the case of the hopping robot, the boundary is the 
oor. As

for the dribbling of a basketball, besides the 
oor, we have the hand of the

player as another boundary (and also as the control). As they hit the 
oor

(and the hand in the case of the basketball), their dynamics change. These

phenomena can be captured by PLS making the mathematical representation

of their complicated dynamics simple.

Let's take the hopping robot, for instance. Consider a one legged robot (mono-

pod) that hops (see �gure 1-10). As described in [53], the hopping cycle is

divided into three segments. Imagine we start when monopod touches the

ground (�gure 1-10.a). The spring will then begin to compress until this is
fully compressed (�gure 1-10.b). In this segment, gravity together with the leg

spring, damping, and the controller determines the monopod's motion. These
forces remain active during the second segment, except for the controller that
switches sign in order to decompress the spring. This continues until the spring

is completely decompressed (�gure 1-10.c), indicating the end of the second seg-
ment. The third and last segment of the cycle starts when the monopod leaves
the 
oor. Here, gravity alone determines the monopod's motion. Eventually,

it reaches its highest altitude (�gure 1-10.d) and, �nally, comes back to the
ground (�gure 1-10.a) where the cycle starts all over again.

a b c d

Figure 1-10: Di�erent stages of a hopping monopod

In general, a hopping robot is to follow a certain prescribed nominal trajectory.
Since such nominal trajectory returns to its initial condition every cycle, we call

these closed trajectories (see �gure 1-11). The idea is to make sure the robot

returns to this closed trajectory if, for some reason, it starts away from it, in a

way that it does not fall over.

� Automatic tuning of PID regulators and delta-sigma modulators. An important

application is the automatic tuning of PID regulators which is implemented
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System 1
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Figure 1-11: Closed trajectory switching among di�erent systems

in many industrial controllers [6]. The basic idea behind this technique is to

induce an oscillator (closed trajectory) by introducing an hysteresis in feedback

with a stable open loop plant (see �gure 1-4). Under certain assumptions,
it is possible to determine several points on the Nyquist curve of the plant

by measuring the frequency of the oscillation induced by the relay feedback.
With this information, it is possible to calculate suitable parameters for simple
controllers of the PID type.

Another application is the delta-sigma modulator as an alternative to conven-

tional A/D converters [2]. Here, a relay is again used to produce a bit stream
output whose pulse density depends on the applied input signal amplitude.

1.5 Analysis of Piecewise Linear Systems

As seen before, sometimes it is natural and easy to model systems as a hybrid sys-
tems. However, the same cannot be said about analyzing or designing controllers for

these systems. In practice, the designer of hybrid systems is usually confronted with

relations for which no general mathematical solutions exist. The problem is com-
pounded by the peculiar behavior of hybrid systems: superposition no longer applies,

the response of an hybrid system often depends on its initial state, and the nature of
the system transient usually changes at di�erent nominal operating points in the state

space. For all these reasons, there does not exist a uni�ed and generalized method of

hybrid system analysis. In fact, the large diversity of hybrid systems suggests that,
with a single design approach, most of the results would end up being unnecessarily

conservative. To deal with diverse hybrid systems we need to break this large class
of systems into several smaller classes. Each of these classes of hybrid systems should

consist of systems that have certain properties in common. For instance, static sys-

tems could be one class; or linear systems; or more complex ones like piecewise linear
systems (PLS). Then, a comparable diversity of design and analysis tolls and proce-

dures should be developed for each one of them. The goal of this thesis is to give
a step forward in understanding and developing tools for a class of hybrid systems

known as PLS.
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1.5.1 Previous Results

Although widely used and intuitively simple, PLS are computationally hard and very

few theoretical results are available to analyze most PLS. More precisely, one typically

cannot assess a priori the guaranteed stability, robustness, and performance proper-

ties of PLS designs. Rather, any such properties are inferred from extensive computer

simulations. But, despite the lack of good theoretical analysis tools, PLS are used

as an analysis and design methodology which is known to work in many engineering

applications (like hopping robots, ABS, inverted pendulum, missile autopilots [13],

robotic manipulators [14], autopilot of aircrafts [63]). However, in the absence of such

analysis tools, these designs come with no guarantees. In other words, complete and

systematic analysis and design methodologies have yet to emerge.

There are, however, some results for special classes of PLS. For instance, analysis

in the phase plane of second-order systems has been studied for a while now. Early

classical references discussing oscillations in mostly second-order systems using phase-
plane analysis can be found in [1, 10, 29, 31, 60]. Other more recent references
are [28, 36, 45, 46, 57]. Phase portrait analysis is a powerful graphical technique

that presents global dynamic behavior for linear, piecewise linear, and even many
nonlinear model descriptions. However, it is essentially restricted to models with two

states only (or perhaps three states with todays computational graphic tools).

In [28], sketches of analysis and numerical simulations of a few model problems
showed that \simple" di�erential equations of dimension three or greater can possess

solutions of stunning complexity. Since such systems play an important role in the
modeling, analysis, and design of nonlinear processes, an understanding of typical
structures of their solutions is essential.

In the analysis of equilibrium points of PLS, recent results on the stability of equi-
librium points for certain classes of PLS can be found in [34, 51, 30]. There, a search
for piecewise quadratic Lyapunov functions is performed using convex optimization.

Partitioning of the state-space is the key in this approach. For most PLS, construc-
tion of piecewise quadratic Lyapunov functions is only possible after a more re�ned
partition of the state space, in addition to the already existent natural state space

partition of the system. As a consequence, the analysis method is eÆcient only when

the number of partitions required to prove stability is small. In chapter 4 we show

that even for a simple second order system, the method can become computationally
intractable. Also, the method does not scale well with the dimension of the system.
For high-order systems, it is extremely hard to obtain a re�nement of partitions in

the state-space to eÆciently analyze PLS. Another disadvantage of �nding Lyapunov

functions in the state space is that they are not capable of analyzing limit cycles.

Over many years, there has been extensive research on certain classes of PLS.

Relay feedback systems (RFS) (a simple PLS that will be the topic of chapter 5) is one
of these classes. Many results exist in the literature to analyze RFS. Research for this

class of PLS was motivated by relays in electromechanical systems and simple models
of dry friction (see the friction example in section 1.4.1). [8] and [64] are references

that survey a number of analysis methods and results. Rigorous results for analysis
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of local1 stability of relay feedback systems can be found, for example, in [3, 33, 66].

In [23], reasonably large regions of stability around locally stable limit cycles were

characterized. However, even for this simple class of PLS, very little is known about

its global behavior. [60, 28] presents global analysis results for second order systems

and [41] presents global stability results that can be applied to systems of order higher

than two, including in�nite-dimensional and uncertain systems. Unfortunately, many

important relay feedback systems are not covered by this result.

Another class of PLS that has received great attention from researchers is sat-

uration systems (see �gure 1-5). The study of such systems is motivated by the

possibility of actuator saturation or constraints on the actuators, re
ected in bounds

on available power supply or rate limits. These cannot be naturally dealt with within

the context of standard (algebraic) linear control theory, but are ubiquitous in control

applications. The fact that linear feedback laws when saturated can lead to instability

has motived a large amount of research. The well known result which states that a
controllable linear system is globally state feedback stabilizable, holds as long as the

control does not saturate. In many applications, more often than not, the control is
restricted to take values within certain bounds which may be met under closed-loop
operation. Because feedback is cut, control saturation induces a nonlinear behavior

on the closed-loop system. The problem of stabilizing linear systems with bounded
controls has been studied extensively. See, for example, [59, 55, 62] and references

therein.

Analysis of saturation systems (SAT) does not have such an extensive list of
publications as synthesis. Some SAT can be analyzed by just using the circle or

Popov criterion. Both of these criterion, however, are expected to be very conservative
for systems of order greater than three. The Zames-Falb criterion [68] reduces the
conservatism of both the circle and Popov criterion by taking in consideration the

slope restrictions of the saturation. This method, however, is diÆcult to implement.
Integral quadratic constraints (IQC) [35, 16, 44, 42] gives conditions in the form of

LMIs that, when satis�ed, guarantee stability of SAT. However, all of these analysis
tools fail to analyze SAT with unstable nonlinearity sectors.

Example 1.1 Consider the SAT on the left of �gure 1-12. If the saturation in the

system is replaced by a linear constant gain of 1=2, the system becomes unstable (see
the right side of �gure 1-12). This means the system has an unstable nonlinearity

sector. All the analysis tools described above fail to analyze systems with unstable

nonlinearity sectors, like this one.

As we will see in chapter 7, the origin of this system is globally asymptotically

stable.

Other PLS, like on/o� systems (see �gure 1-13), can also be analyzed with the
tools described above, basically with the same advantages and disadvantages as SAT.

On/o� systems (OFS) system are characterized by an LTI system in feedback with

1The terms local and global stability will be rigorously de�ned in chapter 2.
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Figure 1-12: 3rd-order system with unstable nonlinearity sector

an on/o� controller de�ned as

u(t) = max f0; y(t)� dg

d

LTI
u y

Figure 1-13: On/O� System

OFS can be found in many engineering applications. In electronic circuits, diodes

can be approximated by on/o� controllers. Transient behavior of logical circuits that
involve latches/
ip-
ops performing very fast on/o� switching can be modeled using

on/o� circuits and saturations. In general, on/o� circuits have many applications in
electronics and circuit design. Another area of application of OFS is aircraft control.
For instance, in [12], a max controller is designed to achieve good tracking of the

pilot's input without violating safety margins.

1.5.2 Contributions

The fact that PLS must be studied as a whole is one of the reasons that makes this
class of systems so hard to analyze. This is due to their hybrid nature. It is not
enough, for instance, to study their subsystems separately. Even if each individual

subsystem is stable, there is no guarantee that the PLS is also stable (see example 3.4).

In practice, due to the unavailability of rigorous mathematical tools, exhaustive sim-

ulation and/or experiment are, in most situations, the only alternatives to analyze
most PLS.

In this thesis, we introduce an entirely new methodology to globally analyze PLS.
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The idea consists in �nding quadratic Lyapunov functions on switching surfaces that

can be used to prove that impact maps, i.e., maps from one switching surface to the

next switching surface, are contracting in some sense. The search for surface quadratic

Lyapunov functions is done by solving sets of linear matrix inequalities (LMIs) using

eÆcient computational algorithms. Contractions of impact maps can then be used to

conclude about global stability, robustness, and performance of PLS.

The novelty of this work comes from expressing impact maps induced by an LTI


ow between two hyperplanes as linear transformations analytically parametrized by

a scalar function of the state. Furthermore, level sets of this function are convex

subsets of linear manifolds with dimension lower than that of the switching surfaces.

This allows us to reduce the problem of �nding quadratic surface Lyapunov functions

to solving a set of LMIs, which can be eÆciently done using available computational

tools.

The main di�erence between this and previous work [30, 34, 50], is that we look for
quadratic Lyapunov functions on switching surfaces instead of quadratic Lyapunov

functions in the state space. An immediate advantage is that this allows us to analyze
not only equilibrium points but also limit cycles. Another advantage is that, for a

given class of PLS, the complexity of analysis does not increase with the dimension
of the system. On the other hand, the analysis methodology in [30, 34, 50] requires,
in general, a further partition of the state space (besides the natural one imposed

by the PLS). In our case, we only need the natural partitions imposed by the PLS.
In chapter 4, we have an example of a second order system for which the number
of partitions required in [30, 34, 50] is so high that it is computationally intractable.

Quadratic surface Lyapunov functions, however, are easily found.

In the �rst part of this thesis, we will study global stability analysis of limit cycles

and equilibrium points of PLS. We start with limit cycles. The study and under-
standing of limit cycles are of great interest in many applications. Hopping robots
are examples of such applications. Here, it is important to show a certain design

control strategy of a hopping robot is globally stable in its domain of operation. This
ensures that as long as the robot starts within its domain it will not fall and, more-

over, it will converge asymptotically to its nominal trajectory. However, no results are
available to prove such properties. Although many walking robots are known to walk,
their stability and robustness have only been shown through exhaustive simulations

and experiments. This is true, even for simple walking robots, like monopods. This,

together with the fact that walking robots is a very active area of research, motivates
the development of such analysis tools.

In general, there is little known about global stability of periodic solutions. In this
thesis, we will �rst give existence and local stability results of periodic solutions of

PLS, and then focus on global stability analysis. We start by analyzing a simple class

of PLS known as relay feedback systems (RFS). One of the motivations to consider
RFS �rst is that for symmetric unimodal limit cycles2, only a single impact map

needs to be analyzed. Thus, this is a perfect class of systems to introduce global

analysis using quadratic surface Lyapunov functions. The idea is to �nd a quadratic

2A limit cycle is unimodal if it only switches twice per cycle.
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surface Lyapunov function for the associated impact map of a RFS. The search for

such function is eÆciently done by solving a set of LMIs. Global asymptotic stability

of symmetric unimodal limit cycles of RFS can this way be eÆciently checked. This

new analysis methodology gave us great con�dence in analyzing more complex classes

of PLS since a large number of examples analyzed (with a unique locally stable

symmetric unimodal limit cycle) was proven globally stable. In fact, existence of

an example with a globally stable symmetric unimodal limit cycle that could not be

successfully analyzed with this new methodology is still an open problem. Examples

analyzed include minimum-phase systems, systems of relative degree larger than one,

and of high dimension, for which no other analysis methodology could be applied.

Next, we analyze equilibrium points of PLS. We chose to �rst analyze on/o�

systems (OFS), for their simplicity when compared with other classes of PLS. In the

state space, an OFS has a unique switching surface. The main goals of analyzing

OFS are (1) to show that this new methodology can be used to not only globally
analyze limit cycles but also to globally analyze equilibrium points, and also (2) to

learn how to simultaneously analyze more than one impact map. Remember that
in RFS there was only one impact map to analyze. In the case of OFS, there are
two impact maps that need to be simultaneously analyzed. We will show that global

asymptotically stability of equilibrium points of OFS can be checked, even when these
do not belong to the switching surface. Moreover, a large number of examples was

successfully proven globally stable, including those OFS with unstable nonlinearity
sectors. As in RFS, existence of an example with a globally stable equilibrium point
that could not be successfully analyzed with this new methodology is still an open

problem.

The question of whether PLS with multiple switching surfaces can or cannot be
analyzed using quadratic surface Lyapunov functions is answered when we analyze

saturation systems (SAT). Here, the state space is divided in three regions by two
switching surfaces. As before, the goal is to show the origin is globally asymptotically

stable. The added diÆculty from OFS is on how to deal with more than one switching
surface. As we will see, in the case of SAT this reduces to the analysis of an extra
impact map. Once again, the results were extremely positive in the sense that a large

number of examples was successfully proven globally stable, including example 1.1
where the system had an unstable nonlinearity sector. Again, existence of an example

with a globally stable equilibrium point that could not be successfully analyzed with

this new methodology is still an open problem.

The second part of the thesis is dedicated to robustness and performance of PLS

using impact maps and quadratic surface Lyapunov functions. In particular, we apply

these ideas to study OFS. There, we show that performance properties of many OFS
can be checked, including those OFS with unstable nonlinearity sectors.

The success in globally analyzing stability, robustness, and performance of certain
classes of PLS has shown the power of this new methodology, and suggests its potential

towards the analysis of larger and more complex PLS. Although much research is still
ahead of us, the goal is to use impact maps and quadratic surface Lyapunov functions

to systematically and eÆciently analyze large classes of PLS.
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1.6 Thesis Organization

This thesis is organized as follows. The next chapter presents mathematical tools that

will be used throughout the rest of the thesis. Among others, the S-procedure and

linear matrix inequalities will be introduced there. This chapter will also establish

standard notation and include a brief introduction to dynamic systems. Chapter 3 is

dedicated to introduce a class of hybrid systems known as piecewise linear systems.

The main results of this thesis can be found in chapter 4. There, we show that

an impact map induced by an LTI 
ow can be represented as a linear transformation

analytically parametrized by a scalar function of the state. Such representation allows

us to eÆciently construct quadratic Lyapunov functions on switching surfaces that

can be used to globally analyze PLS in terms of stability, performance, and robustness.

The following three chapters show how the results from chapter 4 can be used

to globally analyze certain classes of PLS. Each of these classes was carefully chosen

to (1) separately deal with di�erent issues and behaviors of PLS and (2) illustrate
with examples the eÆciency of the developed tools. By increasing complexity, we
�rst analyze relay feedback systems (chapter 5), then on/o� systems (chapter 6),

and �nally saturation systems (chapter 7). The success in globally analyzing a large
number of examples of these classes of PLS demonstrates the potential of these new
ideas in globally analyzing other, more complex classes of PLS.

In chapter 8, we show that the idea of global analysis of PLS using impact maps
and quadratic surface Lyapunov functions can also be applied to study robustness

and performance of PLS. For that, we use on/o� systems to develop the main results.
We show that many times, not only an OFS is globally asymptotically stable, but also
�nite-gain L2 stable, i.e., \well-behaved" inputs generate \well-behaved" outputs.

Finally, conclusions and future remarks are presented in chapter 9. Some of the
topics reported in this thesis are published in various journal and conference pa-

pers [25, 26, 24, 21, 22].
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Chapter 2

Mathematical Preliminaries

The purpose of this chapter is to introduce several mathematical concepts and tools
that will be used throughout the thesis. Mathematical tools like linear matrix in-

equalities and the S-procedure are the engines behind many results presented later.
For this reason, these topics are brie
y introduced for completeness. We also include a
short introduction to dynamic systems, including equilibrium points and limit cycles.

2.1 Standard Concepts

Let the �eld of real numbers be denoted by IR, the set of n� 1 vectors with elements

in IR by IRn, and the set of all n �m matrices with elements in IR by IRn�m. Let I
denote the identity matrix and superscript (�)0 denote transpose. A matrix D 2 IRn�n

is called symmetric if D = D0 and positive de�nite (positive semide�nite) if x0Dx > 0

(x0Dx � 0) for all nonzero x 2 IRn. \D > 0 on S" stands for x0Dx > 0 for all
nonzero x 2 S � IRn. A matrix A is Hurwitz if the real part of each eigenvalue of A
is negative.

The p-norm of a vector x = ( x1 x2 � � � xn )
0 2 IRn is given by

kxkp =

 
nX
i=1

jxij
p

! 1

p

In this thesis, we reserve the notation k � k = k � k2 for the 2-norm. This means

kxk2 = x0x. For some D > 0, de�ne the weighted Euclidean norm of x as kxk2D =
kD1=2xk2 = x0Dx. Let Lp denote the space of all real-valued functions u(�) on [0;1)

such that

ku(t)kLp =
�Z 1

0
ju(t)jpdt

� 1

p

<1

For p =1,

ku(t)kL
1

= sup
t�0

ju(t)j

A set X � IRn is convex if �x + (1� �)y 2 X whenever x; y 2 X and 0 < � < 1,

and is a cone if x 2 X implies �x 2 X for any � � 0.
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A function f : IR ! IR is piecewise constant if there exists a sequence of points

ftkg with tk+1 > tk and tk ! +1 as k ! +1, tk ! �1 as k ! �1, such that

the function is constant in [tk; tk+1). Let f(t� 0) stand for the lim�>0;�!0 f(t� �) and
f(t+ 0) for the lim�>0;�!0 f(t+ �).

The following de�nitions are taken from [54] and will be used throughout the

thesis.

De�nition 2.1 All points and sets mentioned below are understood to be elements

and subsets of IRn.

(a) A neighborhood of a point p is a set N�(p) consisting of all points q such that

kp� qk < �. The number � is called the radius of N�(p).

(b) A point p is a limit point of the set X if every neighborhood of p contains a
point q 6= p such that q 2 X.

(c) If p 2 X and p is not a limit point of X then p is called an isolated point of X.

(d) X is closed if every limit point of X is a point of X.

(e) The closure of X is the set �X = X [ fpj p is a limit point of Xg.

(f) A point p is an interior point of X if there is a neighborhood N of p such that
N � X.

(g) X is open if every point of X is an interior point of X.

(h) X is bounded if there is a real numberM and a point q 2 IRn such that kp�qk <
M for all p 2 X.

2.2 Linear Matrix Inequalities

A linear matrix inequality (LMI) has the form

F (x) = F0 +
nX
i=1

xiFi > 0 (2.1)

where x 2 IRn is the variable and the symmetric matrices Fi 2 IRn�n, i = 0; 1; :::; n
are given. The LMI (2.1) is a convex constraint on x, i.e., the set fxj F (x) > 0g is
convex. Although the LMI (2.1) may seem to have a specialized form, it can represent

a wide variety of convex constraints on x. In particular, linear inequalities, (convex)
quadratic inequalities, and matrix norm inequalities can all be cast in the form of an

LMI. For more information on LMIs the reader is referred to [11].

Expressing solutions to problems in terms of LMIs is a common practice these

days. Mathematical and software tools capable of eÆciently �nding xi satisfying (2.1)

are available . The strategy throughout this thesis is to write global stability, robust-

ness, and performance conditions of piecewise linear systems in the form of LMIs.
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2.3 The S-procedure

We will often encounter the problem of determining if a quadratic function (or

quadratic form) is nonnegative when other quadratic functions (or quadratic forms)

are all nonnegative. In some cases, this problem can be expressed as an LMI in the

data de�ning the quadratic functions or forms; in other cases, we can form an LMI

that is a conservative but often useful approximation of the original problem using

a technique called the S-procedure (see [11] and references therein for a complete

discussion on the S-procedure).

Let �0; � � � ; �p be quadratic functions of the variable x 2 IRn given in the form

�i(x) = x0Pix+ 2x0gi + �i; i = 0; :::; p

where Pi = P 0i . We consider the following condition on �0; � � � ; �p

�0(x) � 0 for all x such that �i(x) � 0; i = 1; :::; p (2.2)

If there exist �1 � 0; :::; �p � 0 such that

�0(x)�
pX

i=1

�i�i(x) � 0

for all x, then (2.2) holds. It is a nontrivial fact that when p = 1 the converse holds,
provided there is some x0 such that �1(x0) > 0.

2.4 Dynamic Systems

For completeness, this section contains a brief introduction to dynamic systems. For

a complete introduction to dynamic systems the reader is referred to any of the
following [48, 38, 19, 36].

In most cases, the evolution of physical systems can be approximately modeled by
real ordinary di�erential equations; that is, the state x(t) = (x1(t) x2(t) � � � xn(t))

0

of the physical system at time t is a point along the solution of the coupled �rst-order

ordinary di�erential equations

_xi = fi(t; x; u) i = 1; 2; :::; n (2.3)

where _xi denotes the derivative of xi with respect to the time variable t, u(t) =
(u1(t) u2(t) � � � up(t))

0 are speci�ed input variables, and the state x passes through

the point x(t0) at time t = t0. Sometimes, we associate with (2.3) another equation

y = h(t; x; u) (2.4)

which de�nes a q-dimensional output vector that comprises variables of particular
interest in the analysis of the dynamical system, like variables which can be physi-

cally measured or variables which are required to behave in a speci�ed manner. We
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call (2.4) the output equation and refer to equations (2.3) and (2.4) together as the

state space model. In general, the functions f = (f1 f2 � � � fn)
0 and h are nonlinear

functions of the state variable x.

In closed-loop, a control law u(t) = g(x(t); t) is selected. Thus, the closed-loop

dynamics can be written as

_x = f(x; t) (2.5)

A special case of (2.5) is when the function f does not depend explicitly on t, that is,

_x = f(x) (2.6)

In these cases the system is said to be autonomous or time-invariant.

For the sake of simplicity in analyzing (2.3) and (2.4), f and h are frequently

replaced by linear functions of the form

_x = Ax+ Bu

y = Cx+Du

In this case, we say the system is linear time-invariant (LTI).

2.4.1 Equilibrium Points

An important concept in dealing with the state equation is the concept of an equi-

librium point. A point x = x� in the state space is said to be an equilibrium point
of (2.6) if it has the property that whenever the state of the system starts at x� it
will remain at x� for all future time. The equilibrium points are then the real roots

of the equation f(x) = 0. An equilibrium point can be isolated (that is, there are no
other equilibrium points in its vicinity) or can be part of a continuum of equilibrium

points.

Equilibrium points can be characterized as stable, unstable, or asymptotically
stable in the sense of Lyapunov.

De�nition 2.2 The equilibrium point x� of (2.6) is

� stable if, for each � > 0, there is a Æ = Æ(�) > 0 such that

kx(0)� x�k < Æ ) kx(t)� x�k < �; 8t � 0

� unstable if not stable;

� asymptotically stable if it is stable and Æ can be chosen such that

kx(0)� x�k < Æ ) lim
t!1

x(t) = x�

� globally asymptotically stable if it is stable and, for any x(0), limt!1 x(t) = x�.
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2.4.2 Limit Cycles

Oscillation is one of the most important phenomena that occur in dynamical systems.

A system oscillates when it has a nontrivial periodic solution

x(t + t�) = x(t); for all t � 0

for some t� > 0 (the period of the oscillation). The word \nontrivial" is used to

exclude constant solutions corresponding to isolated equilibrium points. The image

set of a periodic solution in the state space is a closed trajectory that is usually called

periodic orbit or a closed orbit. Limit cycles are special cases of system closed trajec-

tories. A limit cycle is de�ned as an isolated closed curve. That is, the trajectory has

to be both closed (indicating the periodic nature of the motion) and isolated (indicat-

ing the limiting nature of the cycle that attracts and/or repels nearby trajectories).
Thus, while there may exist many closed trajectories in the state space, only those
that are isolated are called limit cycles.

Although linear systems may have closed trajectories, these are never isolated.
The truth is that limit cycles are inherent properties of nonlinear systems. This is

the reason why limit cycles are so hard to analyze since the existing well developed
linear theory cannot be applied. The motivation behind the study of limit cycles in

this thesis is based on both the importance of limit cycles in real world applications
and the lack of mathematical tools to analyze them.

Periodic motions in IRn which are described by di�erential equations or di�erence
equations are exceedingly important in practice. For instance, the motion of plan-
ets and the operating of an electric motor or steam engine can all be described by

di�erential equations. This explains the great importance of the theory of periodic
motions and the numerous publications in this area. The study of this type of motion
is indispensable for understanding many phenomena.

As equilibrium points, limit cycles can be characterized as stable, unstable, or
asymptotically stable. Let �(t) be a nontrivial periodic solution of the autonomous

system (2.6) with period t�, and let 
 be the closed orbit (limit cycle) given by the

image set of �(t) in the state space, that is,


 = fx 2 IRnj x = �(t); 0 � t � t�g

At �rst, it seems that the right thing to do in order to analyze the stability of the

limit cycle, is to make a change of variables z = x � � and then study the stability
of this system at the equilibrium point z = 0 in conformity with de�nition 2.2. The

problem with this approach is that, according to [29, theorem 81.1] or [45, chapter

5], the equilibrium point z = 0 is never stable in the sense of de�nition 2.2. We
need then a more suitable de�nition of stability of limit cycles. Before we present

such de�nition we need to introduce the concept of an �-neighborhood of 
. This is
de�ned by

U� = fx 2 IRnj dist(x; 
) < �g
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where dist(x; 
) is the minimum distance from x to a point in 
, that is,

dist(x; 
) = inf
y2


kx� yk

De�nition 2.3 The limit cycle 
 of (2.6) is

� stable if, for each � > 0, there is an Æ > 0 such that

x(0) 2 UÆ ) x(t) 2 U�; 8t � 0

� asymptotically stable if it is stable and Æ can be chosen such that

x(0) 2 UÆ ) lim
t!1

dist(x(t); 
) = 0

� globally asymptotically stable if it is stable and, for any x(0)

lim
t!1

dist(x(t); 
) = 0

This de�nition reduces to de�nition 2.2 when 
 is just an equilibrium point.
Having de�ned the stability properties of limit cycles, we can now de�ne the

stability properties of periodic solutions.

De�nition 2.4 A nontrivial periodic solution �(t) of (2.6) is

� orbitally stable if the limit cycle 
 generated by �(t) is stable;

� asymptotically orbitally stable if the limit cycle 
 generated by �(t) is asymp-
totically stable;

� globally orbitally asymptotically stable if it is orbitally stable and the limit cycle

 generated by �(t) is globally stable.

Notice that di�erent terminology is used depending on whether we are talking about

the periodic solution or about the corresponding periodic orbit.
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Chapter 3

Piecewise Linear Systems

This chapter is devoted to introduce a class of hybrid systems known as piecewise
linear systems (PLS). Such systems arise in many applications like, for example,

linear systems with saturating inputs, hopping robots, approximations of nonlinear
systems, etc. This chapter gives a rigorous mathematical introduction to PLS. It

starts by de�ning the class of PLS we are interested. Then, sections 3.2 and 3.3
discuss equilibrium points and limit cycles of PLS, respectively. Finally, section 3.4
presents the problem we propose to solve.

