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Abstract

Input-output stability results for feedback systems are developed. Robust Stability conditions

are presented for nonlinear systems with nonlinear uncertainty de�ned by some function (with

argument equal to the norm of the input) that bounds its output norm. A suÆcient small gain

theorem for a class of these systems is known. Here, necessary conditions are presented for the

vector space (`1; k � k1). These results capture the conservatism of the small gain theorem as it

is applied to systems that do not have linear gain. The theory is also developed for the case of

`2 signal norms, indicating some diÆculties which make this case less natural than `1.
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1 Introduction

This paper considers the development of necessary conditions (conditions that when not met imply

that there exists a perturbation that destabilizes the system) for the robust stabilization of certain

classes of nonlinear plants. The problem of robust stabilization may be stated as follows. Given a

nominal plant model and a family of possible true plants, under what condition does a compensator

which stabilizes the nominal plant also stabilize every plant in the given family?

The idea that a loop of less than unity gain ensures stability of a feedback loop has been appre-

ciated since the early days of classical control. In mathematical terms, it is related to well-known

ideas on invertibility of nonlinear operators of the form I +G1G2 where I is the identity and G1, G2

are nonlinear operators on Banach spaces.

The usual form of the small gain theorem assumes gain properties of the form

k(Mu)T kp � 
kuT kp (1)

for the operator M where u denotes the input signal, 
 = supx6=0
kMxkp
kxkp

(k � kp denotes the usual

p-norm), and uT denotes the truncation of the signal u at time T . With this structure, it is shown, for

1 � p �1, that, if M is linear and if k�k`p�ind < 1 then the feedback system of � and M achieves

robust stability if and only if kMk`p�ind � 1. For details, see Dahleh and Diaz-Bobillo (1995) and

Young and Dahleh (1995). If M is nonlinear, the necessity part only holds if M is fading memory

and p = 2 (see Shamma (1991) or Shamma and Zhao (1993)).

In Mareels and Hill (1992), a di�erent notion of stability called monotone stability is used to

obtain suÆcient conditions for stability of feedback systems (where the systems in the loop can

be nonlinear). This notion of stability is a generalization of (1). It allows more general bounding

functions of the form

k(Mu)T k � F (kuT k)
where F (�) is a monotone function. Systems satisfying the last inequality are called monotone stable.

While suÆciency conditions for robust stability were shown with this new notion of nonlinear gain

(also used by others like Sontag et al. (1994), Teel (1995), or Teel (1996)) no results on the necessity

of such conditions are known. Such results are useful to understand the degree of conservatism that

the small gain theorem has. Necessity conditions for linear gain exists (see Dahleh and Diaz-Bobillo

(1995) or Khammash and Dahleh (1992)). There also exist necessity conditions for nonlinear systems

that have their output norm bounded by a linear function of the input norm (see Shamma (1991) or

Shamma and Zhao (1993)).

The main results of this paper are necessary conditions for the robust stability of nonlinear

systems. For the vector space (`1; k � k1) we give necessary conditions on a system M for robust

stability with either nonlinear time varying (NLTV) or nonlinear time invariant (NLTI) perturbations.

These conditions are also studied for the vector space (`2; k�k2) but, here, in contrast to the (`1; k�k1)

vector space, the results lead to fundamental questions. On one hand, the necessary conditions derived

onM for robust stability are for non-causal perturbations. The construction of a causal perturbation

is still under investigation. On the other hand, several other problems arise in this vector space which

do not occur in `1. These problems will be analyzed in section 5.

Using known suÆcient results for robust stability (that we will recall here) we will derive an

equivalent suÆcient condition that is close1 to the necessary conditions.

The remainder of this paper is organized as follows. Section 2 starts by establishing notation and

giving some mathematical preliminaries. Section 3 deals with suÆciency of the small gain theorem.

1We will explain what we mean by close later.
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Sections 4 and 5 present necessary conditions of the small gain theorem in (`1; k � k1) and (`2; k � k2)
respectively. Section 6 shows, using an example, how the results given in the previous sections are

important when analyzing the robust stability of a given closed loop system. Finally, concluding

remarks are given in section 7.

2 Mathematical Preliminaries

We start by de�ning some standard concepts. The �eld of real numbers is denoted by <, the set of
n�1 vectors with elements in < is denoted by <n, and the set of all n�m matrices with elements in

< is denoted by <n�m. The set of nonnegative reals (integers) is denoted by <+ (Z+). Superscript

(�)T denotes transpose.

The extended space of sequences in <n is denoted by `pe for every 1 � p � 1 or just by ` when

it is obvious or when it just does not matter what p� norm is being used. The restriction of f to

the interval [a; b] is denoted by f j[a;b]. For every f = ff(0); f(1); f(2); � � �g 2 ` de�ne kfkpj[a;b] as

kfkpj[a;b] =
 

bX
n=a

jf(n)jp
!1=p

The set of all f 2 ` such that

kfkp =
 

1X
n=0

jf(n)jp
!1=p

<1

is denoted by `p. The set of all f 2 ` with f 62 `p is denoted by ` n `p.
Given f 2 ` de�ne the support of f 2 ` by supp(f) = fn : f(n) 6= 0g.
For k 2 Z+, Sk denotes the kth-shift (time-delay) operator on `, and Pk the kth-truncation

operator on `. Let H : `! ` be an operator. Then, H is called causal if PkHf = PkHPkf , 8k2Z+
,

strictly causal if PkHf = PkHPk�1f , 8k2Z+
, and time invariant if HS1 = S1H.