3.1 De�nitions

Piecewise linear systems (PLS) are characterized by a set of aÆne linear systems

_x = A�x +B� (3.1)

where x 2 IRn is the state, together with a switching rule to switch among them

�(x) 2 f1; :::;Mg (3.2)

that depends on present values of x and possibly also on past values of x. By a solution

of (3.1)-(3.2) we mean functions (x; u) satisfying (3.1)-(3.2), where �(t) is piecewise
constant. t is a switching time of a solution of (3.1)-(3.2) if � is discontinuous at t.

We say a trajectory of (3.1)-(3.2) switches at some time t if t is a switching time.

In the state space, switches occur at switching surfaces consisting of hyperplanes
of dimension n� 1

Sj = fxj Cjx + dj = 0g

where Cj is a row vector and j = f1; :::; Ng. De�ne

Xi = fxj �(x) = ig

for i = f1; :::;Mg.
The switching rule may or may not be memoryless. In some cases, the value of

� depends only on the current state, like linear systems with saturating inputs. In
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other cases, the value of � depends also on past values of the state (or on past values

of �), like relays with hysteresis. Next, we discuss both cases separately, starting with

memoryless switching rules.

When the switching rule has no memory|depends only on the present state x|

the state space IRn is partitioned into M (possibly unbounded) sets called cells, such

that Xi

T
Xj = ;, i 6= j. In each cell Xi, the system dynamics are given by the aÆne

linear system _x = Aix+Bi. De�ne Sji � Sj as the boundary of cell i by hyperplane j

(see �gure 3-1). If the hyperplane j is not part of the boundary of cell i then Sji = ;.
All together, there are N �M sets Sji, although some of them are the same or empty.

For example, in �gure 3-1, S11 = S12, S21 = S24, S33 = ;, etc. Here M = 7 and

N = 3.

S3

S1
S2

x=A x+B2 2

x=A x+B

x=A x+B
4x=A x+B

3 3

1

4

1

S

S

S
S

S

S

S11

13

14

24

21

31

12

Figure 3-1: Piecewise Linear System with a memoryless switching rule

Example 3.1 A simple example of a PLS with a memoryless switching rule is a
saturation system (see the left side of �gure 3-2). Basically, an LTI system _x =
Ax +Bu, y = Cx is in feedback with a saturation controller of the form

u(t) =

8><
>:
�d if y(t) < �d
y(t) if jy(t)j � d

d if y(t) > d

In the state space, the system is partitioned in three cells (see the right side of

�gure 3-2).

In this case, there are 2 hyperplanes (N = 2) and 3 linear subsystems (M = 3).

Also, Sji = Sj since the hyperplanes do not intersect. This class of PLS will be the

topic of chapter 7.

Another scenario is when the switching rule has memory and the decision of which

aÆne linear system to use may not depend solely on the actual values of the state,

but also on its past values. In this case, the intersection of di�erent Xi may not result

in an empty set, as the next example shows.
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LTI
u y

0

x=(A+BC)x x=Ax+Bd

Cx=−d
Cx=d

x=Ax−Bd

Figure 3-2: Left|Saturation system; Right|state space cells

Example 3.2 A simple class of PLS with a switching rule with memory is relay feed-

back systems (RFS). Such systems are characterized by a linear system in feedback

with an hysteresis (see �gure 3-3). This class of PLS will be the topic of chapter 5,
and the reader is referred to that chapter for a precise de�nition of RFS. Basically,
u, the input to the LTI system, can take values of 1 or �1 depending not only on the

present state but also on past values of the state (or u).

LTI
u y

Figure 3-3: Relay Feedback System

Just like in the saturation system, the state space is divided in 3 parts, although,

in this case, there are only two aÆne linear systems, corresponding to X1 and X2.
In the outer cells, the PLS behaves just like a memoryless switching rule where u is

clearly either 1 or �1. In the open inner cell, the value of u depends on its previous

value. If u(t� 0) = 1 then u(t) = 1, else u(t) = �1. Thus, the inner cell is shared by
both aÆne linear systems and, in order to decide which system to use, it is necessary

to know information about the past of the state (or the past of u). The intersection

X1

T
X2 is then exactly the inner cell.

In this thesis, we assume existence of solution is always guaranteed for any initial

condition. If an initial condition is an interior point1 of a cell, then existence of
solution is guaranteed at least from the initial condition to the �rst intersection with

a switching surface. This follows since the system is aÆne linear in the cell. When

an initial condition belongs to a switching surface, however, there may be a unique,
multiple, or no solutions. In �gure 3-4, we have an example of each of these three

1
x is an interior point of a set X � IRn if there exists a neighborhood W of x such that W � X .
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situations. On the left, the orientation of the vector �eld of both systems i and k

results in only one alternative for a solution starting at x0. In this case, the unique

trajectory will move downwards, to system k. In the center, the solution is not

unique. The trajectory can either move downwards or upwards. In the last case,

depicted on the right of �gure 3-4, both vector �elds point inwards to the switching

surface. As before, at x0 the switching rule (3.2) can take values i or k. As soon as

�(x0) is assigned to either one, it must switch immediately. Since, by de�nition, �(t)

is piecewise constant, arbitrarily fast switches are not possible. Therefore, in this case,

no solution exists. Hence, in order to guarantee existence of solutions, throughout

this thesis we consider only those PLS that do not exhibit the behavior of the last

scenario.

Sj
x0 x0 x0

x=A x+Bi i

x=A x+Bkk

Figure 3-4: Existence of solutions; from left to right: one, multiple, and no solutions

One way to solve the problem of existence of solutions in cases like the one on the
right of �gure 3-4, is to de�ne a dynamical system on the switching surface Sj, and
let the trajectory evolve in this surface until it can \escape" to either side of Sj. This

is typically known as sliding modes. Hence, the evolution of the trajectory along the
switching surface satis�es an n� 1 dimensional system de�ned in Sj. Although this

thesis does not explicitly address sliding modes, the analysis of such cases is actually
not that di�erent from PLS without sliding modes.

In next chapter we will give further remarks about sliding modes.

Unlike linear systems that only have a single equilibrium point, PLS may exhibit
multiple equilibrium points and/or limit cycles. We will analyze each of these cases

separately in the following two sections, starting with equilibrium points.

3.2 Equilibrium Points

Remember that, by de�nition, a point is an equilibrium point if whenever the state

of the system starts at that point it will remain there for all future. In the case of
PLS, these may have none, one, or multiple equilibrium points.

Example 3.3 Consider again the saturation system described in example 3.1 and
let

A =

�
�1=2 0

0 �1

�
B =

�
1

��

�

where � 2 IR, C = ( 0 1 ) and d = 1. This means that CA�1B = �. Let � = 2.

Then the system has a single equilibrium point at the origin. On the other hand, if,
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for example, � = �2, the system has 3 equilibrium points: one at the origin, one at

( 2 2 )
0
, and one at (�2 �2 )0.

In many situations, checking stability of equilibrium points of PLS is not an easy

task. In some cases, even showing local stability can be quite challenging. This is not

the case, however, if an equilibrium point of some system i is an interior point of cell

i. Here, local stability is easily veri�ed just like in linear systems, by checking if the

eigenvalues of Ai are in open left half plane.

If an equilibrium point belongs to a switching surface then this is a limit point2

of two or more cells. In this case, it is not enough to simply check the eigenvalues of

all of the Ai matrices of the cells for which the equilibrium point is a limit point. A

well known example is the following.

Example 3.4 Let

A1 =

"
�0:1 1

�10 �0:1

#
; A2 =

"
�0:1 10

�1 �0:1

#

and B1 = B2 = 0. The origin of each system _x = Aix, i = 1; 2, is globally asymptot-
ically stable. However, the switched system using system 1 in the second and fourth

quadrants and system 2 in the �rst and third quadrants is unstable.

3.3 Limit Cycles

Limit cycles and stability of limit cycles were de�ned in section 2.4.2. In this section,
we give existence and local stability conditions of limit cycles of PLS.

Assume the PLS (3.1)-(3.2) has a limit cycle 
 with period t�, and that this
limit cycle crosses k switching surfaces per cycle. For simplicity, and without loss of

generality, assume the trajectory of the limit cycle evolves consecutively from system

1, to system 2, and so forth until it reaches system k, and �nally, after completing
one cycle, returns to system 1. Assume also the switching surfaces are ordered the

same way (see �gure 3-5). This means the trajectory �(t) of the limit cycle, starting
at x�0 2 Sk, satis�es �(t

�
1) = x�1 2 S1. Then system 2 \takes over" until �(t�1 + t�2) =

x�2 2 S2, and so on. The last aÆne linear system k takes the trajectory �(t) from

x�k�1 2 Sk�1 to the point x�k 2 Sk, i.e., �(t
�
1 + t�2 + � � � + t�k) = x�k = x�0 2 Sk. Note

that t� = t�1 + t�2 + � � � + t�k. Note also that there is no loss of generality in this

characterization of a limit cycle. If, for instance, the limit cycle crosses the same

switching surface more than once, we simply have Si = Sj for some i; j.

2
x is a limit point of a set X � IRn if every neighborhood of x contains a point w 6= x such that

w 2 X .
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S2
S1

Sk

System k

x*

x*

x*

System 1

System 2

System 3

1

0

2

Figure 3-5: Limit cycle 


3.3.1 Existence of Limit Cycles

Next we present necessary and suÆcient conditions for the existence of limit cycles
of PLS. For simplicity, we will �rst study the case where the limit cycle has only two

switches per cycle. Then, we extend the result to k switches. For k = 2, we have the
following result.

Proposition 3.1 Consider the PLS (3.1)-(3.2). Assume there exists a periodic so-

lution 
 with two switches per cycle and with period t� = t�1 + t�2 > 0, where t�1 and t
�
2

are de�ned as above. De�ne

g1(t
�
1; t

�
2) = C1

�
I � eA1t

�

1eA2t
�

2

��1 h
eA1t

�

1(eA2t
�

2 � I)A�12 B2 + (eA1t
�

1 � I)A�11 B1

i
+ d1

g2(t
�
1; t

�
2) = C2

�
I � eA2t

�

2eA1t
�

1

��1 h
eA2t

�

2(eA1t
�

1 � I)A�11 B1 + (eA2t
�

2 � I)A�12 B2

i
+ d2

Then the following conditions hold

(
g1(t

�
1; t

�
2) = 0

g2(t
�
1; t

�
2) = 0

(3.3)

and the periodic solution is governed by system 1 on [0; t�1), and by system 2 on [t�1; t
�).

Furthermore, the periodic solution 
 is obtained with either initial conditions

x�0 =
�
I � eA2t

�

2eA1t
�

1

��1 h
eA2t

�

2(eA1t
�

1 � I)A�11 B1 + (eA2t
�

2 � I)A�12 B2

i
x�1 =

�
I � eA1t

�

1eA2t
�

2

��1 h
eA1t

�

1(eA2t
�

2 � I)A�12 B2 + (eA1t
�

1 � I)A�11 B1

i

Example 3.5 For visualization purposes, consider two aÆne linear systems in IR2,

_x = Aix +Bi where

A1 = A2 =

�
�1 0

0 �2

�
; B1 =

�
�3
�2

�
; and B2 =

�
2

2

�

together with a switching rule with memory that uses system 1 until the trajectory

intersects the switching surface S1, and then uses system 2 until the trajectory in-
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tersects the switching surface S2, and so on. The switching surfaces are given by

C1 = (�1 1 ), d1 = �1, C2 = ( 1 0 ), and d2 = �1. Solving (3.3) numerically we

get t�1 = 1:24, t�2 = 1:35, x�0 = x�2 = ( 1:0000 0:87 )
T
, x�1 = (�1:84 �0:84 )T . The

resulting periodic solution 
 can be seen in �gure 3-6.

x*1

x*2γ

S1
S0

1

1

Figure 3-6: Periodic solution of a second-order PLS

Proof of proposition 3.1: Let's �rst �nd g2. Integrating (3.1) for the �rst system
we get

x(t) = eA1t(x0 + A�11 B1)� A�11 B1

If x0 = x�0 2 S2 is a point in 
 then

x�1 = eA1t
�

1(x�0 + A�11 B1)� A�11 B1

where x�1 2 S1. In a similar way, for the second system

x�2 = eA2t
�

2(x�1 + A�12 B2)� A�12 B2

Replacing x�1 in the previous equation and noticing that x�2 = x�0 we get

x�0 = eA2t
�

2

�
eA1t

�

1(x�0 + A�11 B1)� A�11 B1 + A�12 B2

�
� A�12 B2

which, after solving for x�0, yields

x�0 =
�
I � eA2t

�

2eA1t
�

1

��1 h
eA2t

�

2(eA1t
�

1 � I)A�11 B1 + (eA2t
�

2 � I)A�12 B2

i

Since x�0 2 S2, C2x
�
0 + d2 = 0, and the desired result follows. x�1 and g2 can be found

in a similar way.

This result can be generalized to the case where a periodic solution 
 switches

among k systems instead of just two. For the remainder of this section, for simplicity

of notation, let Ei = eAit
�

i and zi = A�1i Bi. De�ne

gk(t
�
1; t

�
2; :::; t

�
k) = Ck (I � Ek � � �E1)

�1

"
k�1X
i=1

Ek � � �Ei+1(Ei � I)zi + (Ek � I)zk

#
+ dk
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gk was found based on the switching sequence f1; 2; :::; kg. To �nd, gj, j = 1; :::; k�1,

consider the switching sequence fj + 1; :::; k; 1; :::; jg, i.e., just replace the indexes of
gk in the following way: 1 by j + 1, 2 by j + 2 (or by 1 if j + 2 > k), up to k by j.

Proposition 3.2 Consider the PLS (3.1)-(3.2). Assume there exists a periodic so-

lution 
 with k switches per cycle and with period t� = t�1 + t�2 + � � � t
�
k > 0. Consider

the functions g1; g2; :::; gk de�ned as above. Then the following conditions hold

8>>>><
>>>>:

g1(t
�
1; t

�
2; :::; t

�
k) = 0

g2(t
�
1; t

�
2; :::; t

�
k) = 0

...

gk(t
�
1; t

�
2; :::; t

�
k) = 0

(3.4)

and the periodic solution is governed by system 1 on [0; t�1), and by system i on [t�1 +
� � � + t�i�1; t

�
1 + � � � + t�i ), i = 2; :::; k. Furthermore, the periodic solution 
 can be

obtained with the initial condition x�0 2 Sk

x�0 = (I � Ek � � �E1)
�1

"
k�1X
i=1

Ek � � �Ei+1(Ei � I)zi + (Ek � I)zk

#

Proof: Integrating the linear dynamics between two switching surfaces we get

x�i = Eix
�
i�1 + (Ei � I)zi

To �nd x�k as a function of x�0 we solve recursively, starting at x
�
k:

x�k = Ekx
�
k�1 + (Ek � I)zk

= Ek

�
Ek�1x

�
k�2 + (Ek�1 � I)zk�1

�
+ (Ek � I)zk

= EkEk�1x
�
k�2 + Ek(Ek�1 � I)zk�1 + (Ek � I)zk

= Ek � � �E1x
�
0 + Ek � � �E2(E1 � I)z1 + � � �+ EkEk�1(Ek�2 � I)zk�2

+Ek(Ek�1 � I)zk�1 + (Ek � I)zk

The desired result can be obtained by knowing x�0 = x�k and solving for x�k. gk can be

found by computing gk = Ckx
�
k + dk = 0, since x�k 2 Sk. The rest of the proof follows

in a similar way.

As in the case where k = 2, (3.4) is a set of transcendental equations. Closed form

solutions can be given only for very special cases and, even numerically, this is a hard
problem. An alternative is to simulate the system for some time and get approximate

values for t�1; t
�
2; :::; t

�
k. Then, use some numerical algorithm to compute t�1; t

�
2; :::; t

�
k.

3.3.2 Local Stability

Consider the PLS (3.1)-(3.2). Assume there exists a periodic solution 
 with period

t�. Let x�0 2 Sk be the initial state that generates the periodic motion. Consider the
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map T from some point in a small neighborhood of x�0 in Sk, to the point when the

trajectory returns to Sk. Local stability of a limit cycle can be checked by looking at

the poles of the linear part of T . Stability follows if the poles are inside the unit disk.

The following proposition gives conditions for local stability of limit cycles of PLS.

Proposition 3.3 Consider the PLS (3.1)-(3.2). Assume there exists a limit cycle


 with period t� as described above. Assume also the limit cycle is transversal3 to

the switching surfaces S1; :::; Sk at x
�
1; :::; x

�
k, respectively. The Jacobian of the map T

de�ned above is given by W =WkWk�1 � � �W2W1 where

Wi =

�
I �

viCi

Civi

�
eAit

�

i

with vi = Aix
�
i + Bi, i = 1; :::; k. The limit cycle 
 is locally stable if W has all its

eigenvalues inside the unit disk. It is unstable if at least one of the eigenvalues of W

is outside the unit disk.

Proof: Consider a trajectory with initial condition x(0) = x�0. Then, the solution
at time t�1 is x(t�1) = x�1 = eA1t

�

1(x�0 + A�11 B1) � A�11 B1. Now, let x(0) = x�0 + Æ1x
�
0

where Æ1x
�
0 is chosen so that x(0) is on the switching surface plane, i.e., such that

Ck(x
�
0 + Æ1x

�
0) + dk = 0. The solution to this initial condition is x(t) = eA1t(x�0 +

Æ1x
�
0 + A�11 B1) � A�11 B1. Assuming the solution reaches the switching surface S1 at

time t�1 + Æ1t
�
1 we have

x(t�1 + Æ1t
�
1) = eA1(t�1+Æ1t

�

1
)
�
x�0 + Æ1x

�
0 + A�11 B1

�
� A�11 B1

Making a series expansion in Æ1x
�
0 and Æ1t

�
1 we get

x(t�1 + Æ1t
�
1) = x�1 + eA1t

�

1Æ1x
�
0 + eA1t

�

1 (A1x
�
0 +B1) Æ1t

�
1 +O(Æ21)

= x�1 + eA1t
�

1Æ1x
�
0 + v1Æ1t

�
1 +O(Æ21) (3.5)

where we use the fact that eA1t
�

1 (A1x
�
0 +B1) = A1x

�
1 +B1 = v1. Since x(t

�
1 + Æ1t

�
1) is

on the switching surface S1, we have C1x(t
�
1 + Æ1t

�
1) + d1 = 0. Neglecting high-order

terms gives

C1x
�
1 + C1e

A1t
�

1Æ1x
�
0 + C1v1Æ1t

�
1 + d1 = 0

and since C1x
�
1 + d1 = 0 we have

C1v1Æ1t
�
1 = �C1e

A1t
�

1Æ1x
�
0

Since, by assumption, the limit cycle is transversal to S1 at x
�
1, C1 _x(t

�
1) 6= 0. Thus,

C1(A1x
�
1 +B1) 6= 0 or C1v1 6= 0, which means that

Æ1t
�
1 = �

C1e
A1t

�

1

C1v1
Æ1x

�
0

3
� is transversal to S = fxj Cx = dg at p = �(t) 2 S if C _�(t� 0) 6= 0.
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replacing in (3.5) yields

x(t�1 + Æ1t
�
1) = x�1 +

�
I �

v1C1

C1v1

�
eA1t

�

1Æ1x
�
0 +O(Æ21)

= x�1 +W1Æ1x
�
0 +O(Æ21)

Similarly, we get

x(t�2 + Æ2t
�
2) = x�2 +W2Æ2x

�
1 +O(Æ22)

with initial condition x�1 + Æ2x
�
1 = x�1 +W1Æ1x

�
0 + O(Æ21). Neglecting high-oder terms,

we get Æ2x
�
1 = W1Æ1x

�
0. Replacing in the above equality yields

x(t�2 + Æ2t
�
2) = x�2 +W2W1Æ1x

�
0 +O(Æ21)

Repeating this procedure k�2 times, we get to the last system, system k. Letting the

initial condition to system k be x�k�1 + Ækx
�
k�1 = x�k�1 +Wk�1 � � �W2W1Æ1x

�
0 + O(Æ21)

leads to

x(t�k + Ækt
�
k) = x�k +WkÆkx

�
k�1 +O(Æ2k)

= x�0 +WkWk�1 � � �W2W1Æ1x
�
0 +O(Æ21)

where we used the fact x�k = x�0. This proves the proposition.

Example 3.6 Coming back to example 3.5, we can compute W from W1 and W2.

Replacing the values we get

W = 10�3
�

0 0
�0:29 0:32

�

which has all its eigenvalues inside the unit disk. Therefore the limit cycle in exam-
ple 3.5 is locally stable.

3.4 Problem Statement

After de�ning PLS and discussing equilibrium points and limit cycles of PLS, the
natural question is how to analyze such trajectories. Like in the example in �gure 3-

7, PLS may have equilibrium points, limit cycles, or some combination of both of
these trajectories. One may ask: is the limit cycle stable? Or one of the equilibrium

points? Or both? Or all of these trajectories? If they are not unstable, what are their

regions of attraction? And, what if we are looking for global analysis? For instance,
if a PLS has a single equilibrium point or a single limit cycle, how can we guarantee
such trajectory is global asymptotically stable? That it meets certain performance

criteria? That it is robust to unmodeled dynamics? These are the sort of questions

we propose to answer with the results in this thesis.

The main purpose of this thesis is to develop an entirely new constructive global
analysis methodology. This methodology consists in inferring global properties of
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limit
cycle

eq. point

eq. point

Figure 3-7: PLS with limit cycles and equilibrium points

PLS solely by studying their behavior at switching surfaces. The main idea is to
analyze impact maps, i.e., maps from one switching surface to the next switching

surface. These maps are proven globally stable by constructing quadratic Lyapunov
functions on switching surfaces associated with PLS. Impact maps are known to be

\unfriendly" maps in the sense that they are highly nonlinear, multivalued, and not
continuous. Thus, the �rst step is to �nd a representation of impact maps that allows
us to use them to conclude about stability, performance, and robustness of PLS.

Although analysis of nonlinear systems at switching surfaces has been studied
by others (e.g., Poincar�e), with the exception of very simple systems, no one really

knew how to use impact maps to study global analysis of hybrid systems. The reason
why in this thesis we are able use impact maps in global analysis of certain classes
of hybrid systems is based on the discovery that impact maps can be written in an

\nice", analytical way. We found that impact maps can be represented as a linear
transformation analytically parametrized by a scalar parameter of the state. This
parameter is simply the switching time associated with the impact map. When the

switching time is �xed, it turns out the impact map is linear along a subset of a
linear manifold of dimension smaller than the dimension of the switching surface.

Writing matrix inequalities that guarantee quadratic stability of impact maps is then
straightforward.

In the �rst part of this thesis we will mainly focus on global asymptotic stability

analysis of PLS with either a single limit cycle or a single equilibrium point. We will

analyze several classes of PLS: relay feedback systems, on/o� systems, and saturation

systems. Then, in the second part of the thesis we show that performance analysis of

PLS can also be checked using the very same ideas: global analysis of impact maps

using surface quadratic Lyapunov functions. We show this can be done by applying

the results to on/o� systems.

To summarize, we propose to develop a new methodology to analyze stability,

robustness, and performance of PLS. The main ideas will be presented in the next

chapter.
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Chapter 4

Main Results

This chapter includes the main contributions of this thesis. In the next section, we
motivate the need for better and more eÆcient analysis tools for PLS. We explain

how available methods are ineÆcient or even useless to analyze many important PLS.
Such analysis tools are mainly based on constructing quadratic Lyapunov functions
in the state space. Alternatively, we propose the construction of quadratic Lyapunov

functions in the switching surfaces. In section 4.2, we introduce the notion of impact
maps, which are simply maps between two switching surfaces. We show that impact
maps induced by an LTI 
ow can be represented as linear transformations analytically

parametrized by a scalar function of the state. This, in turn, allows us to reduce the
problem of quadratic stability of impact maps to solving a set of LMIs, as explained

in section 4.3. Then, section 4.4 brie
y discusses how these results can be used in
the analysis of equilibrium points and limit cycles of PLS. Basically, section 4.4 gives
an overview of the following three chapters. In these chapters, di�erent and speci�c

issues of PLS are separately addressed in detail. This will be done by studying
three di�erent classes of PLS: relay feedback systems, on-o� systems, and saturation

systems.

4.1 Motivation

As discussed in introduction, there exist several tools to analyze PLS. One of the most
important [50, 34, 30], is based on constructing piecewise quadratic Lyapunov func-

tions in the state space. There are, however, several drawbacks with this approach.

These include:

� Lyapunov functions in the state space cannot be constructed to analyze limit

cycles.

� Partitioning of the state-space is the key of the approach proposed in [50, 34, 30].
For most PLS, construction of piecewise quadratic Lyapunov functions is only

possible after a more re�ned partition of the state space, in addition to the

already existent natural state space partition of the PLS. As a consequence,
the analysis method is eÆcient only when the number of partitions required
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to prove stability is small. The following example shows that even for second

order systems, the construction of piecewise quadratic Lyapunov functions can

be computationally intractable due to the large number of partitions in the state

space required for the analysis.

Example 4.1 In this simple example, we are interested in showing the origin

of a second order PLS is globally asymptotically stable. Consider the PLS

in �gure 4-1 composed of two linear systems. On the left side of the vertical

axis|x2 axes|we have an unstable linear system and on the right side we have

a stable linear system parametrized by � > 0.

−1    −1−

x2

x1

x =               x

>0ε

ε
x =                       xε−1−       1

−1 1
1 1

0

Figure 4-1: PLS composed of an unstable and a stable linear systems

First, we show there is no global quadratic Lyapunov function for the system.
By contradiction, assume V (x) = x0Qx is a Lyapunov function of the system,

where Q > 0 has the following block partition

Q =

�
q1 q

q q2

�

Consider the level set x0Qx = q2. It must be true that for any initial condition
x0 such that x00Qx0 � q2, the solution x(t) satis�es x0(t)Qx(t) � q2 for all

t � 0. Let x0 = ( 0 �1 )0. x0 belongs to the level set since x00Qx0 = q2. Then,

x(�) = e� ( 0 1 )0 and x0(�)Qx(�) = q2e
2� > q2, which is a contradiction. Thus,

there is no global quadratic Lyapunov function for the system.

We then turn to �nd piecewise quadratic Lyapunov functions. As seen in the
�gure, the PLS divides the state space in two equal partitions. However, as we

will see, in order to construct piecewise quadratic Lyapunov functions, a much

larger number of partitions is required to prove stability of the origin.

We start with just the natural partition of the system. Using the software

developed by [34], no piecewise quadratic Lyapunov functions can be found this

way. This was expected from the above proof.

A more re�ned partition of the state space is then required. This re�nement

must be supplied to the software. We decided to partition the state space with
lines through the origin, including the x2 axes, and with each separated by an
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angle of 2�=k radius, where k is a positive integer. This resulted in k equally

sized partitions. Table 4.1 shows the number of required partitions for the

analysis of the system as a function of �.

� k

� 0:2 > 8

0:05 � � < 0:2 > 16

< 0:05 > ?

Table 4.1: Number of required partitions as a function of �

This table clearly shows that as � decreases, the required number of partitions
for the analysis of the PLS increases. For � < 0:05, the number of required

partitions is very high and it becomes computationally intractable to prove
stability of the origin using this method. Note that even for large values of �,
the number of required partitions is always greater than 8, although the original

system is only divided in 2 partitions.

� Stability of equilibrium points using the approach proposed in [50, 34, 30] re-
quires the state space to be divided in simplex partitions. For high-order sys-

tems, it is extremely hard to obtain a re�nement of partitions in the state-space
to eÆciently analyze the PLS. In other words, the method does not scale well

with the dimension of the system.

The construction of piecewise quadratic Lyapunov functions for PLS proposed
in [50, 34, 30] imposes continuity of the the Lyapunov functions along the switching

surfaces. This means that the intersection of two Lyapunov functions with a switch-

ing surface|one from each side|de�nes a unique quadratic Lyapunov function on
the switching surface. Therefore, we conclude that if there are piecewise quadratic

Lyapunov functions for a certain PLS, then there are also quadratic Lyapunov func-
tions on the switching surfaces for that PLS. Note that the converse is not true. For

instance, piecewise quadratic Lyapunov functions cannot be constructed to analyze

limit cycles. However, as we will see in chapter 5, quadratic Lyapunov functions on
switching surfaces exist and can be eÆciently constructed to analyze limit cycles. It

is then enough to look for Lyapunov functions on the switching surfaces instead of in
the state space.

The purpose of this thesis is to show how Lyapunov functions on switching surfaces

can be eÆciently constructed. We call these Lyapunov functions Quadratic Surface

Lyapunov Functions. Properties of many PLS can be inferred just by analyzing the

behavior of the system at switching surfaces. Since a PLS behaves linearly inside a
cell, only one of the following three things can happen to a trajectory entering a cell

at some point x0 on a switching surface:
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1. The cell is unbounded and there exists a trajectory that will grow unbounded

without ever switching. In this case, x0 belongs to an unstable region and, if

the PLS only has one equilibrium point or limit cycle, then these can never be

globally stable.

2. There is a locally stable equilibrium point in the cell and the trajectory will

asymptotically converge to it without switching. If this is the case, the initial

point x0 belongs to a stable region of that equilibrium point.

3. The trajectory will switch in �nite time.

There are several ways to check if scenario 1 can happen or not. Some will be

discussed in later sections and chapters. For now, assume that scenario 1 does not

happen. Then, we are left with 2 and 3. If scenario 2 happens, we are done, i.e., the

initial point x0 is a stable point and so it does not require any further analysis. So,
we are left with scenario 3. We can then ask several questions, like: what happens to

the trajectory after it switches? Will it switch again? And, will it converge to some
equilibrium point or some limit cycle? These are the sort of questions we propose
to answer in this thesis. The idea is to start by analyzing individual maps from one

switching surface to the next switching surface. This is the topic of this chapter.
Then, in the next chapters, we show that the analysis of PLS can be reduced to the

analysis of di�erent maps from one switching surface to another switching surface.

Analysis of nonlinear systems at manifolds has been used by many researchers

for a while now. The so-called Poincar�e map was introduced in order to reduce the
study of an n-dimensional system to a discrete n�1-dimensional system in a manifold
(see, for example, [36] for an introduction to Poincar�e maps). With the exception of

small and speci�c classes of PLS, the problem is that no one really knew until now
how to use these maps to globally analyze PLS. This thesis explains how it can be
done and shows that our results really work in the sense that a large number of

examples of certain classes of PLS, that could not be analyzed by any other method,
was successfully proven globally stable.

As explained by Poincar�e, there are several advantages in analyzing systems along

manifolds, or, in our case, switching surfaces. First, it is a natural way to prove sta-

bility of limit cycles. In fact, that's how local stability of limit cycles was proven in

section 3.3, similar to what �Astr�om and Hagglund [5, 3] had done for relay feedback

systems back in 1984. Second, an analysis method based on quadratic surface Lya-

punov functions scales well with the increase of the dimension of the system. And

�nally, systems like the one in example 4.1 are easily analyzed using quadratic surface

Lyapunov functions. This can be seen next.

Example 4.2 Consider again example 4.1. There, we showed that as � goes to zero

it becomes extremely hard to �nd piecewise quadratic Lyapunov functions to prove
stability of the system. However, there are quadratic surface Lyapunov functions for

Poincar�e maps, for any � > 0, and these are easily found (see �gure 4-2).
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Figure 4-2: Maps from one switching surface to the next switching surface

Let A1 be the linear matrix for the stable system and A2 for the unstable one.
For a given � > 0, both maps around the origin can be expressed as

�1 = H1(t1)�0

�2 = H2(t2)�1

where Hi(ti) = eAiti , for i = 1; 2. Since �i belong to the x2 axis, these can be

parametrized by �i = �0Æi, where �
0 = ( 0 1 ) and Æi 2 IR. Let

Fi(ti) = �0Hi(t1)�

Global asymptotic stability of the origin follows if there exist p0 > 0 and p1 > 0 such
that

F 01(t1)p1F1(t1) < p0 for all expected switching times t1

F 02(t2)p0F2(t2) < p1 for all expected switching times t2

Let q = p1=p0 > 0. Since the switching times are always ti = � for any initial
condition on the switching surface, stability follows if there exists a q > 0 such that

[F1(�)]
2
q < 1

[F2(�)]
2
< q

or

[F2(�)]
2
< q <

1

[F1(�)]
2

Since, for any � > 0, [F2(�)F1(�)]
2
< 1, the following q

q =
[F2(�)F1(�)]

2
+ 1

2 [F1(�)]
2

satis�es the stability conditions. Therefore, the origin is globally asymptotically sta-

ble.
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This simple example serves not only to demonstrate some of the advantages of

quadratic surface Lyapunov functions but also to illustrate some of the ideas we will

use to analyze more complex PLS. In the example, no quadratic Lyapunov function

exists for the system and piecewise quadratic Lyapunov functions are extremely hard

or even impossible to construct when � is small. However, quadratic Lyapunov func-

tions on the switching surface are easily constructed for any � > 0. This, in turn,

shows the origin is globally asymptotically stable for all � > 0.

4.2 Impact Maps

In order to analyze PLS using quadratic surface Lyapunov functions, we �rst need to

understand the behavior of the system as this 
ows from one switching surface to the

next switching surface. A useful notion that we will be using throughout this thesis

is that of impact map. An impact map is simply a map from one switching surface to
the next switching surface. Only after we understand the nature of a single impact
map can we look at a PLS as a whole, by combining all impact maps associated with

the PLS, to conclude about stability, robustness, and performance properties of the
system.

Consider the following aÆne linear time-invariant system

_x = Ax +B (4.1)

where x 2 IRn, A 2 IRn�n, and B 2 IRn. Note that we are not imposing any kind
of restrictions on A. At this point, A is allowed to have stable, unstable, and pure

imaginary eigenvalues. Assume (4.1) is part of some PLS, and that (4.1) is de�ned
on some open set X � IRn. Assume also a trajectory just arrived to a boundary1 of
X

S0 = fx 2 IRn : C0x = d0g

and the system switches to (4.1). In this chapter, we are interested in studying the
impact map from some subset of S0 to some subset of

S1 = fx 2 IRn : C1x = d1g

also in the boundary of X. In this scenario, some subsets of S0 and S1 are switching

surfaces of the PLS.

By a solution of (4.1) we mean a function x de�ned on [0; t], with x(0) 2 S0,

x(t) 2 S1, x(�) 2 �X on [0; t]2, and satisfying (4.1). In this case, t is a switching time

of the solution x of (4.1) and we say a switch occurs at x(t).

Let Sd
0 be some polytopical subset of S0 where any trajectory starting at Sd

0

satis�es x(t) 2 S1, for some �nite t � 0, and x(�) 2 �X on [0; t]. Let also Sa
1 � S1 be

the set of those points x1 = x(t). The set Sa
1 can be seen as the image set of Sd

0 . We

1The boundary of X is the set of all limit points p of X such that p 62 X .
2 �X denotes the closure of X , i.e, the set �X = X [ fpj p is a limit point of Xg.
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call Sd
0 the departure set in S0 and S

a
1 the arrival set in S1.

We are interested in studying the impact map, induced by (4.1), from x0 2 S
d
0 to

x1 2 S
a
1 . Since both x0 and x1 belong to switching surfaces, they can be parametrized

in their respective hyperplanes. For that, let

x0 = x�0 +�0

x1 = x�1 +�1

where x�0 2 S0, x
�
1 2 S1, and �0;�1 are any vectors such that C0�0 = C1�1 = 0.

De�ne also x�0(t) as the trajectory of (4.1), starting at x�0, for all t � 0. The impact

map of interest reduces to the map from �0 to �1 (see �gure 4-3).

1SS

x1

x*1

x0

∆1

0

∆ 0

x*0 x=Ax+B

Figure 4-3: Impact map from �0 2 S
d
0 � x�0 to �1 2 S

a
1 � x�1

Note that the impact map from �0 2 Sd
0 � x�0 to �1 2 Sa

1 � x�1 de�ned above is
not continuous and it is multivalued. This is illustrated in the following example.

Example 4.3 Consider a 3rd-order system given by

_x =

0
B@�1 0 0

0 �2 0

0 0 �3

1
CAx +

0
B@ 1
1

1

1
CA

with the switching surfaces de�ned above given by C0 = C1 = [�2 2 1], and d0 = 0:5,

d1 = �0:5. Let X = fxj d1 < C1x(t) < d0g. In the state space, the switching surfaces

are parallel to each other. Let x(0) � [�52 80 � 63]T 2 S0. The resulting C1x(t)

can be seen in �gure 4-4.

When t � 0:47, C1x(t) = d1 and _y(t � 0) = 0. At this point, the trajectory can

return to X (dash trajectory), or it can switch. This means that a switch can occur

at either t = 0:47 or t = 2:85.

Let x�0 = x(0) and x�1 = x(0:47). The impact map from �0 to �1, as de�ned

above, is also not continuous since in a small enough neighborhood W � S1 of x�1,

there is no neighborhoodW0 � S0 of x
�
0 such that every point inW0 is mapped inW

(see �gure 4-5). In this �gure, we have two initial conditions in a small neighborhood
of x�0. One of these (in the �gure, the one on the left) switches \close" to x�1 while

the other (the one of the right) switches \far" from x�1.
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Figure 4-4: Existence of multiple solutions
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Figure 4-5: Map from �0 to �1 is not continuous

De�nition 4.1 Let x(0) = x�0 + �0. De�ne t�0
as the set of all times ti � 0 such

that the trajectory x(t) with initial condition x(0) satis�es C1x(ti) = d1 and x(t) 2 �X
on [0; ti]. De�ne also the set of expected switching times of the impact map from

�0 2 S
d
0 � x�0 to �1 2 S

a
1 � x�1 as

T =
n
tj t 2 t�0

; �0 2 S
d
0 � x�0

o

For instance, in the last example, t�0
= f0:47; 2:85g for the initial condition x(0).

As seen, the impact map is nonlinear, multivalued, and not continuous. Once an

initial condition in Sd
0 is given, the �rst step is to �nd an associated switching time

t. However, solving for t involves solving a transcendental equation. Solution to such

equations cannot, in general, be written in a closed form, and numerical procedures
are typically the only way to solve for t. Once a switching time is found, we can

�nally �nd the corresponding �1.

The \non-friendly" nature of the impact map from �0 to �1 has been the main

reason why global analysis of PLS has not been done using quadratic surface Lyapunov

functions. The following result, however, shows that this map is not as \bad" as it

looks, and opens the door to analysis of PLS in switching surfaces.
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Theorem 4.1 Assume C1x
�
0(t) 6= d1 for all t 2 T . De�ne

w(t) =
C1e

At

d1 � C1x
�
0(t)

and let

H(t) = eAt + (x�0(t)� x�1)w(t)

Then, for any �0 2 S
d
0 �x

�
0 there exists a t 2 T such that the impact map is given by

�1 = H(t)�0 (4.2)

Such t 2 t�0
is the switching time associated with �1.

This theorem says that maps between switching surfaces, induced by an LTI 
ow,

can be represented as linear transformations analytically parametrized by a scalar

function of the state. At �rst, equation (4.2) may not seem of great help in analyzing
the impact map from �0 to �1. There, �1 is a linear function of �0 and a nonlinear

function of t, the switching time associated with �0 and �1. The switching time,
however, is a function of �0. A transcendental equation needs to be solved in order
to �nd t. Thus, by this reasoning, it seems (4.2) is saying that �1 is a nonlinear

function of �0. But, that we already knew.
This is, however, just one way of thinking about (4.2). Fortunately, there are

other ways to approach equation (4.2). Assume, for a second, the switching time t is

�xed. The result: the impact map (4.2) would be linear! But, what does it mean to
have the switching time t is �xed? In other words, what are the set of points x�0+�0

in the switching surface S0 such that every point in that set has a switching time of
t? In that set, the impact map (4.2) is linear.

It turns out that the set of points in Sd
0 that have a switching time of t is a convex

subset of a linear manifold of dimension n � 2 (see �gure 4-6). Let St be that set,
that is, the set of points x�0+�0 2 S

d
0 such that t 2 t�0

. In other words, a trajectory

starting at x0 2 St satis�es both x(�) 2 �X on [0; t], and C1x(t) = d1. Note that since
the impact map is multivalued, a point in Sd

0 may belong to more than one set St.
In fact, in example 4.3, there existed a point in Sd

0 that belonged to both S0:47 and

S2:85.

Note also that, as t 2 T changes, St covers every single point of Sd
0 , i.e., S

d
0 =

fxj x 2 St; t 2 T g. This follows since every point �0 2 Sd
0 � x�0 can switch for the

�rst time at Sa
1 , and therefore t�0

is always a nonzero set. These results can all be

summarized in the following corollary.

Corollary 4.1 Under the assumptions of theorem 4.1, for a given t 2 T , the impact
map from �0 2 St � x�0 to �1 2 S1 � x�1, given by �1 = H(t)�0, is a linear map.

Moreover, St is a subset of a linear manifold of dimension n � 2, and Sd
0 = fxj x 2

St; t 2 T g.

As we will see in section 4.3 and succeeding chapters, this result is fundamental in

the analysis of PLS using quadratic surface Lyapunov functions. It allows us to �nd
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Figure 4-6: Every point in St has a switching time of t

conditions in the form of LMIs that, when satis�ed, guarantee stability, robustness,
and performance of PLS.

Before moving onto the proofs of the above results, it is important to understand

the meaning of the assumption in theorem 4.1. This says the trajectory x�0(t) cannot
intersect the switching surface S1 for all t 2 T . With a careful choice of x�0 2 S0
(the initial condition of x�0(t)), there are many cases when this assumption is always

satis�ed. The details on how this is done can be found in both chapters 6 and 7, and
are, therefore, omitted here.

There are, however, cases where no choice of x�0 2 S0 satis�es the assumption.

Or, in other cases, x�0 is �xed a priori, and it may not satisfy the assumption (like
in chapter 5, where the location of x� in S0 cannot be freely chosen). In these worst

case scenarios, there is at least one ts 2 T such that w(ts) is unbounded. This does
not mean we cannot obtain the desired linear representation for the impact map. For
some PLS, like RFS, at some t = ts the map is de�ned via continuation, and the

theorem follows. If this is not the case, the theorem needs to be slightly modi�ed.
Basically, at t = ts, the impact map can still be written as a linear transformation
but parametrized by another variable at ts, i.e., �1 = Hs(ts; Æ)�0, with �0 2 Sts .

4.2.1 Proof of Results

Proof of theorem 4.1: We start by expressing �1 as function of �0 and t, the

switching time associated with �1. Let x(0) = x0 2 Sd
0 . Integrating the di�erential

equation (4.1) gives

x1 = eAtx0 +
Z t

0
eA(t��)Bd�

Since xi = x�i +�i, i = 0; 1,

�1 = eAt�0 + eAtx�0 +
Z t

0
eA(t��)Bd� � x�1

= eAt�0 + x�0(t)� x�1
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From the fact C1�1 = 0 and C1x
�
1 = d1 we get

C1e
At�0 = d1 � C1x

�
0(t) (4.3)

Since, by assumption, C1x
�
0(t) 6= d1 for all t 2 T , the last expression can be written

as

w(t)�0 = 1 (4.4)

which means �1 reduces to

�1 = eAt�0 + (x�0(t)� x�1)w(t)�0

which proves the desired result.

Note that if A is invertible, x�0(t) is given by x�0(t) = eAt(x�0 + A�1B)� A�1B.

Proof of corollary 4.1: The only thing left to prove is that St is a subset of a
linear manifold of dimension n � 2. Let x0 = x�0 + �0 2 St. Since C1x(t) = d1, �0

must satisfy equation (4.3), and C0�0 = 0 since �0 2 S0 � x�0, which are both linear
equalities. �0 also satis�es a set of linear inequalities from the fact that x0 2 Sd

0 ,
x(t) 2 Sa

1 , and x(�) 2 �X on [0; t]. Therefore, St�x
�
0 has at the most dimension n� 2

and is linear.

4.3 Quadratic Surface Lyapunov Functions

Construction of Lyapunov functions for nonlinear systems is, and has been, a diÆcult,

and sometimes, frustrating task. As explained before, there has been some results in
constructing piecewise quadratic Lyapunov functions for PLS. Although these results
are able to analyze equilibrium points of certain classes of PLS, many important PLS

cannot be analyzed this way because either they have limit cycles or the method is
computationally too expensive.

An alternative to constructing Lyapunov functions in the state space is to con-

struct Lyapunov functions on switching surfaces. De�ne then two quadratic Lyapunov

functions on the switching surfaces Sd
0 and Sa

1 . Respectively, let V0 and V1 be given
by

Vi(x) = x0Pix� 2x0gi + �i (4.5)

where Pi > 0, for i = 0; 1. These are Lyapunov candidates de�ned of the switching
surfaces with parameters Pi > 0, gi, and �i, to be found.

Next, we want to show an impact map from Sd
0 � S0 to S

a
1 � S1 is contracting in

some sense. In particular, an impact map is quadratically stable if there exist Pi > 0,

gi, �i such that

V1(�1) < V0(�0) for all �0 2 S
d
0 � x�0 (4.6)

Let P > 0 on S stand for x0Px > 0 for all nonzero x 2 S. As a short hand, we
will be using Ht for H(t) and wt for w(t). The following theorem uses the results

from section 4.2 to derive a set of matrix inequalities equivalent to condition (4.6).
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Theorem 4.2 De�ne

R(t) = P0 �H 0
tP1Ht � 2 (g0 �H 0

tg1)wt + w0t�wt

where � = �1 � �2. The impact map from �0 2 Sd
0 � x�0 to �1 2 Sa

1 � x�1 is a

contraction if there exist P0; P1 > 0 and g0; g1; � such that

R(t) > 0 on St � x�0 (4.7)

for all expected switching times t 2 T .

Basically, all this theorem does is substitute (4.2) in (4.6), and use both facts that

the map �0 to �1 is linear in St and that, as t ranges over T , St covers every point

in Sd
0 .

4.3.1 Approximation to a Set of LMIs

There are many ways to approximate condition (4.7) with a set of LMIs, which can
be eÆciently solved using available software. A trivial one is to relax the constraints

on �0 in theorem 4.2. On one hand, this results in a more conservative condition.
On the other hand, such conditions are computationally eÆcient.

Corollary 4.2 The impact map from �0 2 S
d
0 � x

�
0 to �1 2 S

a
1 � x

�
1 is a contraction

if there exist P0; P1 > 0 and g0; g1; � such that

R(t) > 0 on S0 � x�0 (4.8)

for all expected switching times t 2 T .

This result uses the ideas from the previous section to show that the problem of

quadratic stability of an impact map reduces to the solution of a in�nite dimensional
set of LMIs. As we will see in later chapters, although condition (4.8) is more con-

servative than condition (4.7), in many situations it is enough to successfully and

eÆciently analyze PLS.
(4.8) for all t 2 T forms an in�nite set of LMIs. Computationally, to overcome

this diÆculty, we grid this set to obtain a �nite subset of expected switching times.
This grid consists of a �nite sequence of switching times t0 < t1 < � � � < tk. In

other words, Pi > 0, gi, and � are found by solving a �nite set of LMIs consisting

of (4.8) on t = ftig, i = 0; 1; :::; k. For a large enough k, it can be shown that (4.8)
is also satis�ed for all t 2 T . The idea here is to �nd bounds on the derivative of

the minimum eigenvalue of R(t) over (ti; ti+1), and to use these bounds to show that
nothing can go wrong in the intervals (ti; ti+1), i.e., that (4.8) is also satis�ed on each

interval (ti; ti+1).

n� 1 Dimensional Map

Next, we show that condition (4.8) can in fact be written as an an equivalent set
of LMIs. Note that although the vectors �0 and �1 are n-dimensional, the solution
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generated by the impact map is restricted to the n � 1-dimensional hyperplanes S0
and S1 (see �gure 4-7). Thus, the impact map is actually a map from IRn�1 to IRn�1.

Let �0 2 C
?
0 be a map from IRn�1 to S0, where C

?
0 are the orthogonal complements to

C0, i.e., matrices with a maximal number of column vectors forming an orthonormal

set such that C0C
?
0 = 0.

Condition to (4.8) is equivalent to

�0
0R(t)�0 > 0 for all �0 2 S0 � x�0

Since C0�0 = 0, we can write �0 = �0Æ0, where Æ0 2 IRn�1. Hence, the last matrix

inequality is equivalent to

�00R(t)�0 > 0

which is an in�nite dimensional set of LMIs.

1SS

H(t)

H(t)Π Π
ΠΠ

x1

x*1

x0

∆1

0

∆ 0

x*0

δ0 δ1

x=Ax+B

0’1
10

Figure 4-7: n� 1 dimensional map

Meaning of condition (4.7)

It is possible to make condition (4.8) less conservative at a cost of an increase in
computations. This condition takes only into account that �0 2 S0 � x�0. The

remaining of this section, explains how to approximate condition (4.7) with a set of

LMIs.

Let's �rst see what exactly is condition (4.7). For every t 2 T , we want

�0
0R(t)�0 > 0
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for all �0 such that �0 2 St, or equivalently, that8><
>:

�0 2 fx 2 S0j x can be reached by some trajectory of the PLSg � x�0
C1H(t)�0 = 0

x(�) 2 �X; for all � 2 [0; t]
(4.9)

Next, we explain in detail each constraint in (4.9), starting with the �rst inclusion.

The switching surfaces S0 and S1, together with (4.1), are part of some PLS. The set

Sd
0 can exclude those points in S0 that cannot be reached by a trajectory of the PLS

starting somewhere in IRn n S0.

Example 4.4 Figure 4-8 shows a PLS with both switching surfaces S0 and S1, andX

de�ned between them. Above the switching surface S0 we have system _x = A1x+B1.

In the �gure we see the vector �elds of systems 1 and (4.1) along the switching surface

S0 (above and below, respectively), and the vector �eld of (4.1) along the switching

surface S1. The points �x0, �x1, and �x2 are the points where C0(A1�x0 + B1) = 0,
C0(A�x1 + B) = 0, and C1(A�x2 + B) = 0. Note that �x1 must be to the left of �x0 in

order to guarantee existence of solutions.

S0

1S

x=Ax+B

x=A x+B1 1

x1

x2

X

x0

Figure 4-8: Sd
0 � S0 and Sa

1 � S1 are some sets de�ned to the right of �x0 and �x2,
respectively

As seen in the �gure, points in S0 between �x0 and �x1 cannot be reached by any
trajectory starting somewhere in IRn n S0. Points to the left of �x1 do not belong to

the domain of the impact map from S0 to S1. Thus, only points to the right of �x0 can
belong to Sd

0 . Note that those are exactly the points that can be reached by system

1. Similarly, only some points to the right of �x2 can be reached by (4.1). Hence,

Sa
1 � S1 is some set de�ned to the right of �x2.

The �rst inclusion of (4.9) is then composed of a linear equality together with a set

of linear inequalities. The equality, C0�0 = 0, comes from the fact that �0 2 S0�x
�
0.

As seen before, all it is needed here is a change of variables �0 = �0Æ0, where

Æ0 2 IRn�1. As for the inequalities, they are necessary to ensure that every point

in Sd
0 can be reached by some trajectory of the PLS, starting somewhere in IRn n S0

(see example 4.4 and �gure 4-9). So, for each system i that shares a boundary with

X through S0, consider those points in S0 for which the vector �eld along S0 points
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inward (see �gure 4-9). The set of points in S0 where the vector �eld of system i is

parallel to S0 are those where C0 _x = 0, i.e., C0(Aix + Bi) = 0, x 2 S0. As in the

left of �gure 4-9, assume C 00 orientation points towards X (if this is not the case, just

consider �C 00 and �d0). The set of points in S0 that can be reached by system i is

some subset of the set of points such that C0(Aix +Bi) > 0, x 2 S0.

Xi

S0

Xk

S0

C’0

X
X

x=A x+Bi i

Figure 4-9: Sets in S0 where S
d
0 can be de�ned, for two di�erent PLS

The equality in (4.9) arises from the fact that �1 2 S1 � x�1, i.e., C1�1 = 0. In
terms of �0, we have equality (4.3), that we repeat here

C1e
At�0 = d1 � C1x

�
0(t) (4.10)

This equality automatically excludes those points in S0 that do not intersect S1, since

such points do not have a �nite solution t > 0 satisfying (4.10). Note that (4.10)
depends on t 2 T , contrasting with the �rst equality C0�0 = 0, which is independent
of t.

The last inclusion in (4.9) ensures that a trajectory x(�), starting at some point
in S0, stays in the closure of X, i.e., in �X, for all � 2 [0; t]. Thus, the �rst switch must
occur at S1 (see �gure 4-10). The inclusion consists of several in�nite dimensional

sets of linear inequalities, one for each boundary of X. For instance, in �gure 4-10, it
must be true that Cjx(�) � dj, j = 0; 1; 2, for all � 2 [0; t], assuming C 0j orientations

point towards X, as in the �gure.

S2

S0

S1
C’1

C’2

C’0

X

Figure 4-10: Trajectories starting at S0 must remain in X
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Less conservative conditions: equality plus one inequality

It was clear from the above description of the set St why condition (4.7) cannot, in

general, be written as a equivalent set of LMIs. Basically, the characterization of

the set St is too complicated. A straightforward transformation of (4.7) into a set

of LMIs was to use only the equality C0�0 = 0. This resulted in a more conserva-

tive condition (4.8). As for the others equality and inequalities, that is a di�erent

story. To date, there is no non-conservative way to incorporate several linear and

quadratic inequality constraints and reduce the problem to a set of LMIs. Applica-

tion of the S-procedure, introduced in section 2.3, results in equivelent, and therefore

non-conservative, conditions, only when a quadratic function is subject to a single

quadratic constraint. However, this is not the case here.

In this subsection, we show how equality (4.10) plus one inequality can be used

to approximate (4.7) with a set of LMIs, resulting in conditions less conservative
than (4.8). In the next subsection, we brie
y discuss how to include other inequalities

using the S-procedure.

First, we are going to approximate St with a larger set. For a given t 2 T , let
~St � St be the set of points in S0 where C1x(t) = d1. This can be obtained from (4.10),
yielding

~St =
n
x�0 +�0 2 S0 : C1e

At�0 = d1 � C1x
�
0(t)

o
To see the di�erences between St and ~St, consider again example 4.3. Figure 4-11
shows the solution C1x(t) for two di�erent initial conditions in Sd

0 .

t tt1 t2 t1 2t
d 0 d 0

d1 d1

C x(t) C x(t)1 1

Figure 4-11: On the left: C1x(t) � d1 for 0 � t � t2; on the right: C1x(t) < d1 for
t1 < t < t2

On the left of �gure 4-11, t�0
= ft1; t2g. This means x�0 + �0 belongs to both

St1 , and St2 . The right side of �gure 4-11 shows what would happen to C1x(t) if the
trajectory had not switched at t = t1 (dashed curve). In that case, it would have

intersected S1 again at t = t2. This means that although t2 is a solution of (4.10), it
is not a switching time since C1x(t) < 0 for t1 < t < t2. In other words, the switching

time t2 does not satisfy the inequality C1x(t) � d1 on [0; t2]. Although both t1 and

t2 satisfy (4.10), only t1 is a valid switching time, i.e., t�0
= ft1g. Thus, x�0 + �0

belongs to ~St1 , St1 , and
~St2 , but it does not belong to St2 .
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Since St � ~St, condition (4.7) holds if there exist P1; P2 > 0, g1; g2, � such that

R(t) > 0 on ~St � x�0 (4.11)

for all expected switching times t 2 T .
In order to transform the last matrix inequality into a set of LMIs, we need to

better characterize the set ~St. For that, we are going to use one inequality from (4.9)

together with equality (4.10). As discussed above, there are many inequalities to

choose from. For the purpose of demonstrating how this is done, just assume we

choose one of these inequalities, represented here by some L and m such that L�0 >

m. A less conservative condition than (4.11) is then

R(t) > 0 on
�
~St
\
fx�0 +�0j L�0 > mg

�
� x�0 (4.12)

for all expected switching times t 2 T (see �gure 4-12).

L     =m
L     >m

L     <m

x*0

∆ 0

∆ 0

∆ 0

St
~

Figure 4-12: Region in S0 de�ned by equality (4.10) and the inequality L�0 > m

satis�es a conic relation

As seen in �gure 4-12, �0 2
�
~St
T
fx�0 +�0j L�0 > mg

�
� x�0 satis�es a conic

relation
�0

0�t�o > 0

for some matrix �t (the construction of this matrix will be addressed in section 4.5).

Using the S-procedure, condition (4.12) is equivalent to

R(t)� �t�t > 0 on S0 � x�0 (4.13)

for some scalar function �t > 0, and for all expected switching times t 2 T . Note
that, for each t, (4.13) is now an LMI.

Less conservative conditions: other inequalities

It is still possible to improve conditions (4.13) further more. They do not take ad-

vantage of all other inequalities, including all of those arising from the last inclusion
in (4.9). In this subsection, we show how to incorporate other linear constraints,
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and will also discuss tradeo�s between less conservative and computationally eÆcient

conditions.

In order to guarantee, for instance, that x(�) 2 �X on [0; t], it is necessary that the

trajectory x(�) stays to the correct side of all switching surfaces that compose the

boundary X. In particular, it must be true that C1x(�) � d1 for all � 2 [0; t], i.e.,

C1

�
eA��0 + x�0(�)

�
� d1

for all � 2 [0; t]. This is an in�nite dimensional set of linear inequalities. To overcome

this diÆculty, we consider a �nite number of values of � in [0; t]. For example, if

� = t=2, we could have the following linear constraint on �0

C1e
At=2�0 � d1 � C1x

�
0(t=2)

As before, this inequality, together with ~St satis�es a conic relation �0
0
t=2�0 > 0 in

which (4.12) would be improved to

R(t)� �t�t � �1t
t=2 > 0 on S0 � x�0 (4.14)

for some scalar function �1t > 0, and for all expected switching times t 2 T .

There is an in�nite number of constraints that can be added to condition (4.14) in
order to further reduce the level of conservatism. On one hand, the more constraints,

the less conservative conditions we get and, in turn, better chances of �nding quadratic
surface Lyapunov functions (4.5). On the other hand, increasing the number of

constraints will eventually make the problem computationally intractable. In spite of
this, and as we will see later on, it is interesting to notice that many important PLS
can be analyzed with just conditions of the form (4.8), the most conservative of all

the ones presented.

4.3.2 Proof of Results

Proof of theorem 4.2: From (4.6) and using theorem 4.1, we have

�0
1P1�1 � 2�0

1g1 + �1 < �0
0P0�0 � 2�0

0g0 + �0

, �0
0H

0
tP1Ht�0 � 2�0

0H
0
tg1 + �1 < �0

0P0�0 � 2�0
0g0 + �0

, �0
0 (P0 �H 0

tP1Ht)�0 � 2�0
0 (g0 �H 0

tg1) + � > 0

Finally, using (4.4) we have

�0
0 (P0 �H 0

tP1Ht)�0 � 2�0
0 (g0 �H 0

tg1)wt�0 +�0
0w

0
t�wt�0 > 0

Condition (4.7) follows from corollary 4.1, which proofs the desired result.

Proof of corollary 4.2: The proof follows since S0 � St.

68



4.4 Classes of PLS

We have seen how global analysis of a single impact map can be done using quadratic

Lyapunov functions de�ned on switching surfaces. The following chapters will answer

the question: how to combine di�erent impact maps associated with a PLS to globally

analyze the system? Basically, for a general PLS, analysis of a single impact map

is not enough to conclude about global stability and performance properties of the

system. As we will see, the combination of several impact maps to globally analyze

PLS is straightforward in some cases, and more complex in others.

We will analyze several well known and very distinct classes of PLS by increasing

order of complexity. These are: relay feedback system (chapter 5), on/o� systems

(chapter 6), and saturation systems (chapter 7). Next, we explain the reasons why

we analyze these particular classes of PLS, and what are the main diÆculties we will

encounter in each one of them.

� Relay Feedback Systems (RFS). This is one of the simplest, if not the simplest,
class of PLS. But, make no mistake: this is already a very hard class of PLS
to analyze. To prove it are the many attempts by researchers to analyze RFS

over the last decades. In spite of all the e�orts, no general global analysis
methodologies resulted from all this research. In other words, the problem of
rigorous global analysis of RFS is still open.

In the state space, RFS consist of two aÆne linear systems together with two
parallel switching surfaces. In between the switching surfaces, the choice of the
aÆne linear system is based on past values of the state. In chapter 5, we will

analyze symmetric unimodal limit cycles3, although the results there can be
generalized to study other classes of limit cycles.

The reason why we start with this class of systems is that there is only a single

impact map that needs to be analyzed. In fact, RFS are simple enough that
the results developed in this chapter can almost be directly applied. This gives
a chance to prove that the ideas in this chapter have great potential in globally

analyzing PLS. If the methodology introduced in this chapter would fail to

analyze RFS, most likely there would be no reason to expect it to successfully

analyze other more complex classes of PLS. As we will see in the next chapter,

this was not the case, and we successfully proved global asymptotic stability of

a large number of RFS analyzed.

� On/O� Systems (OFS). After successfully globally analyzing limit cycles of
RFS, the question is if we can use the same ideas to prove global asymptotically

stability of equilibrium points of PLS. The analysis of limit cycles at switching

surfaces was natural since we were simply checking if an impact map was getting

close to the intersection of the limit cycle with the switching surface. In case

of PLS with equilibrium points that do not belong to the switching surface, the

3A limit cycle is unimodal if it only switches twice per cycle.
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analysis of the corresponding impact maps is not as straightforward as in the

case of RFS.

OFS are characterized by an LTI system in feedback with a nonlinear static

controller that switches between closed loop (on) and open loop (o�) depending

on the value of the output of the LTI system. In the state space, the system is

composed of two aÆne linear systems separated by a single switching surface

that may or may not include the equilibrium point being analyzed. The two

most important contributions of chapter 6 are (1) to show that the ideas from

chapter 4 can be used to globally analyze equilibrium points and (2) to explain

how more than one impact map is simultaneously analyzed.

Although several classic analysis methodologies exist to globally analyze OFS,

all fail when OFS have unstable nonlinearity sectors. We will show, however,

that this is no problem in our case. Even those OFS can be globally analyzed
using impact maps and quadratic surface Lyapunov functions.

� The last class of PLS that we will analyze is saturation systems (SAT). SAT
are characterized by an LTI system in feedback with a saturation controller. In
the state space they consist of three di�erent aÆne linear systems, separated

by two switching surfaces. They are, therefore, perfect to show how the ideas
introduced in chapter 4 can be applied to globally analyze equilibrium points of
PLS with more than one switching surface. How to deal with multiple switching

is then the main contribution of this chapter.

4.5 Technical Details: Construction of Conic Re-

lations

We now describe how to construct the cones �t introduced in section 4.3.1. Re-

member that for each t > 0, the cone is de�ned by two hyperplanes in S0: one is

the hyperplane parallel to ~St containing x
�
0 and the other is the hyperplane de�ned

by the intersection of M = fx�0 + �0 2 S0j L�0 = mg and ~St, and containing

the point x�0 (see �gure 4-12). Let �0lt and �0st, respectively, be vectors in S0
perpendicular to each hyperplane. Once these vectors are known, the cone can eas-
ily be characterized. This is composed of all the vectors �0 2 S0 � x�0 such that
�0

0�0(stl
0
t + lts

0
t)�

0
0�0 � 0. The symmetric matrix �t introduced in (4.13) is just

�t = �0
��t�

0
0 where

��t = stl
0
t + lts

0
t. Remember that the cone is centered at x�0 and

note that after lt is chosen, st must have the right direction in order to guarantee

( ~St \ fx
�
0 +�0j L�0 > mg) � fx�0 +�0 2 S0j �

0
0�t�0 > 0g.

We �rst �nd �0lt, the vector perpendicular to ~St. Looking back at the de�nition

of ~St, lt is given by

lt =
(C1e

At�0)
0

kC1eAt�0k2
(d1 � C1x

�
0(t))

The derivation of st is not as trivial as lt. We actually need to introduce a few extra
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variables. The �rst one is �0l0, the vector perpendicular to the set M, given by

l0 =
(L�0)

0

kL�0k2
m

Proposition 4.1 The hyperplane de�ned by the intersection of M and ~St, and con-

taining the point x�0 is perpendicular to the vector

�0lt

kltk
kl0k �

�0l0

kl0k
kltk

Proof: M can be parameterize the following way

M =
n
x�0 +�0 2 S0j �0 = �0(l0 + l?0 z); z 2 IRn�2

o

and ~St
~St =

n
x�0 +�0 2 S0j �0 = �0(lt + l?t w); w 2 IRn�2

o
The intersection of M and ~St occurs at points in S0 such that l0 + l?0 z = lt + l?t w.
Multiplying on the left by l0t we have l

0
tl0 + l0tl

?
0 z = l0tlt or

l0tl
?
0 z = kltk

2 � l0tl0 (4.15)

We want to show that  
lt

kltk
kl0k �

l0

kl0k
kltk

!0 �
l0 + l?0 z

�
= 0

Using (4.15) we have

 
lt

kltk
kl0k �

l0

kl0k
kltk

!0 �
l0 + l?0 z

�
=

l0tl0

kltk
kl0k+

l0tl
?
0 z

kltk
kl0k �

l00l0

kl0k
kltk

=
l0tl0

kltk
kl0k+

kltk
2 � l0tl0

kltk
kl0k � kl0kkltk

= 0

The characterization of st is not complete yet. The orientation of st must be

carefully chosen to guarantee that the cone Ct contains ~St \ fx
�
0 +�0j L�0 > mg.

Proposition 4.2 If

st = m

 
l0

kl0k
kltk �

lt

kltk
kl0k

!

then the cone fx�0 +�0 2 S0j �
0
0�t�0 > 0g contains ~St \ fx

�
0 +�0j L�0 > mg.

The proof, omitted here, is based on taking a point �0 2 ( ~St \ fx
�
0 +�0j L�0 >

mg)� x� and showing that �0
0�t�0 > 0.
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Chapter 5

Relay Feedback Systems

This chapter is dedicated to study relay feedback systems (RFS). We consider relays
with hysteresis in feedback with LTI stable systems. There are basically two main

reasons why we study RFS. First, RFS are one of simplest classes of PLS. Thus, their
study and understanding are essential before analyzing more complex classes of PLS.

Second, RFS have been widely used in many real life applications, dating at least to
the beginning of the last century. The interest in such systems is clearly demonstrated
by the large number of publications on the topic.

RFS are indeed one of the simplest classes of PLS. Unfortunately, even for such
a simple class of PLS, not much is known about their global stability. It is well

known that for a large class of RFS there will be limit cycle oscillations. Condi-
tions to check existence and local stability of limit cycles for these systems are well
known. Global stability conditions, however, are practically nonexistent. This chap-

ter presents conditions in the form of linear matrix inequalities (LMIs) that, when
satis�ed, guarantee global asymptotic stability of limit cycles induced by RFS. Fol-

lowing the ideas introduced in chapter 4, the analysis is based on �nding quadratic
surface Lyapunov functions for maps from one switching surface to the next switching
surface, by solving a set of LMIs.

5.1 Introduction

Analysis of RFS is an old problem. The early work was motivated by relays in

electromechanical systems and simple models of dry friction. Applications of relay
feedback range from stationary control of industrial processes to control of mobile

objects as used, for example, in space research. A vast collection of applications of

relay feedback can be found in the �rst chapter of [64]. More recent examples include
the delta-sigma modulator (as an alternative to conventional A/D converters) and the

automatic tuning of PID regulators. In the delta-sigma modulator, a relay produces a
bit stream output whose pulse density depends on the applied input signal amplitude

(see, for example, [2]). Various methods were applied to the analysis of delta-sigma

modulators. In most situations, however, none allowed to verify global stability of
nonlinear oscillations. As for the automatic tuning of PID regulators, implemented
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in many industrial controllers, the idea is to determine some points on the Nyquist

curve of a stable open loop plant by measuring the frequency of oscillation induced

by a relay feedback (see, for example, [6]). One problem that needs to be solved here

is the characterization of those systems that have unique global attractive unimodal

limit cycles. This problem is important because it gives the class of systems where

relay tuning can be used.

Some important questions can be asked about RFS: do they have limit cycles? If

so, are they locally stable or unstable? And if there exist a unique locally stable limit

cycle, is it also globally stable? Over many years, researchers have been trying to

answer these questions. [8] and [64] are references that survey a number of analysis

methods. Rigorous results on existence and local stability of limit cycles of RFS can be

found in [3, 33, 66]. [3] presents necessary and suÆcient conditions for local stability

of limit cycles. [33] emphasizes fast switches and their properties and also proves

volume contraction of RFS. In [23], reasonably large regions of stability around limit
cycles were characterized. For second-order systems, convergence analysis can be

done in the phase-plane [60, 28]. Stable second-order non-minimum phase processes
can in this way be shown to have a globally attractive limit cycle. In [41] it is proved
that this also holds for processes having an impulse response suÆciently close, in a

certain sense, to a second-order non-minimum phase process. Many important RFS,
however, are not covered by this result. It is then clear that the problem of rigorous

global analysis of relay-induced oscillations is still open.

In this chapter, we prove global asymptotic stability of symmetric unimodal1 limit
cycles of RFS by �nding quadratic surface Lyapunov functions for associated Poincar�e

maps.2 These results are based on the discovery in the last chapter that Poincar�e maps
can be represented as linear transformations parametrized by a scalar function of the

state. Quadratic stability can then be easily checked by solving a set of linear matrix
inequalities (LMIs), which can be eÆciently done using available computational tools.
Although this analysis methodology yields only a suÆcient criterion of stability, it has

proved very successful in globally analyzing a large number of examples with a unique
locally stable symmetric unimodal limit cycle. In fact, it is still an open problem
whether there exists an example with a globally stable symmetric unimodal limit

cycle that could not be successfully analyzed with this new methodology. Examples
analyzed include minimum-phase systems, systems of relative degree larger than one,

and of high dimension. Such results lead us to believe that globally stable limit cycles
of RFS frequently have quadratic surface Lyapunov functions.

It is important to point out that the main ideas behind the results in this chapter

can be used in the analysis of more general PLS. In particular, although the stability

analysis in this chapter focuses on symmetric unimodal limit cycles, similar ideas can

1Symmetric unimodal limit cycles are those that are symmetric about the origin and switch only
twice per cycle.

2Poincar�e maps play the same role here as impact maps did in the previous chapter. It turns
out that in the analysis of symmetric unimodal limit cycles, Poincar�e maps and impact maps are
equivalent notions. In this chapter, we choose to use the terminology of Poincar�e map since this
may be more familiar to the reader.
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be applied to prove stability of other types of limit cycles. As we will see, analysis

of symmetric unimodal limit cycles can be done by analyzing a single map from one

switching surface to the other switching surface. Other types of limit cycles require a

simultaneous analysis of several of such maps. However, as we will see in the next two

chapters, multiple maps have been shown to work as well as the single map described

in this chapter.

This chapter is organized as follows. Section 5.2 gives some background on RFS

followed by the main result of this chapter in section 5.3. There, we �rst show that

Poincar�e maps can be represented as linear transformations, and then use this result

to demonstrate that quadratic stability of Poincar�e maps can be easily checked by

solving sets of LMIs. Section 5.4 contains some illustrative examples. Improvements

of the stability conditions presented in section 5.3 are discussed in section 5.5. Finally,

section 5.6 considers computationally issues associated with bounds on switching

times of RFS.

5.2 Background

In this section, we start by de�ning RFS and talking about some of their properties.
Then, we present some relevant results from the literature on existence and local
stability of limit cycles of RFS. Finally, we de�ne Poincar�e maps for RFS.

5.2.1 De�nitions

Consider a SISO LTI system satisfying the following linear dynamic equations

(
_x = Ax +Bu

y = Cx
(5.1)

where x 2 IRn and A is a Hurwitz matrix, in feedback with a relay (see �gure 5-1)

u = reld(y) (5.2)

where d � 0 is the hysteresis parameter. By a solution of (5.1)-(5.2) we mean functions

(x; y; u) satisfying (5.1)-(5.2), where u(t) is piecewise constant and

reld(y(t)) 2

8><
>:
f�1g if y(t) > d, or y(t) > �d and u(t� 0) = �1
f1g if y(t) < �d, or y(t) < d and u(t� 0) = 1

f�1; 1g if y(t) = �d and u(t� 0) = �1, or y(t) = d and u(t� 0) = 1

t is a switching time of a solution of (5.1)-(5.2) if u is discontinuous at t. We say a

trajectory of (5.1)-(5.2) switches at some time t if t is a switching time.

In the state space, the switching surfaces S0 and S1 of the RFS are the surfaces
of dimension n� 1 where y is equal to d and �d, respectively. More precisely,

S0 = fx 2 IRn : Cx = dg
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LTI
u y

Figure 5-1: Relay Feedback System

and

S1 = fx 2 IRn : Cx = �dg

Consider a subset Sd
0 of S0 given by

Sd
0 = fx 2 S0 : CAx + CB � 0g

This set is important since it characterizes those points in S0 that can be reached
by any trajectory starting at S1. We call it the departure set in S0 (see �gure 5-2).
Similarly, de�ne Sa

1 as

Sa
1 = fx 2 S1 : CAx� CB � 0g

This is the arrival set in S1. It is easy to see that S0 = �S1 and Sd
0 = �Sa

1 where

�X stands for the set f�xjx 2 Xg.

S

S

S

0

0

1

x= Ax−B

x= Ax+B
.

d .

Figure 5-2: The arrival set Sd
0

5.2.2 Existence of Solutions

If an initial condition does not belong to a switching surface then existence of solu-

tion is guaranteed at least from the initial condition to the �rst intersection with a
switching surface. This follows since in that region the system is aÆne linear. When

an initial condition belongs to a switching surface, however, depending on the RFS, a

solution may or may not exist. If d > 0 then existence of solution is always guaranteed
since there is a \gap" between both switching surfaces. This gap allows a trajectory
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to evolve according to an aÆne linear system.

In the case of the ideal relay, i.e., when d = 0, for some RFS there are initial

conditions for which no solution exists. In �gure 5-3, we have two examples of ideal

RFS. The �gure shows the vector �eld along both sides of the unique switching surface

S = fxj Cx = 0g. Above, the vector �eld is given by _x = Ax � B, and below by

_x = Ax+B. p+ and p� are those points in S such that C(Ax�CB) = 0, respectively.

On the left in �gure 5-3, CB < 0, and on the right CB > 0. When CB < 0, every

point in S has at least one solution. For an initial condition on the left of p�, the

trajectory moves downwards, and on the right of p+ it moves upwards. In between

p� and p+, the trajectory can either move upwards or downwards. When CB > 0,

however, there is no solution if a trajectory starts between p+ and p�. The reason for

this is that the vector �eld on both sides of the switching surface points towards the

switching surface. In these situations, one of the following two alternatives is typically

used to guarantee existence of solutions: (1) an hysteresis with d > 0 is introduced
to avoid chattering or (2) the de�nition of relay in (5.2) is slightly modi�ed to allow
trajectories to evolve in the switching surface, leading to the so-called sliding modes.

Here, we consider the �rst case. Although sliding modes are not studied in this
thesis, we expect that such systems can be analyzed using the same ideas described
here. Sliding modes are currently under investigation and will be the topic of future

publications.

Hence, according to the de�nition of relay in (5.2), existence of solutions is guar-
anteed if d > 0, or if d = 0 and CAkB < 0, where k 2 f0; 1; :::; n� 1g is the smallest

number such that CAkB 6= 0 (see [33] for details).

p− p+ p+ p−
Cx=0

Cx<0

Cx>0

CB<0 CB>0

Cx=0
Cx>0

Cx<0

x=Ax−B

x=Ax+B x=Ax+B

x=Ax−B

Figure 5-3: Existence of solutions when d = 0

Note that trajectories of _x = Ax� B starting at any point x0 2 S0 will converge
to the equilibrium point A�1B. When connected in feedback with a relay, one of the
following two possible scenarios will occur for a certain trajectory starting at x0: this

will either cross S1 at some time, or it will never cross S1. The last situation is not
interesting to us since it does not lead to limit cycle trajectories. One way to ensure

a switch is to have CA�1B+ d < 0, although this is not a necessary condition for the

existence of limit cycles. However, if we are looking for globally stable limit cycles,
it is in fact necessary to have CA�1B + d < 0. Otherwise a trajectory starting at
A�1B would not converge to the limit cycle. Throughout this chapter, it is assumed

CA�1B + d < 0.

As mentioned before, for a large class of processes, there will be limit cycle oscil-

lations. Let �(t) be a nontrivial periodic solution of (5.1)-(5.2) with period 2t�, and
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let 
 be the limit cycle de�ned by the image set of �(t). The limit cycle 
 is called

symmetric if �(t + t�) = ��(t). It is called unimodal if it only switches twice per

cycle. A class of limit cycles of RFS we are particularly interested in is the class of

symmetric unimodal limit cycles.

The next proposition, proven in [3], gives necessary and suÆcient conditions for

the existence of symmetric unimodal limit cycles. This proposition is a special case

of proposition 3.2, with k = 1.

Proposition 5.1 Consider the RFS (5.1)-(5.2). Assume there exists a symmetric

unimodal limit cycle 
 with period 2t�. Then the following conditions hold

g(t�) := C(eAt
�

+ I)�1(eAt
�

� I)A�1B � d = 0 (5.3)

and

y(t) = C
h
eAt(x� � A�1B) + A�1B

i
� �d for 0 � t < t�

Furthermore, the periodic solution 
 is obtained with the initial condition x� 2 Sd
0

given by

x(0) = x� = (eAt
�

+ I)�1(eAt
�

� I)A�1B

5.2.3 Poincar�e Maps of RFS

Before de�ning Poincar�e maps, it is important to notice an interesting property of
linear systems in relay feedback: their symmetry around the origin (see �gure 5-4).

x0

x0−

0

S

−x(t)

x(t)
x= Ax−B
.

x= Ax+B
.

S1

0

Figure 5-4: Symmetry around the origin

Proposition 5.2 Consider a trajectory x(t) of _x = Ax � B starting at x0 2 S0.

Then �x(t) is a trajectory of _x = Ax +B starting at �x0 2 S1.

Proof: Assume x0 2 S0. Since

� _x(t) = �(Ax(t)� B)

= A(�x(t)) +B

�x(t) is a trajectory of _x = Ax +B starting at �x0 2 S1.
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This property tells us that, in terms of stability analysis, a limit cycle only needs

to be studied from one switching surface (say S0) to the other switching surface (S1).

In other words, for analysis purposes, it is equivalent to consider the trajectory from

x1 2 S0 to the next switch x2 2 S1, or the trajectory starting at �x1 2 S1 and

switching at �x2 2 S0. We then focus our attention on trajectories from S0 to S1.

Next, we de�ne Poincar�e maps for RFS. Typically, such maps are de�ned from

one switching surface and back to the same switching surface. In the case of RFS,

however, a Poincar�e map only needs to be de�ned as the map from one switching

surface to the other switching surface, due to the symmetry of the system. Note that,

as mention before, Poincar�e maps play the same role here as impact maps did in the

previous chapter. In this chapter, the Poincar�e map we consider is de�ned from one

switching surface to the other switching surface, just like impact maps were de�ned

before.

Consider a symmetric unimodal limit cycle 
, with period 2t�, obtained with the
initial condition x� 2 Sd

0 . This means that a trajectory x(t) starting at x� crosses the

switching surface S1 at �x
� = x(t�) 2 Sa

1 (see �gure 5-5).

∆1

S

γ

x*
x*+

∆
−x*

1
∆

S

−x*−
∆

0

1

Figure 5-5: De�nition of a Poincar�e map for a RFS

To study the behavior of the system around the limit cycle we perturb x� by �

such that x�+� 2 Sd
0 . Consider a solution of (5.1)-(5.2) with initial condition x

�+�
and let �x� � �1 2 S1 be its �rst switch. We are interested in studying the map

from � to �1 (see �gure 5-5). As seen in example 4.3, this map is not continuous
and is multivalued. In general, there exist � 2 Sd

0 such that �1 is not unique. This

is illustrated in the next example. Note that this is the same as example 4.3, but now

applied to a RFS.

Example 5.1 Consider the RFS (5.1)-(5.2) where the LTI system is given by

H(s) = �
s2 + s� 4

(s+ 1)(s+ 2)(s+ 3)

and the hysteresis parameter is d = 0:5. Let u(0) = �1, y(0) = d, _y(0) � �6:36, and
�y(0) � 31:67. The resulting y(t) can be seen in �gure 5-6.

When t � 0:47, y(t) = �d and _y(t � 0) = 0. At this point, the trajectory can

return to the region where Cx > �d and u(t+ 0) = u(t� 0) = �1 (dash trajectory),
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Figure 5-6: Existence of multiple solutions

or it can move into the region where Cx < �d with u(t+0) = 1 (dash-dot trajectory).
This means that a switch can occur at either t = 0:47 or t = 2:85.

Let x(0) = x� + � 2 Sd
0 . De�ne t� as the set of all times ti � 0 such that

y(ti) = �d and y(t) � �d on [0; ti]. For the initial condition considered in the

previous example, t� = f0:47; 2:85g. Let �x� � �1 2 x(t�). Since �x� � �1 2 Sa
1

then x� +�1 2 S
d
0 . Consider the multivalued Poincar�e map T0 : S

d
0 ! Sd

0 de�ned by

x� + �1 2 T0(x
� + �). Since x� is �xed, the Poincar�e map can be rede�ned as the

map T : Sd
0 � x� ! Sd

0 � x� given by �1 2 T (�), where T (�) = T0(x
� +�)� x�. In

result, � = 0 is an equilibrium point of the discrete-time system

�k+1 2 T (�k) (5.4)

The following proposition, proven in [3], gives conditions for local stability of sym-

metric unimodal limit cycles. This result, based on the linearization of the Poincar�e
map around the origin, is a special case of proposition 3.3, with k = 1.

Proposition 5.3 Consider the RFS (5.1)-(5.2). Assume there exists a symmetric

unimodal limit cycle 
 with period 2t�, obtained with the initial condition x� 2 S0.

Assume also the limit cycle is transversal3 to S0 at x
�. The Jacobian of the Poincar�e

map T at � = 0 is given by

W =

�
vC

Cv
� I

�
eAt

�

where v = �Ax� � B. The limit cycle 
 is locally stable if W has all its eigenvalues

inside the unit disk. It is unstable if at least one of the eigenvalues of W is outside

the unit disk.

De�ne T , the set of expected switching times of the Poincar�e map T , as in de�-
nition 4.1, i.e.,

T =
n
tj t 2 t�; � 2 Sd

0 � x�
o

3
� is transversal to S0 at p = �(t) 2 S0 if C _�(t� 0) 6= 0.
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Note that t� 2 T .
In this chapter, we are interested in those systems that have a unique locally

stable unimodal limit cycle. For such systems, the idea is to construct a quadratic

Lyapunov function on the switching surface S0 to prove that the Poincar�e map is

globally stable. This, in turn, shows that the limit cycle is globally asymptotically

stable. The next section shows that a Poincar�e map from one switching surface to

the other switching surface can be represented as a linear transformation analytically

parametrized by the switching time. This representation will then allow us to reduce

the problem of checking quadratic stability to the solution of a set of LMIs.

5.3 Poincar�e Map Decomposition and Stability

This section contains the main results of this chapter. First, we show that Poincar�e
maps induced by an LTI 
ow between the switching surfaces S0 and S1 can be rep-

resented as linear transformations analytically parametrized by a scalar function of
the state. This proposition is similar to theorem 4.1.

Proposition 5.4 Consider the Poincar�e map T de�ned above. Let

vt =
�
eAt � eAt

�

� �
x� � A�1B

�

and assume jCvtj � Kkvtk, for some K > 0 and all t 2 T . De�ne

H(t) =

�
vtC

Cvt
� I

�
eAt

for all t 2 T (for t = t�, H(t) is de�ned by the limit as t ! t�). Then, for any

� 2 Sd
0 � x� and �1 2 T (�) there exists a t 2 T such that

�1 = H(t)� (5.5)

Such t 2 t� is the switching time associated with �1.

This result says that Poincar�e maps induced by an LTI 
ow between two hyper-

planes can be represented as linear transformations analytically parametrized by a
scalar function of the state. The advantage of expressing such maps this way is to

have all nonlinearities depending only on one parameter t. Although t depends on

�, once t is �xed, the map becomes linear in �. Note that H(t) de�ned above is
continuous in t 2 T .

The assumption in proposition 5.4 is somehow similar to the assumption in theo-

rem 4.1. Here it is slightly di�erent since at t = t�, Cvt� = 0 and vt� = 0. By contin-

uation, the quotient vt=(Cvt) (and, in turn, H(t)) is well de�ned at t = t�. What the

assumption in the proposition says is that the trajectory x�(t) of _x = Ax�B starting

at x� does not intersect S1 for t > t�. As we have mentioned in section 4.2, however,

even if this assumption is not satis�ed for some ts 2 T , it is still possible to obtain a
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linear representation of the Poincar�e map for all t 2 T . Such linear transformation

would be parametrized by another variable at ts, i.e., �1 = Hs(ts; Æ)�0.

Proof: The proof is similar to the proof of theorem 4.1. Let x(0) = x0 2 Sd
0 .

Integrating the di�erential equation (5.1) gives

x(t) = eAtx0 �
Z t

0
eA(t��)Bd�

= eAt(x0 � A�1B) + A�1B

If x(0) = x� and t = t� then x(t�) = �x�, i.e.,

�x� = eAt
�

(x� � A�1B) + A�1B (5.6)

Now, let x(0) = x� +� 2 Sd
0 and �1 2 T (�). Let also t 2 t� be the switching time

associated with �1. Then

�x� ��1 = eAt(x� +�� A�1B) + A�1B

Using (5.6), the last equality can be written as

��1 = eAt(x� � A�1B +�)� eAt
�

(x� � A�1B)

= eAt�+ vt

Since �x� ��1 2 S1, C(�x
� ��1) = �d, or C�1 = 0, that is,

CeAt�+ Cvt = 0 (5.7)

Therefore, it is also true that vtCe
At� + vtCvt = 0. Since, by assumption, jCvtj �

Kkvtk, for some K > 0 and all t 2 T ,

vt = �
vtC

Cvt
eAt�

is well de�ned for t 2 T (for t = t� it is de�ned via continuation). Replacing above

we get

�1 =

�
vtC

Cvt
� I

�
eAt�

for all t 2 T .

This result agrees with proposition 5.3. Via continuation, H(t) at t = t� is given

by

H(t�) =

�
vC

Cv
� I

�
eAt

�

where v = eAt
�

(Ax� � B). Using equality (5.6), v can be written as v = eAt
�

(Ax� �
B) = �Ax� � B. This means H(t�) is exactly the Jacobian of the Poincar�e map T
at � = 0.

82



As explained in chapter 4, based on this theorem it is possible to reduce the

problem of checking quadratic stability of Poincar�e maps to solving a set of LMIs.

The Poincar�e map T de�ned above is quadratically stable if there exists a symmetric

matrix P > 0 such that

T 0(�)PT (�) < �0P� ; 8� 2 Sd
0 � x�; � 6= 0 (5.8)

Success in �nding P > 0 satisfying (5.8) is then suÆcient to prove global asymptotic

stability of the limit cycle 
.

A suÆcient condition for the quadratic stability of a Poincar�e map can easily be

obtained by substituting (5.5) in (5.8):

�0 (P �H 0(t)PH(t))� > 0 (5.9)

for some P > 0 and for all � 2 Sd
0 , with associated switching times t 2 t�.

There are several alternatives to transform (5.9) into a set of LMIs. A simple
suÆcient condition is

P �H 0(t)PH(t) > 0 on S0 � x� (5.10)

for some P > 0 and for all t 2 T . In the next section, using some illustrative
examples, we will see that although this condition is more conservative than (5.9), it
can prove global asymptotic stability of many important RFS. Other less conservative

conditions are considered and discussed in section 5.5. These are based on the fact
that T is a map from Sd

0 to Sd
0 , and that the set of points in Sd

0 with the same
switching time t is a convex subset of a linear manifold of dimension n� 2.

Before moving into the examples, it is important to notice that condition (5.10)
can be relaxed. Since A is Hurwitz and u = �1 is a bounded input, there is a bounded
set such that any trajectory will eventually enter and stay there. This will lead to

bounds on the di�erence between any two consecutive switching times. Let t� and
t+ be bounds on the minimum and maximum switching times of trajectories in that

bounded invariant set. The expected switching times T can, in general, be reduced to

a smaller set [t�; t+]. Condition (5.10) can then be relaxed to be satis�ed on [t�; t+]
instead of on t 2 T . See section 5.6 for details.

5.4 Examples

The following examples were processed in matlab code. The latest version of this
software is either available at [27] or upon request. Before presenting the examples,

it is important to understand these matlab functions. Overall, the user provides an
LTI system, together with d, the hysteresis parameter. If the RFS is proven globally

asymptotically stable, the matlab functions return a matrix P > 0 that is guaranteed

to satisfy (5.10) on t 2 [t�; t+], where t� and t+, found as explained in section 5.6,
are bounds of the expected switching times.

In more detail, after providing the software with an LTI system and an hysteresis
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parameter d, this con�rms that certain necessary conditions are met. Then, it checks

if there exists a unique locally stable symmetric unimodal limit cycle. This is done

by �rst �nding t�i , the zeros of (5.3). A symmetric unimodal limit cycle exists if, for

some i, y(t) + d > 0 for all t 2 (0; t�i ), and is unique if this is true for only one i.

As explained in section 4.3.1, although the vectors � and �1 are n-dimensional,

the solution generated by the Poincar�e map T is restricted to the n� 1-dimensional

hyperplane S0 (see �gure 5-7). Therefore, the map T is actually a map from IRn�1

to IRn�1. Let � 2 C? be a map from IRn�1 to S0, where C
? are the orthogonal

complements to C, i.e., matrices with a maximal number of column vectors forming

an orthonormal set such that CC? = 0. An equivalent condition to (5.10) is then

Q� F 0(t)QF (t) > 0 (5.11)

for some symmetric (n� 1)� (n� 1) matrix Q > 0 and all expected switching times

t 2 [t�; t+], where F (t) = �0H(t)�. P > 0 in (5.10) can be obtained by letting
P = �Q�0.

∆1

TΠ ∆1

TΠ ∆

S -x*

∆1

S

Π Π

H(t)

∆

∆

x*

x*+

Π H(t)ΠT
F(t) =

-x*-

Figure 5-7: T is a n� 1-dimensional map

(5.11) on [t�; t+] forms an in�nite set of LMIs. Computationally, to overcome
this diÆculty, we grid this set to obtain a �nite subset of expected switching times

t� = t0 < t1 < � � � < tk = t+. In other words, Q > 0 is found by solving a �nite set of

LMIs consisting of (5.11) on t = ftig, i = 0; 1; :::; k. For a large enough k, it can be
shown that (5.11) is also satis�ed for all t 2 [t�; t+]. The idea here is to �nd bounds

on the derivative of the minimum eigenvalue of Q� F 0(t)QF (t) over (ti; ti+1), and to

use these bounds to show that nothing can go wrong in the intervals (ti; ti+1), i.e.,
that (5.11) is also satis�ed on each interval (ti; ti+1).

Solving a set of LMIs allows us to �nd Q > 0 in (5.11). In the examples below,

once Q > 0 is found, we con�rm (5.11) is satis�ed for all switching times [t�; t+] by

plotting the minimum eigenvalue of Q�F 0(t)QF (t) on [t�; t+], and showing that this
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in indeed positive in that interval.

Example 5.2 Consider the RFS on the left of �gure 5-8. Since for this system any

state-space realization of the LTI system in relay feedback results in CB < 0, it is

possible to consider the ideal relay, i.e., d = 0. Although very simple, this system has

never been proved globally stable.
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y(t)+d  on [0,t*] 
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Figure 5-8: 3rd-order non-minimum phase system

From the center of �gure 5-8 it is easy to see the RFS has one unimodal symmetric
limit cycle with period approximately equal to 2� 1:4. We have analyzed this same

RFS in [23]. There, we characterized a reasonably large region of stability around
the limit cycle. Using the software described above, however, we were able to �nd
a Q > 0 satisfying (5.11) for all switching times [t�; t+], showing, this way, that the

RFS is actually globally asymptotically stable. The right side of �gure 5-8 con�rms
the result.

Example 5.3 Consider the RFS in �gure 5-9. Let d = 0:25. As seen in �gure 5-9,
the RFS has one unimodal symmetric limit cycle with period approximately equal to
2� 0:94.
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Figure 5-9: 3rd-order minimum phase system

Again, a Q > 0 satisfying (5.11) for all switching times [t�; t+] exists, which means
the limit cycle is globally asymptotically stable. This is con�rmed from the right side

of �gure 5-9.

Example 5.4 Consider the 6th-order RFS in �gure 5-10. In this case, sliding modes

occur if d = 0 (CB = 1). However, stability was proven for d as low as 0:061.
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Figure 5-10 shows the result to d = 0:061. Note that, in the �gure on the right, the

function depicted is always positive although, due the bad resolution, it may seem

otherwise. This is due to the fact that d = 0:061 is the lowest value for which we can

still prove global stability.
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Figure 5-10: 6th-order system

It is interesting to notice that more than one limit cycle exists for 0 < d < 0:061.
Thus, for this example, condition (5.10) is not conservative.

Example 5.5 Consider the RFS in �gure 5-11 consisting of an LTI system with
relative degree 7 in feedback with an hysteresis, where d = 0:1. As seen in the center

of �gure 5-11, this RFS has a symmetric unimodal limit cycle with period 2t�, where
t� � 6:89. Note how the period of the limit cycle is much larger than the hysteresis

parameter d.
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Figure 5-11: System with relative degree 7

Again, from the right side of �gure 5-11 we conclude that the limit cycle is globally

asymptotically stable

5.5 Improvement of Stability Condition

As mentioned before, there are several alternatives to transform (5.9) into a set of

LMIs. Here, we explore some of these alternatives to derive less conservative con-

ditions than (5.10). Since many of the ideas in this section were discussed in sec-

tion 4.3.1, we will skip some of the details.
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The Poincar�e map T is a map from Sd
0 to Sd

0 and, for each point in Sd
0 , there

is at least one associated switching time t. An interesting property of this map is

that the set of points in Sd
0 with the same switching time t forms a convex subset

of a linear manifold of dimension n � 2. Let St be that set, i.e., let St be the set of

points x� +� 2 Sd
0 that have t as a switching time, i.e., t 2 t� (see �gure 5-12). In

other words, a trajectory starting at x0 2 St satis�es both y(t) � �d on [0; t], and

y(t) = �d. Note that since T is a multivalued map, a point in Sd
0 may belong to more

than one set St. In fact, in example 5.1, there existed a point in Sd
0 that belonged to

both S0:47 and S2:85.

S

S

St

S
x* −x*

1
x (t)1

x (0)
x (t)2

2

x (0)

0
d

1

0

Figure 5-12: Example of a set St (in IR3, both St and its image in S1 are segments of
lines)

Condition (5.10) can then be improved to

P �H 0(t)PH(t) > 0 on St � x� (5.12)

for some P > 0 and for all expected switching times t 2 T .

The problem with condition (5.12) is that, in general, the sets St are not easily

characterized. An alternative is to consider the sets ~St � St obtained from equa-
tion (5.7), given by

~St =
n
x� +� 2 Sd

0 : Ce
At� = �Cvt

o

To see the di�erence between St and ~St, refer to �gure 4-11 and the discussion fol-

lowing this �gure.

Since St � ~St, condition (5.12) holds if there exists a P > 0 such that

P �H 0(t)PH(t) > 0 on ~St � x� (5.13)

for all expected switching times.

As seen in �gure 5-13, � 2 ~St � x� satis�es a conic relation

�0�t� > 0
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for some matrix �t (section 4.5 explains how this matrix is constructed). Let

Ct = fx� +� 2 S0 : �
0�t� > 0g

It is important to notice that it is equivalent to say that some matrix M satis�es

M > 0 on ~St � x� or that M > 0 on Ct � x�. This has to do with the fact that

quadratic forms are homogeneous. To see this, assume �0M� > 0 for all � 2 ~St�x
�.

Let x = �� where � 2 IRnf0g. Then x0Mx = �2�0M� > 0, which is to say M > 0

on Ct � x�. The converse follows since ~St � Ct.

x*

t

boundary

t

0Sdof

C
S
~

Figure 5-13: View of the cone Ct in the S0 plane

Condition (5.13) is then equivalent to:

P �H 0(t)PH(t) > 0 on Ct � x�

for some P > 0 and for all expected switching times t. Using the S-procedure,
condition (5.13) is again equivalent to

P �H 0(t)PH(t)� �t�t > 0 on S0 � x� (5.14)

for some P > 0, some scalar function �t > 0, and for all expected switching times

t 2 T . Note that, for each t, (5.14) is an LMI .

Example 5.6 Consider again the system with relative degree 7 analyzed in exam-
ple 5.5. For small values of d > 0 there is no P > 0 satisfying condition (5.10). Using

condition (5.14), however, a P > 0 and a positive function �t satisfying (5.14) are

known to exist for values of d as small as 0:00404. Figure 5-14 shows the result to
d = 0:00404. Again, the function depicted on the right in the �gure is always positive

although, due to bad resolution, it may seem otherwise.

Note that the g function on the left of the �gure has 3 zeros. However, only one

corresponds to a limit cycle.

Although condition (5.10) was not able to prove global stability of the RFS for

small values of d, the less conservative condition (5.14) proved that the limit cycle
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Figure 5-14: System of relative order 7 with d = 0:00404

is globally asymptotically stable for small values of d. An interesting fact is that for

0 < d < 0:00378 there is more than one limit cycle.

It is possible to improve condition (5.14) furthermore. This condition does not
take advantage that a trajectory starting at x� +� 2 ~St must satisfy y(�) � �d on

[0; t]. This is captured by condition (5.12) but not by (5.14) since ~St � St. Constraint
y(�) � �d on [0; t] can be expressed as

CeA�� � �Cv� (5.15)

for all [0; t]. However, this last inequality would lead to an in�nite dimensional set
of LMIs. One way to transform the problem into a �nite set of LMIs is to consider

certain samples of time in (0; t). For instance, if � = t=2 then we would have the
following constraint on �

CeA
t
2� � �Cvt=2

This, together with � 2 Sd
0 , satis�es a conic relation �

0
t=2� > 0 in which case (5.14)
could be improved to

P �H 0(t)PH(t)� �t�t � �1t
t=2 > 0 on S0 � x� (5.16)

for some scalar function �1t > 0

There is an in�nite number of constraints that can be added to condition (5.16)

in order to further reduce the level of conservatism. On one hand, the more con-

straints, the better chances to �nd surface Lyapunov functions. On the other hand,
increasing the number of constraints will eventually make the problem computation-

ally intractable. In spite of this, it is interesting to notice that many important RFS

were proven globally stable with just conditions (5.10) (the most conservative of all

presented in this chapter).

We want to point out that the value of all these results lie in the fact that they
work well. In fact, we have not been able to �nd a RFS with a globally stable

symmetric unimodal limit cycle that could not be successfully analyzed with this

new methodology. This lead us to believe that globally stable limit cycles of RFS
frequently have quadratic surface Lyapunov functions.
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5.6 Computational Issues: Bounds on Expected

Switching Times

In this section we will talk about computational aspects related to �nding P > 0

in (5.10) and (5.14). First, we show that since A is Hurwitz and u = �1 is a bounded
input, there is a bounded and invariant set such that any trajectory will eventually

enter. This will lead to bounds on the di�erence between any two consecutive switch-

ing times. This way, the search for P > 0 in (5.10) and (5.14) becomes restricted to

0 < t� � t � t+ <1.

For a �xed t 2 T , condition (5.10) is an LMI with respect to P , while (5.14) is

an LMI with respect to P and �t. We want to show that it is suÆcient that condi-

tions (5.10) or (5.14) are satis�ed in some carefully chosen interval [t�; t+], instead

of requiring them to be satis�ed for all expected switching times t 2 T . In order to

do so, one must guarantee there exists a t0 such that the di�erence between any two

consecutive switching times of a trajectory x(t) for t > t0 is higher than t� but lower
than t+. Before we �nd such bounds, we need to show there is a particular bounded
set such that any trajectory will eventually enter and stay there (i.e., will not leave

the set). Remember that, by de�nition, kFeAtBkL1 is given by

kFeAtBkL1 =
Z 1

0

���FeAtB��� dt
Proposition 5.5 Consider the system _x = Ax + Bu, y = Fx, where A is Hurwitz,

u(t) = �1, and F is a row vector. Then, for any �xed �t � 0,

lim sup
t!1

jFeA
�tx(t)j �

Z 1

�t

���FeA�B��� d� � kFeAtBkL1
Proof: At time t, x(t) is given by

x(t) = eAtx0 +
Z t

0
eA(t��)Bu(�)d�

Therefore

lim sup
t!1

���FeA�tx(t)��� = lim sup
t!1

����FeA�t
�
eAtx0 +

Z t

0
eA(t��)Bu(�)d�

�����
� lim sup

t!1

���FeA�teAtx0���+ lim sup
t!1

����FeA�t
Z t

0
eA(t��)Bu(�)d�

����
� 0 + lim sup

t!1

Z t

0

���FeA(t+�t��)Bu(�)��� d�
� lim sup

t!1

Z t

0

���FeA(t+�t��)B��� d�
=

Z 1

�t

���FeA�B��� d�
�

Z 1

0

���FeA�B��� d�
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which is equal to kFeAtBkL1.

We now focus our attention in �nding an upper bound for t+. First, remember

from the proof of theorem 5.4 that a trajectory x(t) starting at x0 2 Sd
0 is given by

x(t) = eAt(x0 � A�1B) + A�1B. Then the output y(t) = Cx(t) is given by

y(t) = CeAt(x0 � A�1B) + CA�1B

By de�nition of Sd
0 , y(t) > �d at least in some interval (0; �), where � > 0. However,

since we are assuming CA�1B < �d, and A Hurwitz, it is easy to see that y(t) cannot

remain larger than �d for all t > 0 (see �gure 5-15). For any initial condition x0,

CeAt(x0 � A�1B) ! 0 as t ! 1. Hence, since for suÆciently large time t, x(t) is

bounded (from the above proposition), an upper bound t+ on the expected switching

times can be obtained.

CA  B−1

t

y(t)

−d

d

Figure 5-15: If there were no switches, y(t)! CA�1B

Proposition 5.6 Let t+ > 0 be the smallest solution of

Z 1

t+

���CeA�B��� d� + jCeAt+A�1Bj � �(CA�1B + d) (5.17)

If ta and tb are suÆciently large consecutive switching times then jta � tbj � t+.

Proof: Assume that after a suÆciently large time the trajectory is at x0 2 Sd
0 .

Without loss of generality, assume x(0) = x0. Then y(t) will be positive in some

interval (0; �). We are interested in �nding an upper bound on the time it takes to
switch. That is, we would like to �nd an upper bound t+ > 0 of those t > 0 such

that y(t) = �d, i.e.,

CeAt+(x0 � A�1B) = �(CA�1B + d) > 0

Using proposition 5.5 with F = C and �t = t+, we can get a bound on the left side of

the inequality���CeAt+x0 � CeAt+A�1B
��� � jCeAt+x0j+ jCe

At+A�1Bj

�
Z 1

t+

���CeA�B��� d� + jCeAt+A�1Bj
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Therefore, t+ > 0 must satisfy (5.17).

Remember that if x0 2 S
d
0 , y(t) will be positive at least in some interval (0; �). The

next result shows that in the bounded invariant set characterized in proposition 5.5,

� cannot be made arbitrarily small. Basically, for suÆciently large time t, x(t) is

bounded, and a lower bound on the time it takes between two consecutive switches

can be obtained.

Proposition 5.7 Let kd = �2CB, kdd = kCA2eAtBkL1 + maxt�0 jCe
AtABj, and

kdl = kCAeAtBkL1 +maxt�0 jCe
AtBj and de�ne

t1 =
kd +

q
k2d + 4kddd

kdd

and

t2 =
2d

kdl

Also, let t� = max ft1; t2g. If ta and tb are suÆciently large consecutive switching

times then jta � tbj � t�.

Proof: There are many ways to �nd bounds on t�. We will show two here: t1 and
t2. Since they are found independently of each other, we are interested in the larger

one. We start with t1.
Assume again that after a suÆciently large time the trajectory is at x0 2 Sd

0 .

Without loss of generality, assume x(0) = x0. This means that right before the
switch (at t = 0�), _y(0�) � 0, i.e., CAx0 + CB � 0. Therefore, after the switch at
t = 0+, _y(0+) = CAx0 � CB = CAx0 + CB � 2CB � �2CB. That is, _y(0+) � kd.

We also need bounds on the second derivative of y for t > 0. From y(t) we get
_y(t) = CAeAt(x0 � A�1B), and �y(t) = CA2eAt(x0 � A�1B). This means that

j�y(t)j =
���CA2eAt(x0 � A�1B)

���
� jCA2eAtx0j+ jCe

AtABj

� kCA2eAtBkL1 +max
t�0

jCeAtABj

= kdd

So, �kdd � �y(t) � kdd. In order to �nd a lower bound on the switching time, we

consider the worst case scenario, that is, we consider the case when �y(t) = �kdd and
_y(0) = kd. This implies that _y(t) = �kddt + kd. Integrating once more and knowing

that y(0) = d, yields

y(t) = �
kdd

2
t2 + kdt + d

We are looking for values of t = t1 such that y(t1) = �d and t1 > 0. y(t1) = �d has
two solutions

t1 =
kd �

q
k2d + 4kddd

kdd
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However, only one is positive (the one with the + sign) since �y(t) < 0 for all t and

either y(0) > 0 (if d > 0) or _y(0) > 0 (if d = 0 and CB < 0).

To �nd t2 we �nd a bound on the �rst derivative of y for t > 0

j _y(t)j =
���CAeAt(x0 � A�1B)

���
� jCAeAtx0j+ jCe

AtBj

� kCAeAtBkL1 +max
t�0

jCeAtBj

= kdl

So, �kdl � _y(t) � kdl. The worst case scenario is the case when _y(t) = �kdl (with
y(0) = d). Therefore, y(t) = �kdlt + d. Again, we are looking for values of t = t2
such that y(t2) = �d and t2 > 0, i.e., the solution of �kdlt2 + d = �d.
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Chapter 6

On/O� Systems

This chapter addresses the problem of global stability analysis of on/o� systems

(OFS) using quadratic surface Lyapunov functions. In the last chapter, quadratic

surface Lyapunov functions were successfully applied to prove global asymptotic sta-
bility of limit cycles of relay feedback systems. Here, we show that similar ideas can
be used to prove global asymptotic stability of equilibrium points of piecewise linear

systems (PLS). We consider OFS which are characterized by an LTI system in feed-
back with a nonlinear static controller that switches between closed loop (on) and
open loop (o�), depending on the output of the LTI system. We present conditions

in the form of LMIs that, when satis�ed, guarantee global asymptotic stability of an
equilibrium point. A large number of examples was successfully proven globally sta-

ble, including systems with unstable nonlinearity sectors, for which classical methods
like small gain theorem, Popov criterion, Zames-Falb criterion, IQCs, fail to analyze.
The main contribution of this chapter is to show that the tools developed in chapter 4

can be used to not only analyze limit cycles (as seen in chapter 5), but also equilib-
rium points, even when these do not belong to a switching surface. This opens the

door to the possibility that more general PLS can be systematically globally analyzed
using quadratic surface Lyapunov functions.

6.1 Introduction

The ideas introduced in chapter 5 were very successful in proving global stability of
limit cycles of RFS. On the switching surfaces we found quadratic Lyapunov functions

that were used to prove that the impact map, i.e., the map from one switching surface

to the other switching surface, was contracting in some norm. Such contraction, in
turn, proved the limit cycle to be global asymptotically stable. This lead to the

discovery that quadratic surface Lyapunov functions can be used in the stability

analysis of limit cycles of RFS.

In chapter 5 there was an obvious choice on how the stability problem needed to

be setup since the �xed point, consisting of the intersection of the limit cycle with a

switching surface, belonged to the switching surface. Therefore, all we needed was to

show that consecutive switches were getting closer in some norm to the �xed point.
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This could even be done by just analyzing a single impact map due to the symmetry

of RFS. In this chapter, we show that the approach introduced in chapter 4 can also

be used to eÆciently prove global asymptotic stability of equilibrium points, even

when these equilibrium points do not belong to the switching surface. In case an

equilibrium point belongs to the switching surface, the problem is similar to the one

in chapter 5 , with the added diÆculty that now we have to simultaneously analyze

two impact maps, instead of just one. If an equilibrium points does not belong to

the switching surface, setting up the stability problem on the switching surface is not

so straightforward. This particular aspect, together with the problem of analyzing

simultaneously more than one impact map, will be the main focus of this chapter. We

show that even in the case where equilibrium points do not belong to the switching

surface, analysis using quadratic surface Lyapunov functions can still be applied.

When quadratic surface Lyapunov functions are appropriately selected, they can be

used to show contraction of impact maps, that, in turn, prove global asymptotic
stability of equilibrium points.

To demonstrate these ideas, we chose a class of PLS known as on/o� systems
(OFS). An OFS can be thought of as an LTI system that switches between open
and closed loop. The switches are determined by the values of the output of the

LTI system. OFS can be found in many engineering applications. In electronic
circuits, diodes can be approximated by on/o� controllers. Transient behavior of
logical circuits that involve latches/
ip-
ops performing very fast on/o� switching

can be modeled using on/o� circuits and saturations. In general, on/o� circuits have
many applications in electronics and circuit design. Another area of application of

OFS is aircraft control. For instance, in [12], a max controller is designed to achieve
good tracking of the pilot's input without violating safety margins.

We are interested in checking if a unique locally stable equilibrium point of an

OFS is also globally stable. The idea is to construct quadratic Lyapunov functions on
the switching surface of the system to show contraction in some sense of impact maps.
Under certain easily veri�able conditions, quadratic stability of impact maps implies

globally asymptotically stability of OFS. The search for quadratic surface Lyapunov

functions is eÆciently done by solving a set of LMIs.

As in relay feedback systems, a large number of examples was successfully proven

globally stable. These include systems with an unstable aÆne linear subsystem,
systems of relative degree larger than one and of high dimension, and systems with

unstable nonlinearity sectors, for which classical methods like small gain theorem,

Popov criterion, Zames-Falb criterion, and integral quadratic constraints [68, 35, 16,
42, 44], fail to analyze. In fact, it is still an open problem whether there exists

an example with a globally stable equilibrium point that could not be successfully
analyzed with this new methodology.

This chapter is organized as follows. Section 6.2 starts by formulating the prob-

lem. Section 6.3 presents the main results of this chapter followed by some illustrative
examples in section 6.4. In section 6.5 we show a way to improve the stability condi-

tions presented in section 6.3. Section 6.6 presents a special case of OFS where the

switching surface includes the origin. Finally, section 6.7 discusses some technical
details.
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6.2 Problem Formulation

The main purpose of this section is to introduce the problem we plan to solve. We

start by de�ning OFS followed by some necessary conditions for the global stability of

a unique locally stable equilibrium point. We then talk about some of the properties

of this class of systems.

An OFS is de�ned as follows. Consider a SISO LTI system satisfying the following

linear dynamic equations (
_x = Ax +Bu

y = Cx
(6.1)

where x 2 IRn, in feedback with a on/o� controller (see �gure 6-1) given by

u(t) = max f0; y(t)� dg (6.2)

where d 2 IR. By a solution of (6.1)-(6.2) we mean functions (x; y; u) satisfying (6.1)-
(6.2). Since u is continuous and globally Lipschitz, Ax + Bmax f0; Cx� dg is also
globally Lipschitz. Thus, the OFS has a unique solution for any initial state.

d

LTI
u y

Figure 6-1: On/O� System

In the state space, the on/o� controller introduces a switching surface composed
of an hyperplane of dimension n� 1

S = fx 2 IRn : Cx = dg

On one side of the switching surface (Cx < d), the system is given by _x = Ax. On

the other side (Cx > d) the system is given by _x = Ax + B(Cx � d) = A1x + B1,

where A1 = A + BC and B1 = �Bd. Note that the vector �eld is continuous along

the switching surface since for any x 2 S, A1x +B1 = Ax.

An OFS has either zero, one, or two equilibrium points. We are interested in those

cases where the system has a unique locally stable equilibrium point. Only here can

an OFS have a globally stable equilibrium point. Next, we give necessary conditions

for the existence of a single locally stable equilibrium point for di�erent values of d.

If d > 0 there is at least one equilibrium point at the origin. In this case, it

is necessary that A is Hurwitz to guarantee the origin is locally stable. It is also

necessary that A1 is invertible or otherwise there would exist a continuum of equi-
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librium points. The aÆne linear system _x = A1x + B1 has an equilibrium point at

�A�11 B1. In order to guarantee an OFS has only the origin as an equilibrium point,

it is necessary that �CA�11 B1 < d. It is also necessary that A1 has no real unstable

eigenvalues or, otherwise, the system will have trajectories that grow unbounded1.

To see this, let � be a real unstable eigenvalue of A1 with associated eigenvalue v.

Let x0 = �v � A�11 B1, where � is chosen such that Cx0 > d. The trajectory starting

at x0 is given by x(t) = �e�tv � A�11 B1. Hence, the trajectory will grow unbounded

without switching since Cx(t) = �e�tCv � CA�11 B1 � �Cv � CA�11 B1 > d, for all

t � 0. Note that �Cv > d+ CA�11 B1 > d� d = 0.

When d = 0, the origin is the only equilibrium point. For the same reasons as

above, it is necessary that both A and A1 do not have real unstable eigenvalues. Note

that in this case, there is no \easy" way to check if the origin is locally stable or not.

When d < 0, it must be true that �CA�11 B1 > d or otherwise the system will

have no equilibrium point. It is also necessary that A1 is Hurwitz and A has no real
unstable poles.

We can assume without loss of generality that d � 0. If d < 0 and all necessary

conditions are met, with an appropriate change of variables (xnew = �(x +A�11 B1)),
the problem can be transformed to one of analyzing the origin with dnew � 0. In this

case, Anew = A1, A1new = A, B1new = AA�11 B1, and dnew = �d� CA�11 B1 � 0.

Consider a subset S+ of S given by

S+ = fx 2 S : CAx � 0g

This set is important since it tells us which points in S can be reached by trajectories
starting at any x0 such that Cx0 < d (see �gure 6-2). Similarly, de�ne S� � S as

S� = fx 2 S : CAx � 0g

S+

x= Ax
.

.
x= A x+B1 1

S−

0

S

Figure 6-2: Both sets S+ and S� in S

1Possible exceptions occur when the eigenvector associated with the unstable real eigenvalue is
perpendicular to C'.
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Note that S = S+
S
S� and S+

T
S� = fx 2 S : CAx = 0g. From here on, we

assume d > 0. In terms of stability analysis, d = 0 is a special case of when d > 0,

and will be considered separately in section 6.6.

Since A must be Hurwitz, there is a set of points in S� such that any trajectory

starting in that set will never switch again and will converge asymptotically to the

origin. In other words, let S� � S� be the set of points x0 such that the following

equation

CeAtx0 = d

does not have a solution for any t > 0. Note that this set S� is not empty. To see

this, let P > 0 satisfy PA + A0P = �I. Then, an obvious point in S� is the point

x�1 obtained from the intersection of S with the level set x0Px = k, where k � 0 is

chosen such that the ellipse x0Px = k is tangent to S (see �gure 6-3).

0

S

x’Px=k

x*1

x= Ax
.

1 1x= A x+B
.

Figure 6-3: How to obtain x�1

The problem we propose to solve here is to give suÆcient conditions that, when
satis�ed, prove the origin of an OFS is globally asymptotically stable. The strategy

of this proof is a follows. Consider a trajectory starting at some point x0 2 S+ (see

�gure 6-4). Since A1 has no unstable real poles, the trajectory x(t) will eventually
switch at some time t1 > 0, i.e., Cx(t1) = d and Cx(t) � d for t 2 [0; t1]. Let

x1 = x(t1) 2 S�. If x1 2 S�, the trajectory will not switch again and converge
asymptotically to the origin. Since we already know S� is a stable set, we need

to concentrate on those points in S�nS
� since those are the ones that may lead to

potentially unstable trajectories. So, assume the trajectory switches again at time
t2 > t1, and let x2 = x(t2) 2 S+. Again, we would switch at x(t3) = x3 and so on.

The idea is to check if x3 is closer in some sense to S� than x1. If so, this would
mean that eventually x(t2N�1) 2 S

�, for some positive integer N , and prove that the

origin is globally asymptotically stable. This is the idea behind the results in the next

section.
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x0

x2

x1

V (  ).1
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2V (  )

0

x3S*

S

Figure 6-4: Trajectory of an OFS

Before presenting the main results, it is convenient to notice that x0; x1; x2 2 S

can be parametrized. Let x0 = x�0 + �0, x1 = x�1 + �1, and x2 = x�0 + �2, where
x�0; x

�
1 2 S, and C�0 = C�1 = C�2 = 0. Also, de�ne x�0(t) (x

�
1(t)) as the trajectory

of _x = A1x + B1 ( _x = Ax), starting at x�0 (x�1), for all t > 0. Since x�i can be any
points in S, we chose them to be such that Cx�i (t) < d for all t > 0. As explained in

section 6.7.1, this is always possible, even when A1 is unstable (as long as it has at
least one stable eigenvalue with an associated eigenvector that is not perpendicular
to C 0). The reason for this particular choice of x�0 and x

�
1 is so that Cx�i (t) � d 6= 0

for all t > 0. This will be necessary in proposition 6.1.
As in RFS, impact maps associated with OFS are multivalued. De�ne the expected

switching times T1 and T2 as in chapter 4.

6.3 Global Asymptotic Stability of On/O� Sys-

tems

Before presenting the main result of this chapter, we �rst show that each impact
map associated with the OFS can be represented as a linear transformation analyt-
ically parametrized by the correspondent switching time. This result is similar to

theorem 4.1.

Proposition 6.1 De�ne

w1(t) =
CeA1t

d� Cx�0(t)

and

w2(t) =
CeAt

d� Cx�1(t)

Let H1(t) = eA1t + (x�0(t)� x�1)w1(t) and H2(t) = eAt + (x�1(t)� x�0)w2(t). Then, for

any �0 2 S+ � x�0 there exists a t1 2 T1 such that

�1 = H1(t1)�0

Such t1 is the switching time associated with �1. Similarly, for any �1 2 S�nS
��x�1
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there exists a t2 2 T2 such that

�2 = H2(t2)�1

Such t2 is the switching time associated with �2.

Next, de�ne two quadratic Lyapunov functions V1 and V2 on the switching surface

S

Vi(x) = x0Pix� 2x0gi + �i (6.3)

where Pi > 0, for i = 1; 2. Global asymptotically stability of the origin follows if both

impact maps are quadratically stable, i.e., if there exist Pi > 0, gi, �i such that

V2(�1) < V1(�0) for all �0 2 S+ � x�0 (6.4)

V1(�2) < V2(�1) for all �1 2 S�nS
� � x�1 (6.5)

The next theorem is an extension of theorem 4.2 for the case where we have to

simultaneously prove contraction of two impact maps. Let P > 0 on S stand for
x0Px > 0 for all x 2 S. As a short hand, in the following result we use Hit = Hi(t)
and wit = wi(t).

Theorem 6.1 De�ne

R1(t) = P1 �H 0
1tP2H1t � 2 (g1 �H 0

1tg2)w1t + w01t�w1t

R2(t) = P2 �H 0
2tP1H2t � 2 (g2 �H 0

2tg1)w2t � w02t�w2t

where � = �1 � �2. The origin of the OFS is globally asymptotically stable if there

exist P1; P2 > 0 and g1; g2; � such that

(
R1(t1) > 0 on S+ � x�0
R2(t2) > 0 on S�nS

� � x�1

for all expected switching times t1 2 T1 and t2 2 T2.

A relaxation of the constraints on �0 and �1 in the previous theorem results in

computationally eÆcient conditions.

Corollary 6.1 The origin of the OFS is globally asymptotically stable if there exist

P1; P2 > 0 and g1; g2; � such that

(
R1(t1) > 0 on S � x�0
R2(t1) > 0 on S � x�1

(6.6)

for all expected switching times t1 2 T1 and t2 2 T2.

For each t1, t2 these conditions are LMIs for which we can solve for P1; P2 > 0 and

g1; g2; � using eÆcient available software. As we will see in the next section, although
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these conditions are more conservative than the ones in theorem 6.1, they are already

enough to prove global asymptotic stability of many important OFS.

Each condition in (6.6) depends only on a single scalar parameter, i.e., R1 depends

only on t1 and not on t2, and, similarly, R2 depends only on t2. Computationally, this

means that when we grid each set of expected switching times, this will only a�ect one

of the conditions in (6.6). Thus, if we need m1 samples of T1 and m2 samples of T2,
we end up with a total of m1+m2 LMIs. Note that a less conservative condition than

those in theorem 6.1 could be obtained. Such condition, of the form R(t1; t2) > 0,

would, however, lead to m1�m2 LMIs, and the analysis problem would easily become

computationally intractable. This di�erence in complexity is even more obvious in

the analysis of other, more complex classes of PLS that may require the simultaneous

analysis of a large number of impact maps.

Proof of proposition 6.1: This proof is similar to the proof of theorem 4.1. If

x(0) = x0+�0 2 S+, integrating the dynamic equations (6.1) with u = Cx�d yields

�1 = eA1t�0 + x�0(t)� x�1

From the fact that C�1 = 0 we get CeA1t�0 = d�Cx�0(t). Since x
�
0 was chosen such

that d� Cx�0(t) > 0 for all t > 0 we rewrite the last expression as

w1(t)�0 = 1 (6.7)

which means that �1 can be written as

�1 = eA1t�0 + (x�0(t)� x�1)w1(t)�0

The same way, we can �nd �2 as a function of �1 and t, the switching time
associated with �2. The dynamic equations now are simply _x = Ax. Therefore,

x2 = eAtx1. Since x2 = x�0 +�2,

�2e
At�1 + x�1(t)� x�0

Again, from the fact that C�2 = 0 we get CeAt�1 = d�Cx�1(t). Since x
�
1 was chosen

such that d� Cx�1(t) > 0 for all t > 0 we rewrite the last expression as

w2(t)�1 = 1 (6.8)

leading to

�2 = eAt�1 + (x�1(t)� x�0)w2(t)�1

which proves the desired result.

Note that equations (6.7) and (6.8) tell us that for a given switching time t, �0

and �1 are restricted to n�2-dimensional sets consisting of the intersection of S+�x
�
0

with the set of �0 that satisfy (6.7) and the intersection of S�nS
� � x�0 with the set

of �1 that satisfy equation (6.8), respectively.
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Proof of theorem 6.1: From (6.4) and using proposition 6.1, we have

�0
1P2�1 � 2�0

1g2 + �2 < �0
0P1�0 � 2�0

0g1 + �1

, �0
0H

0
1tP2H1t�0 � 2�0

0H
0
1tg2 + �2 < �0

0P1�0 � 2�0
0g1 + �1

, �0
0 (P1 �H 0

1tP2H1t)�0 � 2�0
0 (g1 �H 0

1tg2) + � > 0

Finally, using (6.7) we have

�0
0 (P1 �H 0

1tP2H1t)�0 � 2�0
0 (g1 �H 0

1tg2)w1t�0 +�0
0w

0
1t�w1t�0 > 0

which is the desired result. R2(t) can be obtained in a similar way.

6.4 Examples

The following examples were processed in matlab code. The latest version of this

software is either available at [27] or upon request. Before presenting the examples,
we brie
y explain the matlab function we developed. The inputs to this function are a
transfer function of an LTI system together with the displacement of the nonlinearity

switch d. If the OFS is proven to be globally stable, the function returns the values
of the parameters of the Lyapunov functions (6.3). The matlab function also returns

a graphic showing the minimum eigenvalues of each Ri(ti) in (6.6), which must be
positive for all expected switching times ti.

For most OFS, the expected switching times include ti = 0 and large values of ti.

Thus, before moving into the examples, it is important to explain how the analysis
is done when ti is close to zero and when ti is very large. We start with the analysis
near zero.

Zero switching time corresponds to points in S such that CAx = 0. At those
points, the Lyapunov functions (6.3) must be continuous since this is the only way

(
V2(�1) � V1(�0)
V1(�2) � V2(�1)

can be satis�ed simultaneously, for all �0;�1;�2 = �0 such that x�0 + �0 = x�1 +

�1 = x and CAx = 0. Therefore, we need V1(�0) = V2(�1). This imposes certain

restrictions on P1; P2 > 0, g1; g2, and �. The details can be found in section 6.7.2.

Just like in RFS, we would like to obtain bounds on the expected switching times.

With the exception of 3rd-order systems, however, �nding upper bounds timax on

switching times is, in general, not an easy task. The idea is to �rst guarantee con-

ditions (6.6) are satis�ed in some intervals (0; timax) and then check if they are also

valid for all ti > timax. This is considered in section 6.7.3.

Note that for 3rd-order systems, at least one of the upper bounds of the expected

switching times is easily calculated since the switching surface is an hyperplane of

dimension 2, which can be visualized.

Example 6.1 Consider the OFS on the left of �gure 6-5 with d = 1. It is easy to
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see that the origin of this system is locally stable.
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i
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Figure 6-5: 3rd-order system with unstable nonlinearity sector

Using conditions (6.6), we show that the origin is in fact globally asymptotically
stable. The right side of �gure 6-5 illustrates this fact: the minimum eigenvalue

of each condition (6.6) is positive on its respective set of expected switching times.
The expected switching times in this example are approximately T1 = (0; 1:85) and

T2 = (0; 4:7). For instance, if t1 � 1:85, there is no point in S+ with switching time
equal to t1.

1

u

y

Figure 6-6: On/o� controller versus constant gain of 1=2 (dashed)

Note that this system has an unstable nonlinearity sector. If the on/o� nonlin-

earity is replaced by a linear constant gain of 1=2, the system becomes unstable (see

�gure 6-6). This is very interesting since it tells us that analysis tools like small gain

theorem, Popov criterion, Zames-Falb criterion, and integral quadratic constraints,
would all fail to analyze OFS of this nature.

Example 6.2 Consider the OFS on the left of �gure 6-7 with d = 1 and k > 0. Once
again, it is easy to see that the origin of this system is locally stable for any k > 0.

Note that kCeAtBkL1 = k. Thus, the small gain theorem can be applied whenever

k � 1. When k > 1, however, the small gain theorem fails to analyze the system.

Let k = 2. Using conditions (6.6), we show the origin is globally asymptotically

stable. The right side of �gure 6-7 shows how conditions (6.6) are satis�ed in some

intervals (0; timax), i = 1; 2. The intervals (0; timax) are bounds on the expected
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Figure 6-7: System with relative degree 7 (left); global stability analysis when k = 2

(right)

switching times. The results in section 6.7.3 guarantee the stability conditions are

also satis�ed for all ti > timax. For details on how to �nd such bounds see section 6.7.3.

Example 6.3 Consider the OFS in �gure 6-8 with d = 1. It is easy to see that the

origin of this system is locally stable. A1, however, is unstable.
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Min(eig(R
i
(t))); Want them always positive

Figure 6-8: System with unstable A1

Although A1 is unstable, since this is a 3
rd-order system, it is easy to �nd bounds

on the expected switching times for the subsystem _x = A1x + B1. In this case, no

point in S+ has a switching time higher than 21:8. As for t2, we use the same ideas as

in the previous example, based on the results in section 6.7.3. Using conditions (6.6),

we show that although A1 is unstable, the origin is globally asymptotically stable.

The right side of �gure 6-8 shows how conditions (6.6) are satis�ed in the intervals

(0; timax), i = 1; 2 (the minimum eigenvalue of the second condition in (6.6) is scaled

by 500 in �gure 6-8, for purpose of visualization).

6.5 Improvement of stability conditions

Conditions (6.6) are suÆcient conditions for the global stability of the origin. These

conditions do not take into account that both �0 and �1 are restricted to S+ �
x�0 and S�nS

� � x�1, respectively. Using the same ideas in sections 4.3.1 and 5.5,

conditions (6.6) can be improved.
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For each point x0 2 S+, there is an associated switching time t1. De�ne St1 as

the set of initial conditions x0 2 S+ such that y(t) � d on [0; t1], and y(t1) = d. This

set St1 forms a linear and convex set of dimension n � 2. Analogously, de�ne St2 as

the set of initial conditions x1 2 S�nS
� such that y(t) � d on [0; t2], and y(t2) = d.

Given this, conditions (6.6) can be improved to

(
R1(t1) > 0 on St1 � x�0
R2(t2) > 0 on St2 � x�1

(6.9)

for some P1; P2 > 0, g1; g2, �, and for all expected switching times t1; t2.

The problem with conditions (6.9) is that, in general, the sets Sti , i = 1; 2, are not

easily characterized. An alternative is to consider the sets ~Sti � Sti obtained from

equations (6.7), (6.8) given by

~St1 = fx�0 +�0 2 S+ : w1t�0 = 1g

and
~St2 = fx�1 +�1 2 S�nS

� : w2t�1 = 1g

Since ~Sti � Sti , conditions (6.9) hold if there exist P1; P2 > 0, g1; g2, � such that

(
R1(t1) > 0 on ~St1 � x�0
R2(t2) > 0 on ~St2 � x�1

(6.10)

for all expected switching times t1; t2. The same way as in section 4.3.1, �i 2 Sti
satis�es a conic relation

�0
i�ti�i > 0

for some matrices �ti (to see details of the construction of these matrices please refer
to section 4.5. Using the S-procedure, conditions (6.10) are equivalent to

(
R1(t1)� �t1�t1 > 0 on S � x�0
R2(t2)� �t2�t2 > 0 on S � x�1

(6.11)

for some Pi > 0, gi, �, some scalar functions �ti > 0, and for all expected switching

times ti. For each t1; t2 these conditions are LMI which again can be solved using
eÆcient available software.

It is still possible to improve conditions (6.11) further more. They do not take

advantage that a trajectory starting at x0 2 ~St1 (x1 2 ~St2) must satisfy y(t) �
d (y(t) � d) on [0; t1] ([0; t2]). This is captured by conditions (6.9) but not by

conditions (6.11) since ~Sti � Sti . See sections 4.3.1 and 5.5 for more details.

6.6 Special case: d = 0

When d = 0 we can write stability conditions that are, in general, much less conser-

vative than conditions (6.11). First, since the origin belongs to both systems _x = Ax
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and _x = (A+ BC)x, it is only required that both systems do not have real unstable

poles. d = 0 also means x�0 = x�1 = g1 = g2 = 0 and � = 0. All we need to �nd is

P1; P2 > 0.

In this case, �1 = eA1t1�0 and �2 = eAt2�1. Thus, the stability conditions come

down to

�0
1P2�1 < �0

0P1�0

, �0
0

�
P1 � eA

0

1
t1P2e

A1t1
�
�0 > 0

and

�0
2P1�2 < �0

1P2�1

, �0
1

�
P2 � eA

0t2P1e
At2
�
�1 > 0

for some P1; P2 > 0, all expected switching times t1; t2, and all �0 2 S+, �1 2 S�nS
�.

Notice that C�0 = 0, C�1 = 0, and C�2 = 0. Therefore CeA1t1�0 = 0 and
CeAt2�1 = 0. That is, for �xed values of t1 and t2, �1 and �2 are restricted to a

subspace of dimension n� 2. Let � 2 C?, where C? are the orthogonal complements
to C, i.e., matrices with a maximal number of column vectors forming an orthonormal
set such that CC? = 0. Let also lt1 2 (CeA1t1�)? and lt2 2 (CeAt2�)?. We have the

following result.

Theorem 6.2 The origin of the OFS with d = 0 is globally asymptotically stable if

there exist P1; P2 > 0 such that

8<
: l0t1�

0
�
P1 � eA

0

1
t1P2e

A1t1
�
�lt1 > 0

l0t2�
0
�
P2 � eA

0t2P1e
At2
�
�lt2 > 0

(6.12)

for all expected switching times.

6.7 Technical Details

6.7.1 Choice of x�0 and x
�
1

We now explain how we chose x�0 and x
�
1 such that both Cx�0(t) < d and Cx�1(t) < d

for all t > 0. We start with x�1.

x�1 is found as explained in section 6.2 (see �gure 6-3). In this case, x�1 is given by

x�1 =
P�1d C 0

CP�1d C 0
d

where Pd > 0 satis�es PdA + A0Pd = �I.

The choice of x�0 is more tricky since A1 may be unstable. If A1 is stable then we

can use the same ideas as we did for x�1. First, let Pu > 0 satisfy PuA1 +A01Pu = �I.
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Then

x�0 = (d+ cA�11 B1)
P�1u C 0

CP�1u C 0
� A�11 B1

If A1 is not stable (but it has at least one stable eigenvalue) then we need to �nd

a point in S such that it belongs to a stable mode of A1. If A1 has real poles then

these must be stable. Let � be a real eigenvalue of A1 with associated eigenvector

v (assume Cv 6= 0). Then, if we �nd a point in S that only excites this mode, the

trajectory x(t) will converge to �A�11 B1 and Cx(t) < d for all t > 0. such a point in

S is given by

x�0 = �A�11 B1 +
d+ CA�11 B1

Cv
v

In case A1 only has complex poles, pick a stable complex conjugate pair of eigenvalues

�; � with associated eigenvectors v; v, where x stands for the complex conjugate of

x. Let, va = v + v and vb = i(v � v). Then, any initial condition starting in the

hyperplane de�ned by �A�11 B1 + �ava + �bvb, �a; �b 2 IR will converge to �A�11 B1

as time goes to in�nity since it only excites this stable complex conjugate mode. An

orthogonal basis in this plane can be de�ned by letting vc = �(v0avb)va + vb. The
basis is then given by

V =

"
va

kvak

vc

kvck

#

The trajectory in this basis satis�es _� = V 0A1V � = Av�. We need to �nd an �0 such
that C

�
�A�11 B1 + V �0

�
= d and C

�
�A�11 B1 + V �(t)

�
< d for all t > 0. This is a

similar problem to the one we dealt above when �nding x�1. In this case, �0 is given
by

�0 =
d+ CA�11 B1

CV P�1v V 0C 0
P�1v V 0C 0

where Pv > 0 satis�es PvAv + A0vPv = �I. Finally,

x�0 = �A�11 B1 + V �0

If A1 only has complex unstable eigenvalues, then for any choice of x�0, Cx(t) = d

will have an in�nity number of solutions for t > 0. In this case, x�0 must be chosen

such that the smallest solution t > 0 of Cx(t) = d is higher than the maximum

possible switching time t1.

6.7.2 Constraints Imposed When ti = 0

As seen in section 6.4, when ti = 0, V1(�0) = V2(�1), for all �0;�1 such that

CA(x�0 + �0) = CA(x�1 + �1) = 0 and C�0 = C�1 = 0. This is equivalent to have
R0 = R1(0) = R2(0) = 0. Since analyzing R1(t) or R2(t) near zero will lead to the

same results, we analyze R1(t) at t = 0. From section 6.3, R0 = R1(0) is given by

R0 = P1 � P2 � (g1 + P2v0 � g2)w � w0 (g1 + P2v0 � g2)
0 + w0w (� + 2v00g2 � v00P2v0)
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where v0 = x�0 � x�1 and

w�0 = lim
t!0

w1(t)�0 = �
CA

CAx�0
�0

Let l = w?, z = w0=(ww0), and P = P1 � P2. Since R0 = 0, then l0R0l = l0P l = 0.

This means that in the basis (l; z), the matrix P looks like

PF =

�
0 �1

�01 �2

�

for some �1 2 IRn�1 and �2 2 IR. In other words, P = FPFF
0, where F = [l z].

Therefore, once P2 > 0 is �xed P1 > 0 must satisfy

P1 = FPFF
0 + P2

The same way l0R0z = 0, or l0 (Pz � g1 � P2v0 + g2) = 0. Hence, Pz�g1�P2v0+g2 =
kz for some k 2 IR. For a given g2, g1 is then given by

g1 = (P1 � P2)z � P2v0 + g2 � kz

Finally, it must be true that z0R0z = 0 leading to

� = �z0 (P1 � P2) z + 2z0 (g1 + P2v0 � g2) + v00P2v0 � 2v00g2

6.7.3 Checking Stability Conditions for ti > timax

For simplicity, we are going to present the case when d = 0. The other cases follow

analogously. Assume conditions (6.12) are satis�ed for all ti � timax. We would like
to easily check if they will also be satis�ed for all ti > timax. Let's concentrate on

condition

l0t2�
0eA

0t2P1e
At2�lt2 < l0t2�

0P2�lt2

It is suÆcient to show that

�0eA
0t2�Q1�

0eAt2� < Q2

for all t > t2max, and where Qi = �0Pi�. Next, we �nd an upper bound on the left

side of the last inequality. Let Az = �0A�. If A is a stable matrix, it is possible to
�nd a Q and a � > 0 such that

QAz + A0zQ < ��Q

This in turn implies that
z0(t)Qz(t) < e��tz00Qz0
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where z(t) is the solution of _z = Azz. Using the fact that e
Azt = �0eAt�, we have

z00�
0eA

0t2�Q�0eAt2�z0 < e��tz00Qz0

or simply

�0eA
0t2�Q�0eAt2� < e��tQ

Therefore, for some k

�0eA
0t2�Q1�

0eAt2� < �0eA
0t2�kQ�0eAt2�

< ke��tQ

< ke��t2maxQ

Finally, all we need is to guarantee

ke��t2maxQ < Q2

Note that we want to chose the largest � and the smallest k.

If A1 (and also A if d = 0) has unstable complex poles, then this approach will
not work since either eAt or eA1t is unbounded when t ! 1. In these cases, it is
fundamental to get upper bounds for t1max or t2max (depending if it is A1 or A that

has unstable eigenvalues). How to �nd such bounds is currently under investigation.
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Chapter 7

Saturation Systems

This chapter considers impact maps and quadratic surface Lyapunov functions in
the study of global asymptotic stability of the origin of saturation systems (SAT).

Both impact maps and quadratic surface Lyapunov functions, introduced in chap-
ter 4, were �rst successfully used to globally analyze stability of limit cycles of relay

feedback systems (chapter 5). Later, we showed that equilibrium points of piecewise
linear systems (PLS) could also be globally analyzed by applying quadratic surface
Lyapunov functions to on/o� systems (chapter 6). In the state space, on/o� systems

are composed of a single switching surface. In this chapter, we show that global anal-
ysis using quadratic surface Lyapunov functions can still be applied when a PLS has
more than one switching surface. For that, we consider saturation systems (SAT).

A SAT is characterized by an LTI system in feedback with a saturation controller.
Again, we present conditions in the form of LMIs that, when satis�ed, guarantee

global asymptotic stability of equilibrium points. A large number of examples was
successfully proven globally stable, including systems with unstable nonlinearity sec-
tors, for which classical methods like small gain theorem, Popov criterion, Zames-Falb

criterion, IQCs, fail to analyze. In fact, it is still an open problem whether there ex-
ists an example of a SAT with a globally stable equilibrium point that cannot be

successfully analyzed with this new methodology. The results in this chapter con�rm
that quadratic surface Lyapunov functions are a viable and powerful approach to
eÆciently globally analyze PLS.

7.1 Introduction

The ideas introduced in chapter 4 and applied in chapters 5 and 6 were very suc-

cessful in proving global asymptotic stability of limit cycles and equilibrium points of
certain classes of PLS. On the switching surfaces, we eÆciently constructed quadratic

Lyapunov functions that were used to show that impact maps associated with the

PLS were contracting in some sense. These results opened the door to the possibility
that limit cycles and equilibrium points of more general PLS can be systematically

globally analyzed using quadratic surface Lyapunov functions.

The results in chapter 6 represented the �rst step in analyzing equilibrium points of
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PLS using quadratic surface Lyapunov functions. In the state space, on/o� systems

are divided in two partitions by a switching surface. Therefore, the analysis was

focused on studying a single switching surface. In the present chapter, we want to

show that quadratic surface Lyapunov functions can also be used to globally analyze

PLS with more than two partitions and more than one switching surface.

To demonstrate these ideas, we chose a class of PLS known as saturation systems

(SAT). The class of SAT we consider consists of an LTI system in feedback with a

saturation. Every time the absolute value of the output of the LTI system exceeds a

certain value, a switch occurs and the closed loop system dynamics change. The study

of such systems is motivated by the possibility of actuator saturation or constraints

on the actuators, re
ected sometimes in bounds on available power supply or rate

limits. These cannot be naturally dealt within the context of standard (algebraic)

linear control theory, but are ubiquitous in control applications. The fact that linear

feedback laws when saturated can lead to instability has motived a large amount
of research. The well known result which states that a controllable linear system is
globally state feedback stabilizable, holds as long as the control does not saturate. In

many applications, more often than not, the control is restricted to take values within
certain bounds which may be met under closed-loop operation. Because feedback

is cut, control saturation induces a nonlinear behavior on the closed-loop system.
The problem of stabilizing linear systems with bounded controls has been studied
extensively. See, for example, [59, 55, 62] and references therein.

In this chapter, we focus on global stability analysis of saturation systems. We

are interested in those SAT where the origin is locally stable and is the only equilib-
rium point. Then, the question is if the origin is also globally asymptotically stable.

Rigorous stability analysis for SAT is rarely done. The Zames-Falb criterion [68] can
be used when the nonlinearity's slope is restricted, like in this case, but the method
is diÆcult to implement. The Popov criterion can be used as a simpli�ed approach

to the analysis, but it is expected to be very conservative for systems of order greater
than three. IQC-based analysis [35, 16, 42, 44] gives conditions in the form of LMIs
that, when satis�ed, guarantee stability of SAT. However, none of these analysis tools

can be used when a SAT has an unstable nonlinearity sector.

Here, we propose to construct quadratic Lyapunov functions on the switching sur-
faces of SAT to show that impact maps associated with the system are contracting in

some sense. This, in turn, proves the origin of a SAT is globally asymptotically stable.

The search for these quadratic surface Lyapunov functions is done by solving a set of
linear matrix inequalities, which can be eÆciently done using available computational

tools.

As in the case of on/o� systems, a large number of examples was successfully
proven globally stable. These include high-order systems, systems of relative degree

larger than one, and systems with unstable nonlinearity sectors for which all classical

methods fail to analyze. In fact, existence of an example with a globally stable
equilibrium point that could not be successfully analyzed with this new methodology

is still an open problem.

This chapter is organized as follows. Section 7.2 starts by formulating the problem.

Section 7.3 presents the main results of this chapter followed by some illustrative
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examples in section 7.4.

7.2 Problem Formulation

The main purpose of this section is to introduce the problem we intend to solve in this

chapter. We start by de�ning a saturation system (SAT) followed by some necessary

conditions for global stability of a unique locally stable equilibrium point. We then

talk about some of the properties of this class of PLS.

Consider a SISO LTI system satisfying the following linear dynamic equations

(
_x = Ax +Bu

y = Cx
(7.1)

where x 2 IRn, in feedback with a saturation controller (see �gure 7-1) de�ned as

u(t) =

8><
>:
�d if y(t) < �d
y(t) if jy(t)j � d

d if y(t) > d

(7.2)

where d > 0 (if d = 0 then the system is simply linear). By a solution of (7.1)-(7.2)

we mean functions (x; y; u) satisfying (7.1)-(7.2). Since u is continuous and globally
Lipschitz, Ax + Bu is also globally Lipschitz. Thus, the SAT has a unique solution

for any initial state.

LTI
u y

Figure 7-1: Saturation system

In the state space, the saturation controller introduces two switching surfaces

composed of hyperplanes of dimension n� 1

S = fx 2 IRn : Cx = dg

and
S = fx 2 IRn : Cx = �dg

On one side of the switching surface S (Cx > d), the system is governed by _x =

Ax + Bd. In between the two switching surfaces (jCxj � d), the system is given by

_x = Ax+BCx = A1x, where A1 = A+BC. Finally, on the other side of S (Cx < �d)
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the system is governed by _x = Ax � Bd. Note that the vector �eld (7.1)-(7.2) is

continuous along the switching surfaces since, for any x 2 S, A1x = (A + BC)x =

Ax +Bd, and for any x 2 S, A1x = Ax�Bd.

SAT can exhibit extremely complex behaviors. Some SAT may be chaotic, others

may have one, three, or a continuum of equilibrium points, or limit cycles, or even

some combination of all these behaviors. We are interested in those SAT with a

unique locally stable equilibrium point. Only here can a SAT have a globally stable

equilibrium point. Several necessary conditions must then be imposed on the system.

For instance, it is necessary that A has no eigenvalues with positive real part, or

otherwise there are initial conditions for which the system will grow unbounded (see

for example [58]). A cannot have eigenvalues at zero since that would lead a continuum

of equilibrium points. It is also necessary that A+BC is Hurwitz in order to guarantee

the origin is locally stable, and�CA�1B < 1, so that the origin is the only equilibrium

point.

Consider a subset S+ of S given by

S+ = fx 2 S : CA1x � 0g

This set is important since it tells us which points in S correspond to the �rst switch
of trajectories starting at any x0 such that Cx0 < d (see �gure 7-2). In other words,

S+ is the set of points in S that can be reached by trajectories of (7.1)-(7.2) when
governed by the subsystem _x = A1x. In a similar way, de�ne S� � S as

S� = fx 2 S : CA1x � 0g

S+

0

.
x= Ax+Bd

.
x= A x1

S

S

Cx>d

−d<Cx<d
−

Figure 7-2: Both sets S+ and S� in S

Note that S = S+
S
S� and S+

T
S� = fx 2 S : CAx = 0g. De�ne also S+ =

�S+ and S� = �S�.

As in on/o� systems, since A1 must be Hurwitz, there is a set of points in S�
such that any trajectory starting in that set will not switch again and will converge

asymptotically to the origin. In other words, let S� � S� be the set of points x0 such

that the following equations

CeA1tx0 = �d
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do not have a solution for any t > 0. Note that this set S� is not empty. To see

this, let P > 0 satisfy PA1 + A01P = �I. Then, an obvious point in S� is the point

x�1 obtained from the intersection of S with the level set x0Px = k, where k � 0 is

chosen such that the ellipse x0Px = k is tangent to both S and S (see �gure 7-3).

x= Ax+Bd
.

S
x= Ax−Bd
.

0

x’Px=k

S

−x*

x*1

1

.
x= A x1

Figure 7-3: How to obtain x�1

The problem we propose to solve is to give suÆcient conditions that, when satis-
�ed, prove the origin of a SAT is globally asymptotically stable. The strategy of the

proof is a follows. Consider a trajectory starting at some point x0 2 S+ (see �gure 7-
4). Since by assumption �CA�1B < 1, the trajectory x(t) will eventually switch at
some time t1 > 0, i.e., Cx(t1) = d and Cx(t) � d for t 2 [0; t1]. Let x1 = x(t1) 2 S�.
If x1 2 S� then the trajectory will not switch again and converges asymptotically
to the origin. Since we already know S� is a stable set, we need to concentrate on

those points in S�nS
� since those are the ones that may lead to potentially unstable

trajectories. Here, two scenarios can occur: either the trajectory switches at some

point in S or it switches at some point in S. Let Sd � (S�nS
�) (S�d � (S�nS

�))

be the set of points that will eventually switch in S (S). If x1 2 Sd (x1 2 S�d)

the trajectory switches at some �nite time t2a > t1 (t2b > t1) at x2a = x(t2a) 2 S+
(x2b = x(t2b) 2 S+). Again, it would switch at x3a = x(t3a) (x3b = x(t3b)) and so on.

Just like RFS, an interesting property of SAT is their symmetry around the origin.
In other words, if x(t) is a trajectory of (7.1)-(7.2) with initial condition x0, then

�x(t) is a trajectory of (7.1)-(7.2) with initial condition �x0. This means that it

is equivalent to analyze the trajectory starting at x0 or the trajectory starting at
�x0. This property is due to the fact that the vector �eld is symmetric around

the origin. If Cx(t) > d then _x = Ax + Bd. Therefore, � _x = A(�x) � Bd and

C (�x(t)) = �Cx(t) < �d. If jCx(t)j � d then _x = A1x. Hence, � _x = A1(�x).
Due to this symmetry, whenever a trajectory intersects S (like, for example, at x2b
in �gure 7-4), for purposes of analysis, it is equivalent to consider the trajectory

continuing from the symmetric point around the origin in S (�x2b in �gure 7-4).
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x0

x1

V (  ).
1

.
2V (  )

S

x0

x1

V (  ).
1

.
2V (  )

S

x2b

x3b

−x2b

−x3b

S

x3aS*

0x2a

S

S*

0

Figure 7-4: Possible state-space trajectories for a SAT

As in [21], the idea is to check if x3a or �x3b are closer in some sense to S� than

x1. If so, this would mean that eventually x(tN ) 2 S�, for some N , and prove that
the origin is globally asymptotically stable. This is the idea behind the results in the
next section.

Before presenting the main results, it is convenient to notice that x0; x1; x2a 2 S

and x2b 2 S can be parametrized. Let x0 = x�0 +�0, x1 = x�1 + �1, x2a = x�0 + �2a

and x2b = �x�0 + �2b, where x
�
0; x

�
1 2 S and C�0 = C�1 = C�2a = C�2b = 0.

Also, de�ne x�0(t) (x
�
1(t)) as the trajectory of _x = Ax + Bd ( _x = A1x), starting at

x�0 (x
�
1), for all t > 0. Since x�i are any points in S, we chose them to be such that

Cx�i (t) < d for all t > 0. The reason for this particular choice of x�0 and x
�
1 is so that

Cx�i (t)� d 6= 0 for all t > 0. This will be necessary in proposition 7.1.

This choice of x�0 and x
�
1 is always possible. x

�
1 is found as explained above (see

�gure 7-3). In this case, x�1 is given by

x�1 =
P�1d C 0

CP�1d C 0
d

where Pd > 0 satis�es PdA1 + A01Pd = �I. In a similar way, x�0 is given by

x�0 = (d+ cA�1Bd)
P�1u C 0

CP�1u C 0
� A�1Bd

where Pu > 0 satis�es PuA + A0Pu = �I.

7.3 Global Asymptotic Stability of Saturation Sys-

tems

There are three impact maps of interest associated with a SAT. The �st impact map

(impact map 1) takes points from S+ and maps them in S�. The second impact map

(impact map 2a) takes points from Sd � S� and maps them back to S+. Finally, the

116



third impact map (impact map 2b) takes points from from S�d � S� and maps them

in S+. As in RFS and OFS, the impact maps associated with SAT are, in general,

multivalued. De�ne the sets of expected switching times T1, T2a, and T2b as the sets of
all possible switching times associated with the respective impact map. See chapter 4

for a rigorous de�nition on expected switching times. In section 7.5, we show how to

get bounds on these sets.

Before presenting the main result of this chapter, we show that each impact map

associated with a SAT can be represented as a linear transformation analytically

parametrized by the correspondent switching time.

Proposition 7.1 De�ne

w1(t) =
CeAt

d� Cx�0(t)

w2a(t) =
CeA1t

d� Cx�1(t)

and

w2b(t) =
CeA1t

�d� Cx�1(t)

Let H1(t) = eAt+(x�0(t)� x
�
1)w1(t), H2a(t) = eA1t+(x�1(t)� x

�
0)w2a(t) , and H2b(t) =

eA1t+(x�1(t)+ x�0)w2b(t). Then, for any �0 2 S+� x
�
0 there exists a t1 2 T1 such that

�1 = H1(t1)�0

Such t1 is the switching time associated with �1. Similarly, for any �1 2 Sd � x�1
there exists a t2a 2 T2a such that

�2a = H2a(t2a)�1

Such t2a is the switching time associated with �2a. Finally, for any �1 2 S�d � x�1
there exists a t2b 2 T2b such that

�2b = H2b(t2b)�1

Such t2b is the switching time associated with �2b.

We need to show that these three impact maps are contracting in some sense. For
that, de�ne two quadratic Lyapunov functions on the switching surface S. Let V1
and V2 be given by

Vi(x) = x0Pix� 2x0gi + �i (7.3)

where Pi > 0, for i = 1; 2. Global asymptotically stability of the origin follows if

there exist Pi > 0, gi, �i such that

V2(�1) < V1(�0) for all �0 2 S+ � x�0

V1(�2a) < V2(�1) for all �1 2 Sd � x�1

V1(��2b) < V2(�1) for all �1 2 S�d � x�1 (7.4)
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Note that in (7.4) we have mapped the point �2b 2 S+ + x�0 into S+ � x�0, taking

advantage of the symmetry of the system. Let P > 0 on S stand for x0Px > 0 for all

x 2 S. As a short hand, in the following result we use Hit = Hi(t) and wit = wi(t).

Theorem 7.1 De�ne

R1(t) = P1 �H 0
1tP2H1t � 2 (g1 �H 0

1tg2)w1t + w01t�w1t

R2a(t) = P2 �H 0
2atP1H2at � 2 (g2 �H 0

2atg1)w2at � w02at�w2at

R2b(t) = P2 �H 0
2btP1H2bt � 2 (g2 +H 0

2btg1)w2bt � w02bt�w2bt

where � = �1 � �2. The origin of the SAT is globally asymptotically stable if there

exist P1; P2 > 0 and g1; g2; � such that

8><
>:
R1(t1) > 0 on S+ � x�0
R2a(t2a) > 0 on Sd � x�1
R2b(t2b) > 0 on S�d � x�1

for all expected switching times t1 2 T1, t2a 2 T2a, and t2b 2 T2b.

A relaxation of the constraints on �0 and �1 in the previous theorem results in
computationally eÆcient conditions.

Corollary 7.1 The origin of the SAT is globally asymptotically stable if there exist

P1; P2 > 0 and g1; g2; � such that

8><
>:
R1(t1) > 0 on S � x�0
R2a(t2a) > 0 on S � x�1
R2b(t2b) > 0 on S � x�1

(7.5)

for all expected switching times t1 2 T1, t2a 2 T2a, and t2b 2 T2b.

For each t1; t2a; t2b, these conditions are LMIs which can be solved for P1; P2 > 0

and g1; g2; � using eÆcient available software. As we will see in the next section,
although these conditions are more conservative than the ones in theorem 6.1, they

are already enough to prove global asymptotic stability of many important SAT.
As explained in chapter 6, each condition in (7.5) depends only on a single scalar

parameter. Computationally, if we need m1 samples of T1, m2a samples of T2a, and
m2b samples of T2b, we end up with a total of m1 +m2a +m2b LMIs.

The proofs of these results are similar to the ones in sections 5.3 and 6.3, and are

therefore omitted here.
Conditions (7.5) are suÆcient conditions for the global stability of the origin.

These conditions do not take into account that �0, �1a, and �1b are restricted to

S+, Sd, and S�d, respectively. Using the same ideas from sections 5.5 and 6.5, condi-
tions (7.5) can be improved. For each point x0 2 S+, there is an associated switching

time t1. De�ne St1 as the set of initial conditions x0 2 S+ such that y(t) � d on
[0; t1], and y(t1) = d. This set St1 � S is a convex subset of a linear manifold of di-
mension n� 2. Analogously, de�ne St2a (St2b) as the set of initial conditions x1a 2 Sd
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(x1b 2 S�d) such that �d � y(t) � d on [0; t2a], and y(t2a) = d (y(t) � �d on [0; t2b],

and y(t2b) = �d). Given this, conditions (7.5) can be improved to

8><
>:
R1(t1) > 0 on St1 � x�0
R2a(t2a) > 0 on St2a � x�1
R2b(t2b) > 0 on St2b � x�1

(7.6)

for some P1; P2 > 0, g1; g2, �, and for all expected switching times t1 2 T1; t2a 2
T2a; t2b 2 T2b. Approximation to a set of LMIs can be obtained just as in sections 4.3.1,

5.5, and 6.5.

Note that in many cases, conditions (7.5) and (7.6) do not need to be satis�ed for

all expected switching times. Section 7.5 shows that bounds on the expected switch-

ing times can be obtained. Basically, since juj � d is a bounded input, and when A is

Hurwitz, there exists a bounded set such that any trajectory will eventually enter and

stay there. This will lead to bounds on the di�erence between any two consecutive
switching times. Let ti� and ti+, i = 1; 2a; 2b, be bounds on the minimum and maxi-
mum switching times of the associated impact maps. The expected switching times

Ti can, in general, be reduced to a smaller set [t�i; ti+]. Conditions (7.5) and (7.6) can
then be relaxed to be satis�ed only on [ti�; ti+] instead on all ti 2 Ti. See section 7.5
for details.

7.4 Examples

The following examples were processed in matlab code. The latest version of this

software is either available at [27] or upon request. Before we present the examples,
we brie
y explain the matlab function that we developed. The input to this function
is a transfer function of an LTI system together with a parameter d > 0. If the

SAT is proven globally stable, the matlab function returns the parameters of the two
quadratic surface Lyapunov functions (7.3). We then con�rm conditions (7.5) are

satis�ed by plotting the minimum eigenvalues of each Ri(t) on [ti�; ti+], and showing
that these are indeed positive in those intervals.

Before moving into the examples, it is important to explain how the bounds

[ti�; ti+] on the expected switching times are found. First, notice that t1� = t2a� = 0.

Zero switching time for the �rst impact map �0 ! �1 and the second impact map
�1 ! �2a correspond to points in S such that CA1x = 0. At those points, the
Lyapunov functions (7.3) must be continuous since this is the only way

(
V2(�1) � V1(�0)

V1(�2a) � V2(�1)

can be satis�ed simultaneously, for all �0;�1;�2a = �0 such that x
�
0+�0 = x�1+�1 =

x and CAx = 0. Therefore, for those points we need V1(�0) = V2(�1). This imposes

certain restrictions on P1; P2 > 0, g1; g2, and �. The analysis of zero switching time
for these two impact maps is similar to the case of OFS. See section 6.7.2 for details.

As for the map �1 ! �2b, zero switching never occurs since there is a \gap"

119



between S and S, resulting in a nonzero switching time for every trajectory starting

in S�d. For certain large values of k�1k, however, the switching times can be made

arbitrarily small. But, when A is Hurwitz, we know all system trajectories eventually

enter an invariant bounded set, just like in relay feedback systems. This can be seen

from the fact that the open loop system is stable and juj � d is bounded. In this

invariant bounded set, switching times for the impact map �1 ! �2b cannot be

made arbitrarily small, and a lower bound can be found. Using the same ideas, upper

bounds on expected switching times for all impact maps can be found. All the details

are in section 7.5. The case when A has imaginary eigenvalues is currently under

investigation.

Example 7.1 Consider the SAT on the left of �gure 7-5 with d = 1. It is easy to

see the origin of this system is locally stable. The question is if the the origin is also

globally asymptotically stable.

−2
s +2s +2s+33 2

s +s+62

0 0.5 1 1.5 2 2.5 3
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

min(eig(R
i
(t))).  Want them to be always positive

Figure 7-5: 3rd-order system with unstable nonlinearity sector

Using conditions (7.5), we show that the origin is in fact asymptotically globally

stable. The right side of �gure 7-5 illustrates this fact: the minimum eigenvalue of
each condition (7.5) is positive on its respective set of expected switching times. The
expected switching times in this example are approximately T1 = (0; 3), T2a = (0; 3:3),

and T2b = (0; 3:1). For instance, if t1 � 3, there is no point in S+ with switching time
equal to t1.

y

1

−1

−1

1

u

Figure 7-6: Saturation controller versus constant gain of 1=2 (dashed)
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Note that this system has an unstable nonlinearity sector. If the saturation is

replaced by a linear constant gain of 1=2, the system becomes unstable (see �gure 7-

6). This is very interesting since it tells us that classical analysis tools like small gain

theorem, Popov criterion, Zames-Falb criterion, and integral quadratic constraints,

fail to analyze SAT of this nature.

Example 7.2 Consider the SAT in �gure 7-7 with d = 1 and k > 0. The origin of

the SAT is locally stable for any k > 0.

(s + 1)7
k
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x 10

−3
min(eig(R

i
(t))).  Want them to be always positive

Figure 7-7: System with relative degree 7 (left); global stability analysis when k = 2
(right)

As seen in example 6.2, kCeAtBkL1 = k, and the small gain theorem can only be
applied when k < 1.

Let k = 2. The right side of �gure 7-7 shows how conditions (7.5) are satis�ed

in some intervals (ti�; ti+), i = 1; 2a; 2b. The intervals (ti�; ti+) are bounds on the
expected switching times. Such bounds are such that if conditions (7.5) are satis�ed

on (ti�; ti+), then the system is globally asymptotically stable. For details on how to
�nd these bounds see section 7.5.

7.5 Technical Details: Bounds on Switching Times

In this section, we will talk about computational aspects related to �nding Pi > 0,

gi, and � in (7.5) or (7.6). For many SAT, the sets of expected switching times are
equal to the set [0;1). Thus, in general, it is impossible to check directly if the

stability conditions (7.5) or (7.6) are satis�ed for all expected switching times. An
alternative is to �nd some intervals (ti�; ti+) such that if (7.5) or (7.6) are satis�ed

in those intervals, then stability follows.

In chapter 5, and in particular, in section 5.6, we showed that in the case of RFS,

there is a bounded invariant set where every trajectory will eventually enter. Hence,

bounds on the expected switching times could be found by computing bounds on

switching times of trajectories inside that bounded invariant set. This same idea can

be used here whenever A is Hurwitz. In fact, since u = �d is a bounded input, a

bounded and invariant set such that any trajectory will eventually enter can be found.

This will lead to bounds on the di�erence between any two consecutive switching
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times. This way, the search for Pi > 0, gi, and � in (7.5) and (7.6) becomes restricted

to 0 � ti� < t < ti+ <1, i = 1; 2a; 2b.

As explained before, t1� = t2a� = 0 since the associated impact maps are de�ned

on the same switching surface, and are allowed to have zero switching time. We then

focus on upper bounds for all impact maps and on the lower bound t2b� of impact

map 2b. Notice there are many ways to �nds such bounds and the method we propose

next is not unique, and can surely be improved.

Before we �nd such bounds, we need to show there is a particular bounded invari-

ant set such that any trajectory will eventually enter and stay there. This proposition

is similar to proposition 5.5. Thus, the proof is omitted here.

Proposition 7.2 Consider the system _x = Ax + Bu, y = Fx, where A is Hurwitz,

u(t) = �d, and F is a row vector. Then

lim sup
t!1

jFx(t)j � dkFeAtBkL1

Remember that, by de�nition, kFeAtBkL1 is given by

kFeAtBkL1 =
Z 1

0

���FeAtB��� dt
As a remark, if F = C and kFeAtBkL1 < 1, it follows the origin is globally

asymptotically stable. When lim supt!1 jCx(t)j < d, eventually all trajectories enter
the set fxj jCxj < dg, where the system is linear and stable. Note that this remark

also follows from the well known small-gain theorem.

We �rst focus our attention on upper bounds of the switching times ti+, starting

with t1+. A trajectory x(t) starting at x0 2 S+ is given by x(t) = eAt(x0 +A�1Bd)�
A�1Bd. Thus, the output y(t) = Cx(t) is given by

y(t) = CeAt(x0 + A�1Bd)� CA�1Bd

Since we are assuming �CA�1Bd < d, and A Hurwitz, it is easy to see that y(t)

cannot remain larger than d for all t > 0. For any initial condition x0 2 S+, Ce
At(x0+

A�1Bd)! 0 as t!1, which means y(t) = d for some t. Thus, a switch must occur

in �nite time. Since for a suÆciently large enough time t, x(t) enters a bounded

invariant set (from the above proposition), an upper bound on this switching time

t1+ can be obtained. The following proposition is similar to proposition 5.6.

Proposition 7.3 Let t1+ > 0 be the smallest solution of

Z 1

t1+

���CeAtB��� dt+ jCeAt1+A�1Bj � (CA�1B + 1)

If ta and tb are suÆciently large consecutive switching times of the �rst impact map

then jta � tbj � t1+.
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Next, we �nd upper bounds on the expected switching times of impact maps 2a

and 2b. The idea here is to �nd the minimum t2 � 0 such that

jy(t)j =
���CeA1tx0

��� � d

for all t � t2 and all x0 in the bounded invariant set. In this derivation, t2a+ = t2b+ =

t2.

Proposition 7.4 Let t2 > 0 be the smallest solution of

Z 1

0

���CeA1t2eAtB
��� dt � 1 (7.7)

If ta and tb are suÆciently large consecutive switching times of impact maps 2a or 2b,

then jta � tbj � t2, and t2a+ = t2b+ = t2.

We now focus on the lower bound on the expected switching times of impact map
2b, i.e, t2b�. Remember that if x0 2 S+, then y(0) = d. Since d > 0, it must be true

that y(t) > �d at least in some interval (0; �). Basically, the time it takes to go from
S to S must be always nonzero. The next result shows that when a trajectory enters

the bounded invariant set characterized above, � cannot be made arbitrarily small.
Thus, a lower bound on the time it takes between two consecutive switches from S

to S can be obtained.

Proposition 7.5 Let kdd = kCA2
1e

AtBkL1, and kdl = kCA1e
AtBkL1 and de�ne

t21 =
2

p
kdd

; t22 =
2

kdl

Let t2b� = max ft21; t22g. If ta and tb are suÆciently large consecutive switching times

of impact map 2b, then jta � tbj � t2b�.

The proof is similar to the proof of proposition 5.7.
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Chapter 8

Robustness and Performance of

PLS

The previous chapters were dedicated to study global stability analysis of PLS. The
notions of impact maps and quadratic surface Lyapunov functions, introduced in

chapter 4, were successfully applied to prove global asymptotic stability of limit cycles
and equilibrium points of PLS. Two important assumptions behind these results were
(1) the model of a PLS accurately represented the physical system of interest and

(2) the system was autonomous, i.e., it did not depended on any external input. In
this chapter, we want to show that similar ideas to those in chapter 4 can be used to
guarantee �nite gain L2 stability, i.e., \well-behaved" inputs generate \well-behaved"

outputs, of many PLS. For that, we use on/o� systems (OFS). This is the simplest
class of PLS with globally stable equilibrium points. The formulation and solution

of the problem for this class of systems serves as an example and demonstration that
robustness and performance of many and more complex classes of PLS can done using
impact maps and quadratic surface Lyapunov functions.

Global stability analysis of OFS was studied in chapter 6. Here, we show that

many OFS are not only globally asymptotically stable, but also L2 to L2 bounded. By

solving a set of LMIs, a quadratic Lyapunov function on the switching surface of an

OFS can be constructed to prove performance of the system. As in chapter 6, exam-

ples analyzed include systems with unstable nonlinearity sectors, for which classical

methods fail to analyze.

This chapter is organized as follows. Next section gives some background on L2

gain stability. Section 8.2 reviews some results on H2 optimization, followed by the

main results of the chapter in section 8.3. Using OFS, we �nd conditions in the form
of LMIs that can be used to show the system is L2 to L2 bounded. This section

includes several illustrative examples, including OFS with unstable nonlinearity sec-

tors. Finally, section 8.4 summarizes the results obtained in this chapter and discusses
topics of further research in robustness and performance of PLS.
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8.1 Preliminaries

Consider a system whose input-output relation is represented by

y = Gu

where G is some mapping or operator that speci�es y in terms of u (see �gure 8-1).

The input u belongs to a space of signals, which in our case is the normed linear space

L2 of functions u : [0;1)! IR that are square-integrable, i.e., satisfy

kuk2L2 =
Z 1

0
u2(t)dt <1

u yG

Figure 8-1: Input-output relation

In order to allow dealing with unstable systems as well as stable ones, G is usually

de�ned as a mapping from an extended space L2e to an extended space L2e, where
L2e is de�ned as

L2e = fuj ut 2 L2; 8t � 0g

and ut is a truncation of u, given by

ut(�) =

(
u(�); 0 � � � t

0; � > t

The extended space L2e is a linear space that contains the unextended space L2 as a

subset.

If we think of u 2 L2e as a \well-behaved" input, the question to ask is whether

the output y will be \well-behaved" in the sense that y 2 L2e. A system that has the

property that any \well-behaved" input will generate a \well-behaved" output will

be de�ned as a stable system. More precisely, we say a mapping G : L2e ! L2e is

�nite-gain L2 stable if there exists a nonnegative constant 
 such that

k(Gu)tk
2
L2
� 
ku2tkL2 (8.1)

for all u 2 L2 and t 2 [0;1). Note that (8.1) can be written as

Z t

0
y2(�)d� � 


Z t

0
u2(�)d�

for all u 2 L2 and t 2 [0;1) which, in turn, is equivalent to

min
u2L2

Z t

0

�

u2(�)� y2(�)

�
d� � 0
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for all t � 0.

A similar de�nition can given if the system is in its state-space model

(
_x = f(x) + g(x)u

y = h(x)
(8.2)

where x(t) 2 IRn, u(t); y(t) 2 IR, f(x) and g(x) are smooth vector �elds, and h(x) is

a smooth function. Assume also f(0) = 0 and h(0) = 0.

De�nition 8.1 The system (8.2) is �nite-gain L2 stable if the response x(t) of (8.2)

with initial state x(0) = 0 exists for all t � 0 and satis�es

min
u2L2

Z t

0

�

u2(�)� h2(x(�))

�
d� � 0 (8.3)

for some 
 � 0 and for all t > 0.

A function V (x) is positive de�nite if V (0) = 0 and V (x) > 0 for all x 6= 0. A

suÆcient condition for system (8.2) to be �nite-gain L2 stable is the following.

Proposition 8.1 The system (8.2) is �nite-gain L2 stable if there exists a positive

de�nite function V (x) such that the response x(t) of (8.2) from the initial state x(0) =
0 exists for all t � 0 and satis�es

min
u2L2

Z t

0

�

u2(�)� h2(x(�))

�
d� � V (x(t))

for some 
 � 0 and for all t > 0.

The proof follows since, by de�nition, V (x(t)) � 0.

A result that is of particular interest to us is the following.

Proposition 8.2 Consider a sequence of times ftkg, k = 1; 2; :::, where t1 > t0 = 0,

tk+1 > tk, and tk !1 as k ! 1. The system (8.2) is �nite-gain L2 stable if there

exists a positive de�nite function V (x) such that the response x(t) of (8.2) from the

initial state x(0) = 0 exists for all t � 0 and satis�es

min
u2L2

Z tk

tk�1

�

u2(�)� h2(x(�))

�
d� � V (x(tk))� V (x(tk�1)) (8.4)

for some 
 � 0 and for all k = 1; 2; :::.

To prove the result, take any T > 0. Let N be such that tN > T . Summing each
side of (8.4) for all k = 1; 2; :::; N , we get

min
u2L2

Z tN

0

�

u2(�)� h2(x(�))

�
d� � V (x(tN ))

Proposition 8.1 can now be applied and the result follows.

For a more detailed introduction to L2 stability the reader is referred to any of

the numerous references in the �eld like, for example, [15, 36, 32].

127



8.2 H2 Optimization

In this chapter, we are interested in minimizing over u 2 L2 the functional

J(u(�)) =
Z T

0

�

u2(t)� y2(t)

�
dt (8.5)

subject to

_x = Ax +Bu

y = Cx; x(0) = x0; x(T ) = xT

and T > 0 (for T = 0, J(u(�)) = 0). This is a typical linear quadratic optimal control

problem which can be solved using the well known Pontryagin's maximum principle.

For completeness, we include here the derivation of the solution. Let

L(u; x;  ) =
Z T

0

�

u2 � x0C 0Cx+ 2 0( _x� Ax� Bu)

�
dt

where  is the adjoint vector. It is a well known result that if u� is the solution

to (8.5) then u� minimizes L. Thus,

@L

@x
= �2 _ � 2C 0Cx� 2A0 = 0

@L

@u
= 2
u� 2B0 = 0

From the last equality,

u�(t) =
1



B0 (t)

yielding the linear time-invariant system known as the Hamiltonian system

�
_x
_ 

�
= H

�
x

 

�

where

H =

�
A 1



BB0

�C 0C �A0

�

and x0 = x(0), xT = x(T ) are given. Then, the optimal cost J(u�) = J�(x0; xT ; T ) is

J�(x0; xT ; T ) =  0TxT �  00x0

where  T =  (T ) and  0 =  (0).

The solution to the Hamiltonian system is simply the solution of a linear time-

invariant autonomous system

"
x(t)

 (t)

#
= eHt

"
x0
 0

#
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In order to �nd J(u�) we still need to write  0 and  T as functions of T , x0, and

xT . At t = T , the solution to the Hamiltonian system is

�
xT
 T

�
= eHT

�
x0
 0

�

De�ne

eHT =

�
e11 e12
e21 e22

�

Note that for simpli�cation of notation we write eij, although these are actually

functions of T , i.e., eij = eij(T ). Then,

 0 = e�112 (xT � e11x0)

and
 T =

�
e21 � e�112 e11

�
x0 + e�112 xT

Finally, the optimal cost J(u�) = J�(x0; xT ; T ) can be written as

J�(x0; xT ; T ) =

�
xT
x0

�0
WT

�
xT
x0

�
(8.6)

where WT is the symmetric matrix

WT =

2
4 e22e

�1
12

�
e21 � e22e

�1
12 e11 � (e�112 )

0
�
=2�

e21 � e22e
�1
12 e11 � (e�112 )

0
�0
=2 e�112 e11

3
5 (8.7)

Optimal control references are numerous. For more detailed and general solutions
see, for example, [7, 43].

8.3 Performance of On/O� Systems

As mentioned earlier, the purpose of this chapter is to show that impact maps and

quadratic surface Lyapunov functions can be used in the analysis of performance of
PLS. For that, we choose to �rst analyze on/o� systems (OFS) for their simplicity. We

will start with OFS with d = 0, i.e., with the origin belonging to the switching surface.
This is simplest class of PLS with globally stable equilibrium points. Figure 8-2 shows

the system we will be analyzing for the remaining of the chapter.

After showing the origin of a certain OFS is global asymptotically stable, the

question is if there exists a nonnegative 
 satisfying (8.1).

In �gure 8-2, the input to the LTI system is given by

e = u+max(0; Cx)
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+ LTIu y
e

Figure 8-2: On/o� system with output disturbance u

Thus, the closed loop dynamics are

_x = Ax+Bu+Bmax(0; Cx) (8.8)

In the state space, the on/o� controller introduces a switching surface that does

not depend on the input u. This switching surface

S = fx 2 IRn : Cx = 0g

divides the state space in two equal parts. On one side (Cx > 0), the system is given
by _x = Ax + BCx + Bu = A1x + Bu, where A1 = A + BC. On the other side
(Cx < 0) the system dynamics are given by _x = Ax + Bu. For purposes of analysis,

we assume the origin of the OFS is globally asymptotically stable when u = 0. This
can be checked using the results from chapter 6.

De�ne the Catersian product X � Y of two sets X and Y as

X � Y =

��
x

y

�
j x 2 X; y 2 Y

�

Let 
 � 0. De�ne

H1 =

�
A1

1


BB0

�C 0C �A01

�

and

eH1T =

�
e11 e12
e21 e22

�

where T > 0. De�ne also WT1 as in (8.7). Let

H2 =

�
A 1



BB0

�C 0C �A0

�

andWT2 be given in a similar way asWT1. In the following result, Q > 0 on X stands

for x0Qx > 0 for all x 2 X.

Theorem 8.1 The OFS (8.8) is �nite-gain L2 stable if there exists a 
 � 0 and a
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matrix P > 0 such that

8>>><
>>>:
WT1 �

�
P 0

0 �P

�
> 0 on S � S

WT2 �
�
P 0

0 �P

�
> 0 on S � S

(8.9)

for all T > 0.

There are several ways to improve the computationally aspects of conditions (8.9).

Conditions (8.9) involve the computation of the inverse of e12. This matrix is com-

posed of both stable and unstable modes of H. As T goes to zero and as it grows

large, this matrix approximates non-singular matrices. Computationally, it is very

hard to �nd the inverse of e12 for extreme values of T , and numerical errors occur.
In order to reduce numerical errors and have high con�dence on the results, it is
necessary to �nd equivalent conditions to (8.9) that do not involve the computation

of an inverse of a matrix. Also, as we will see, this will help in the analysis when
T ! 0.

From section 8.2, we know the optimal cost (8.5) is given by

J�(x0; xT ; T ) =  0TxT �  00x0

The outline of proof of theorem 8.1 is as follows. For each condition in (8.9), we use
the Hamiltonian system to solve for  T and  0 as functions of x0, xT , and T , and then

replacing them in the optimal cost, resulting in (8.6). Thus, the optimal cost (8.5) is
a quadratic function of x0 and xT . The solution of  T and  0 as functions of x0 and
xT , however, involves inverting e12.

Another way to look at the problem is that since e12 is invertible for all T > 0,

it makes no di�erence in writing the optimal cost as a function of x0 and xT or as a
function of x0 and  0. Given x0 and xT ,  0 is uniquely de�ned, and vice versa.

De�ne

ST1 =
n
x 2 S � IRnj (C 0 ) eH1Tx = 0

o
and

ST2 =
n
x 2 S � IRnj (C 0 ) eHTx = 0

o
The results in the following theorem are equivalent to the results in theorem 8.1.

Theorem 8.2 The OFS (8.8) is �nite-gain L2 stable if there exists a 
 � 0 and a

matrix P > 0 such that

8>>><
>>>:
eH

0

1
T

�
�P I=2

I=2 0

�
eH1T �

�
�P I=2

I=2 0

�
> 0 on ST1

eH
0

2
T

�
�P I=2
I=2 0

�
eH2T �

�
�P I=2
I=2 0

�
> 0 on ST2

(8.10)

for all T > 0.
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For each T > 0, these conditions are LMIs which can eÆciently be solved for

P > 0 using available software.

8.3.1 Examples

The following examples were processed in matlab code. The latest version of this

software is either available at [27] or upon request. Both stability conditions (8.9)

and (8.10) need to be satis�ed for all T > 0. Computationally, the idea is to show they

are satis�ed in some interval [tmin; tmax] and then guarantee they are also satis�ed for

all 0 < T < tmin and T > tmax.

The analysis near T = 0 is done in several steps. First, we notice that if T = 0

then the cost function is zero. Thus, both conditions are zero for T = 0. The next step

is to check if the derivatives at zero are positive semide�nite. This can be done using

conditions (8.10). Details can be found in the technical details section (section 8.3.3).
Then, for a small enough tmin, it can be shown that conditions (8.10) are satis�ed

for all 0 < T < tmin. The idea is to �nd bounds on the second derivative of the
stability conditions over (0; tmin), and to use them to show nothing can go wrong in

that interval.

The analysis when T is large is done by �rst guaranteeing the stability conditions

are satis�ed at T = 1. This can be done using conditions (8.9). Details can also
be found in section 8.3.3. Then, for a large enough tmax, it can be shown that
conditions (8.9) are satis�ed for all T > tmax. The idea is to take a function r(t) that

maps (0;1) to (0; 1), and then �nd a rmax close enough to 1 such that the bounds
on the derivative of the stability conditions on (rmax; 1) are small enough to show
nothing can go wrong on that interval.

Example 8.1 Consider the OFS in �gure 8-2 where the LTI system is given by

G(s) = 2
s� 4

(s+ 1)(s+ 2)(s+ 3)

First, we need to check if the origin is globally asymptotically stable. Using the results

from chapter 6, the origin is found globally asymptotically stable (see �gure 8-3).

0 1 2 3 4 5 6 7
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Min(eig(R
i
(t))); Want them always positive

Figure 8-3: Origin is globally asymptotically stable
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The question is if this system is also �nite-gain L2 stable. Using the software

described above, we were able to to �nd a P > 0 satisfying both (8.9) and (8.10), for

all T > 0. Figure 8-4 shows the minimum eigenvalues of conditions (8.9) (on the left)

and conditions (8.10) (on the right) on some intervals (0; tmax).

0 1 2 3 4 5 6
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

x 10
5 Minimum eigenvalues of stability conditions

0 1 2 3 4 5 6 7 8
0

0.5

1

1.5

2

2.5

3

3.5

4

x 10
−4 Minimum eigenvalues of stability conditions

Figure 8-4: Minimum eigenvalue of stability conditions

Therefore, we conclude the system is not only globally asymptotically stable, but
also �nite-gain L2 stable.

Example 8.2 Consider the OFS in �gure 8-2 where the LTI system is given by

G(s) = �2
s2 + s + 6

s3 + 2s2 + 2s+ 3

Note that this system has an unstable nonlinearity sector (see �gure 8-5). This means
that all classical methods fail to analyze the system.

u

y

Figure 8-5: Unstable nonlinearity sector with constant gain of 1=2 (dashed)

Nevertheless, the system is global asymptotically stable, as we see in �gure 8-6.

In this �gure, we see the stability conditions (6.12) satis�ed in some bounds of the
expected switching times.

In terms of performance, using again the software described above, we were able
to to �nd a P > 0 satisfying both (8.9) and (8.10), for all T > 0. Figure 8-7 shows the

minimum eigenvalues of conditions (8.9) (on the left) and conditions (8.10) (on the
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Figure 8-6: Origin is globally asymptotically stable

right) on some intervals (0; tmax). For purpose of visualization, the second conditions

in (8.9) and (8.10) in �gure 8-7 are scaled.
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Figure 8-7: Minimum eigenvalue of stability conditions

Therefore, we conclude the system is not only globally asymptotically stable, but
also �nite-gain L2 stable.

8.3.2 Proof of Results

Proof of theorem 8.1: According to proposition 8.2, all it is left to show is the
\worst" input u 2 L2 from one switch to the next switch satis�es (8.4). Over a single

switch, this can be written as

J(u�(�)) = min
u2L2e

Z T

0

�

u2(�)� y2(�)

�
d� (8.11)

where T � 0 is the switching time associated with a single impact map. We are

interested in �nding the control action u� that takes a point x0 2 S and maps it to

x1 2 S such that the cost function J(u(�)) is minimized. This is a typical optimal
control problem, whose solution can be found in section 8.2.

Note that in order to guarantee the assumptions of proposition 8.2, we need to
guarantee (8.11) is satis�ed for both impact maps: one when the system is governed

by _x = A1x+Bu (Cx � 0), and the other when the system is governed by _x = Ax+Bu
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(Cx � 0). Each impact map will lead to a di�erent stability condition. We will show

how the �rst condition in (8.9) is obtained. The second condition follows similarly.

Let the switching time T > 0. Consider a trajectory of _x = A1x + Bu with

x(0) = x0 2 S, x(T ) = xT 2 S, and the minimization problem (8.11). Solving the

optimal control problem as explained in section 8.2, yields the following optimal cost

J1(u
�) = J�1 (x0; xT ; T )

J�1 (x0; xT ; T ) =

�
xT
x0

�0
WT1

�
xT
x0

�

We need

J�1 > V1(xT )� V0(x0) =

�
xT
x0

�0 �
P1 0

0 �P0

��
xT
x0

�

where Vi(x) are quadratic forms de�ned on the switching surface S, i.e., Vi(x) = x0Pix,
x 2 S, Pi > 0. Conditions on the second map can be found similarly

J�2 > V0(xT )� V1(x0)

for all T > 0, and x0; xT 2 S.

Note that when the switching time is equal to zero, J�1 = J�2 = 0. Thus,

0 � V1(x0)� V0(x0)

0 � V0(x0)� V1(x0)

which implies that

V0(x) = V1(x); 8x 2 S

Therefore, P0 = P1 = P > 0, and the result follows.

Note that conditions (8.9) are conservative in the sense that they do not take in
account the trajectory starting on the switching surface, stays on one side of S until
it switches again at S, at the speci�ed switching time. Finding the optimal control

under such assumption is not an easy task. Moreover, the optimal cost would most

likely not be given in a quadratic form in terms of the initial and �nal conditions, as

it is in theorem 8.1. A less conservative condition based on these considerations is
part of future research.

Proof of theorem 8.2: Again, we show how the �rst condition in (8.10) is obtained.
The second, follows similarly. The cost function over one switch is given by

J�(x0; xT ; T ) =  0TxT �  00x0 (8.12)

and we know the relation between these variables is given by the solution of the
Hamiltonian system �

xT
 T

�
= eH1T

�
x0
 0

�
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Thus, the cost function can be rewritten as

J� =
1

2

�
xT
 T

�0 �
0 I

I 0

��
xT
 T

�
�

1

2

�
x0
 0

�0 �
0 I

I 0

��
x0
 0

�

=
1

2

�
x0
 0

�0
eH

0

1
T

�
0 I

I 0

�
eH1T

�
x0
 0

�
�

1

2

�
x0
 0

�0 �
0 I

I 0

��
x0
 0

�

=
1

2

�
x0
 0

�0 �
eH

0

1
T

�
0 I

I 0

�
eH1T �

�
0 I

I 0

���
x0
 0

�

On the other hand

V1(xT )� V0(x0) =

�
xT
 T

�0 �
P 0

0 0

��
xT
 T

�
�
�
x0
 0

�0 �
P 0

0 0

��
x0
 0

�

=

�
x0
 0

�0 �
eH

0

1
T

�
P 0
0 0

�
eH1T �

�
P 0
0 0

���
x0
 0

�

From the fact that we need

J� > V1(xT )� V0(x0)

we get �
x0
 0

�0
R1(T )

�
x0
 0

�
> 0 (8.13)

where

R1(T ) = eH
0

1
T

�
�P I=2
I=2 0

�
eH1T �

�
�P I=2
I=2 0

�

The last part of the proof is to �nd out for what values of x0 and  0 must condi-

tion (8.13) be satis�ed on. We already know that x0 2 S. Also, xT 2 S, i.e., CxT = 0,
or

(C 0 )

�
xT
 T

�
= 0

Hence,

(C 0 ) eH1T

�
x0
 0

�
= 0

Therefore, �
x0
 0

�
2 ST1

which proves the result.

8.3.3 Technical Details: Analysis at T = 0 and T =1

Analysis at T = 0

Computationally, conditions (8.9) and (8.10) can both be easily checked in some
intervals [tmin; tmax] using eÆcient available software. Although we can check the

stability conditions for arbitrarily small and large values of T , it still remains to show
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that they are satis�ed for 0 < T < tmin and T > tmax. The analysis for large values

of T is currently under investigation. Here, we focus on the analysis for small values

of T .

Since both conditions are equivalent, we concentrate on conditions (8.10). To

recall, these conditions are

Ri(T ) > 0 on ST i

for i = 1; 2, where R2(T ) is de�ned similarly as R1(T ) was de�ned in the proof of

theorem 8.2.

When T = 0, xT = x0 and  T =  0. Thus, the optimal cost (8.12) is J� = 0.

This means we need to guarantee the derivative of the stability conditions at T = 0

are positive semide�nite.

We focus on the �rst condition in (8.10). The second follows similarly. Let S0 =

limT!0 ST1, i.e.,
S0 = fx 2 S � IRnj (C 0 )H1x = 0g

Note that limT!0 ST1 = limT!0 ST2 since

(C 0 )H1

�
x0
 0

�
= (CA1

1


CBB0 )

�
x0
 0

�

= C(A+BC)x0 +
1



CBB0 0

= CAx0 +
1



CBB0 0

= (C 0 )H

�
x0
 0

�

where we use the fact Cx0 = 0.

Finding the derivative of R1(T ) is straightforward

dR1(T )

dt
= _R1(T ) = eH

0

1
TH 0

1

�
�P I=2
I=2 0

�
eH1T + eH

0

1
T

�
�P I=2
I=2 0

�
H1e

H1T

which means
_R1(0) = H 0

1

�
�P I=2

I=2 0

�
+

�
�P I=2

I=2 0

�
H1

Therefore, it is necessary that

_R1(0) � 0 on S0

This derivative also helps to choose a small enough value of tmin > 0 such that the

stability conditions are guaranteed to be satis�ed for all T 2 (0; tmin).

Analysis at T =1

In this subsection, we present a result that gives us LMIs at T =1. These are based
in �nding the limits of WT1 and WT2 in (8.9) as T ! 1. We will show how to �nd
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the LMI for the �rst condition in (8.9). The other follows similarly.

Remember that the eigenvalues of an Hamiltonian matrix are symmetric around

the jw axis. This means we can always �nd a representation for H1 of the form

H1 = V �U , where the matrices V and �, are real, U = V �1, and

� =

�
D 0

0 �D

�

where the eigenvalues of D are all the stable eigenvalues of H1. Consider the following

block partition of V and U

V =

�
V11 V12
V21 V22

�
U =

�
U11 U12

U21 U22

�

We have the following result for the �rst condition in (8.9). A similar results can be
obtained for the second condition.

Proposition 8.3 If P > 0 satis�es conditions (8.9) and (8.10) then it also satis�es

8<
:
V22V

�1
12 � P � 0 on S

U�122 U21 + P � 0 on S

Proof: We need to �nd the limit when T !1 of the �rst condition in (8.9). Hence,

we need the
lim
T!1

WT1

First notice that eH1T can be written as

eH1T =

"
V11e

DTU11 + V12e
�DTU21 V11e

DTU12 + V12e
�DTU22

V21e
DTU11 + V22e

�DTU21 V21e
DTU12 + V22e

�DTU22

#

Since eDT ! 0 as T !1,

eH1T !

"
V12e

�DTU21 V12e
�DTU22

V22e
�DTU21 V22e

�DTU22

#

as T ! 1. Each block of the matrix WT1 (in the form of (8.7)) when T ! 1,
starting with block (1; 1), is given by

e22e
�1
12 ! V22e

�DTU22U
�1
22 e

DTV �112

= V22V
�1
12

Noticing that

e22e
�1
12 e11 ! V22e

�DTU22U
�1
22 e

DTV �112 V12e
�DTU21

= V22e
�DTU21

= e21

138



block (1; 2) given by

e21 � e22e
�1
12 e11 � (e�112 )

0 ! e21 � e21 � (U�122 e
DTV �112 )0

! 0

Block (2; 1) is just the transpose of block (1; 2). Finally, block (2; 2) is given by

e�112 e11 ! U�122 e
DTV �112 V12e

�DTU21

= U�122 U12

This proves the result.

8.4 Discussion

In this chapter we showed that performance analysis of PLS can be done using impact
maps and quadratic surface Lyapunov functions. Although the results are still pre-
liminary, they were enough to convince that the ideas developed for stability analysis

are also powerful in performance and robustness analysis of PLS.

The class of PLS we analyzed was on/o� systems, with d = 0. This class had al-

ready been studied in chapter 6. There, the focus was stability analysis of equilibrium
points of OFS. Since this is the simplest class of PLS with global asymptotic equilib-

rium points, it was the best place to develop new concepts and results. The goal was
to show the system was �nite-gain L2 stable. As in stability analysis, the approach
was to analyze the system at the switching surface. Using several well known results

from H2 optimization, we were able to �nd conditions in the form of LMIs that,
when satis�ed, guarantee �nite-gain L2 stability of OFS. Through the use of several
illustrative examples, we showed the methodology can be eÆciently and successfully

applied to a wide range of OFS, including those with unstable nonlinearity sectors,
for which all classical methods fail to analyze.

Several topics in this area are still open and in need of further research, and will

most certainly be the topic of future publications. One is the technical detail related
to guaranteeing the stability conditions are satis�ed for all T > tmax, knowing they

are satis�ed for all [0; tmax], where tmax is some large positive number. Although this
is a very important detail that needs to be solved, numerically, by increasing tmax,

we can get a high level of con�dence that the stability conditions are in fact satis�ed

for all T � 0. This is exactly what we have done in the previous section.

The next logical step is to analyze performance of OFS for which the switching

surface does not include the origin. As in stability analysis in chapter 6, there should
not be much di�erence from what we have done here. In fact, here, the di�erence is

even smaller since we do not take advantage of the sets Sti , i.e., the sets of points is
the switching surface that have same switching time.

Then, we believe saturation systems can also be analyzed using similar ideas.
In time, the goal is to develop a general framework where large classes of PLS can

systematically be globally analyzed, not only in terms of stability analysis, but also
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in terms of robustness and performance analysis.
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Chapter 9

Conclusion

Motivated by the need of better, more general, and more eÆcient global analysis
tools for certain classes of hybrid systems, this thesis developed a new constructive

analysis methodology using impact maps and quadratic surface Lyapunov functions.
The main idea came from the discovery that impact maps induced by an LTI 
ow

between two switching surfaces can be expressed as linear transformations analytically
parametrized by a scalar function of the state. Furthermore, level sets of this function
are convex subsets of linear manifolds. As a result, the problem of �nding quadratic

Lyapunov functions on switching surfaces was reduced to solving a set of LMIs, which
can be eÆciently done using available computational tools.

The success and power of this new methodology were well demonstrated in globally
analyzing equilibrium points and limit cycles of several classes of piecewise linear
systems (PLS): relay feedback systems (RFS), on/o� systems (OFS), and saturation

systems (SAT).

The �rst class of systems we analyzed was RFS. It is well known that for a large

class of RFS there will be limit cycle oscillations. Although RFS is a very simple
class of PLS, there were almost no results available to globally analyze such limit
cycles. However, with these new results, a large number of examples with a locally

stable symmetric unimodal limit cycle were proven globally asymptotically stable.

Systems analyzed include minimum-phase systems, systems of relative degree larger

than one, and of high dimension. In fact, it is still an open problem whether there
exists an example with a globally stable symmetric unimodal limit cycle that could

not be successfully analyzed with this new methodology. Such positive results led us

to believe that globally stable limit cycles of RFS frequently have quadratic surface

Lyapunov functions.

After demonstrating the success of this methodology in globally analyzing limit

cycles of PLS, we showed that the same ideas can be used to check global asymptotic
stability of equilibrium points of PLS. For that, we used OFS, the simplest class of

PLS with globally stable equilibrium points. This simplicity comes from the fact that,

in the state space, OFS are characterized by a single switching surface. Equilibrium

points of OFS analyzed included those that did not belong to the switching surface.

Although the analysis in this case was di�erent from RFS, we were able to prove

global asymptotic stability for a large number of examples analyzed. These included
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systems with an unstable aÆne linear subsystem, systems of relative degree larger

than one and of high dimension, and systems with unstable nonlinearity sectors, for

which no results existed so far. In fact, existence of an example with a globally stable

equilibrium point that could not be successfully analyzed with this new methodology

is still an open problem.

The next natural step was to show the same ideas hold even when a PLS has

more than one switching surface. We considered a class of PLS known as SAT. In

the state space, these systems are characterized by two switching surfaces, separating

three di�erent aÆne linear subsystems. As before, we were able to express stability

conditions as sets of LMIs, which can be solved eÆciently. Moreover, a large num-

ber of examples of SAT analyzed was successfully proven to have a globally stable

equilibrium point. Systems analyzed included high-order systems, systems of relative

degree larger than one, and systems with unstable nonlinearity sectors for which all

classical methods failed to analyze. In fact, it is still an open problem whether there
exists an example with a globally stable equilibrium point that could not be success-

fully analyzed with this new methodology. With SAT, we con�rmed the idea that
global asymptotic stability of equilibrium points of PLS can be checked using impact
maps and quadratic surface Lyapunov functions. In particular, we showed that this

new methodology successfully globally analyzes PLS with more than one switching
surface.

The last part of this thesis was dedicated to show that impact maps and quadratic
surface Lyapunov functions can be eÆciently and successfully used to not only check
stability, but also performance and robustness properties of PLS. We found condi-

tions in form of LMIs that, when satis�ed, guarantee �nite-gain L2 stability of OFS.
These conditions were use to show that many globally asymptotically stable OFS are
also �nite-gain L2 stable. Systems analyzed include OFS with unstable nonlinearity

sectors, for which all classical methods fail to analyze.
This work has open a door to a new area of research and, as a consequence, has

left numerous open problems. Some of these are currently under investigation. Topics
of future work are include:

� The main goal of this research was to build a framework where piecewise linear

systems can be systematically analyze in terms of stability, robustness, and

performance. We have already seen this is possible for certain classes of PLS.

The questions now are: given a PLS, how to set up the analysis problem? How

to address it? And, how to solve it? Ideally, one would like to have a software

package that, through a user friendly interface, allows a user to supply a PLS.

In terms of stability, the �rst result of this software would be a characterization

of all equilibrium points and limit cycles. Then, the user could decide which

one of these trajectories to analyze. If there are several of these trajectories,

then maybe we are interested in a reasonably large region of stability of the
speci�ed trajectory. If there is only one, the software would check if the speci�ed

trajectory is globally stable.

In terms of robustness and performance, the applications are endless. As a non-
linear system is approximated by a linear system, an hybrid system could be
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approximated by a PLS together with external perturbations and a set of uncer-

tainties, modeling not only the nonlinearities inherent to the hybrid system, but

also unmodeled dynamics. Once characterized, structured and unstructured un-

certainties, and external perturbations, could be supplied to the software, and

have this return robustness and performance properties of the PLS.

The ultimate goal is to have a theory for PLS somehow similar to the existent

theory for linear systems. Although such general framework is still faraway, we

believe that with the present work we have taken the �rst steps in that direction.

� There are several physical systems that can be modeled and analyzed as a PLS.

Among these are several classes of walking robots. As a cases study, we intend

to apply quadratic surface Lyapunov functions to analyze walking robots.

� When studying RFS, we mention that certain classes of RFS exhibit sliding

modes. Although sliding modes were not considered then, the analysis of such
systems is not that di�erent from what we have done so far. With the de�nition

of a relay in chapter 5, there may exist points in the switching surface for which
no solution exists. This can happen when the vector �eld on both sides of the
switching surface points towards the switching surface. Changing slightly this

de�nition to allow trajectories to evolve in the switching surface, leads to the
so-called sliding modes. Thus, whenever a trajectory enters the set of points

leading to sliding modes, we consider a new aÆne linear system of dimension
lower than the one of the original system, de�ned on the switching surface.
This system evolves until it reaches a certain linear manifold on the switching

surface. Then, the trajectory is again free to evolve in the state space. Hence,
the analysis is similar to other cases considered in this thesis.

To be more general, quadratic surface Lyapunov functions can be used to ana-
lyze PLS that switch between aÆne linear systems of di�erent dimension.

� An important topic of research following this thesis is to �nd conditions that do
not depend on the parameters of the Lyapunov functions but guarantees their

existence. Such conditions should depend on the plant or on certain properties

of a class of systems, and should, obviously, be easier to check than the ones

presented here.

� Many PLS have more than one equilibrium point and/or limit cycle that is lo-

cally stable. The question here is: what is the region of attraction for each of

these locally stable trajectories? Before studying global analysis, we dealt with

this exact problem for RFS. The work reported in [23] characterizes reasonably

large regions of stability around limit cycles. After the discovery that impact
maps could be represented as linear transformations parametrized by the asso-

ciated switching time, this line of research became secondary, and the focus was

then on globally analysis. Using these new tools, it would be very interesting to

go back and see how they could be used to guarantee regions of stability around

locally stable trajectories. The ideas reported in this thesis would undoubtfully
improve the results in [23].
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