Let Xe and Ye be two signal spaces. Then an operator G : Xe ! Ye provides an input-output

system representation. We do not make explicit the role of initial conditions although this can be

important in a complete stability analysis (see Hill (1991), Jiang et al. (1994), or Teel (1996)).

The following de�nition provides a concept of input-output stability.

De�nition 2.1 The system G is monotone stable if there exists a monotonic increasing homeo-

morphism2 F : <+ ! <+ with F (0) = 0 and a constant � 2 <+ such that

k(Gu)T k � F (kuT k) + � (2)

for all u 2 Xe and T � 0.

If G is linear, causal, and bounded then F in (2) can be written, for all s � 0, as F (s) = 
s, where


 = kGk � 0 (note that kGk represents the induced norm of G and it is de�ned as supf 6=0
kGfk
kfk

).

Consider now the feedback system in �gure 1.

Assumption 2.1 Let V1e and V2e be two signal spaces. The operators G1 : V1e ! V2e and G2 :

V2e ! V1e are such that for all input signals r1 2 V1e and r2 2 V2e there exist unique signals

u1; y2 2 V1e and u2; y1 2 V2e.

2A function F is an homeomorphism if it is continuous and has a continuous inverse.
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Figure 1: Closed loop system

This assumption ensures the feedback system model is mathematically well-posed in the sense

that unique signals exist in the chosen signal spaces. SuÆciency conditions to ensure this situation

are available in the literature (see Vidyasagar and Desoer (1975)).

De�nition 2.2 The feedback system in �gure 1 under assumption 2.1 is called monotone stable if

there exist functions F1; F2 : <+ �<+ ! <+ and constants �1; �2 2 <+ such that

ky1T k � F1(kr1T k; kr2T k) + �1 (3)

ky2T k � F2(kr1T k; kr2T k) + �2

8T�0, 8r1 2 `p1e, 8r2 2 `p2e, and F1(�; �), F1(�; �), F2(�; �), F2(�; �) are monotonic increasing

homeomorphisms of <+ onto <+ for any � 2 <+ and with F1(0; 0) = F2(0; 0) = 0.

Comment: The last de�nition of stability has some implications. First, we see that if, for a certain

system, there exist bounded inputs (r1; r2 2 `) that produce unbounded outputs (y1; y2 62 `) then

there are no functions F1 and F2 that satisfy the de�nition and therefore the system is unstable.

There is another important implication which has to do with the �i. There are systems that are

stable when we allow �i 6= 0 but they are unstable when we impose �i = 0. To see this, assume

for instance that �1; �2 can be di�erent from zero (as in the de�nition). Then, we can actually have

systems such that the input norm can be made arbitrarily small but the output norm remains the

same. Although the ratio
kyik

Fi(krk)
goes to in�nity (for any Fi as in de�nition 2.2), with stability de�ned

this way, these kinds of systems are stable. This is due to the fact that we considered �i 6= 0.

Example 2.1 A very simple example is a relay (see �gure 2). In `1, this static nonlinear system

is stable if we allow � 6= 0 (in this case, � = 1). If we impose � = 0 then there is no F satisfying

de�nition 2.1 which means that the system is unstable

Figure 2: Relay

De�nition 2.3 A nonlinear operator G is said to be �nite memory if there exists an increasing

integer function FM(�;G) : Z+ ! Z+ with FM(t;G) � t such that

(I � PFM(t;G))Gf = (I � PFM(t;G))G(I � Pt)f (4)

for all f 2 `p and t 2 Z+. The function FM(�;G) is called the �nite memory function associated

with G.
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Figure 3: G is �nite-memory

The last de�nition states that (see �gure 3) the e�ects of a �nite-duration of the input eventually

vanish completely and therefore the recent operator output depends only on the recent inputs and

not on the extreme past inputs.

The following proposition is from Shamma (1991).

Proposition 2.1 Let G, a nonlinear operator, have �nite-memory with associated �nite-memory

function FM(�;G). Then for f1 2 `2 with supp(f1) � [0; n] and f2 2 `2 with supp(f2) �
[FM(n;G) + 1;1)

G(f1 + f2) = Gf1 +Gf2

In the following de�nition, assume that G is some nonlinear operator and k � k = k � kp for some
1 � p �1.

De�nition 2.4 Let �G(s) : <+ ! <+ be a non-decreasing function de�ned, for all s � 0, as

�G(s) = sup
kfk=s

kG(f)k (5)

Note that �G may not exist. If there exist an f with kfk < 1 such that kG(f)k = 1 then

�G(kfk) is not de�ned and therefore, for this given system, �G does not exist.

Note also that G is monotone stable if and only if �G exists. If G is monotone stable then

there exists a monotone increasing homeomorphism F and a � 2 <+ satisfying (2). Since �G(s) �
F (s) + � < 1 it means that �G exists. Conversely, make � = �G(0) and if �G exists and it

is a homeomorphism, then just make F (s) = �G(s) � �. If �G is not a homeomorphism, pick a

homeomorphism F satisfying F (s) � �G(s)� �. This means that G is monotone stable.

This last de�nition is the natural extension of the gain of a linear system de�ned as 
 =

supf 6=0
kGfk
kfk

. Note that (5) can be written as

sup
kfk=s

kGfk
�G(kfk) = 1

In the case where G is a linear system, �G is just a linear function, that is, �G(s) = 
s. But,

in general, if G is a nonlinear operator, �G is some non-decreasing function. As in the linear case,

(5) tells us that for any s � 0, there exists a signal f with kfk = s such that kG(f)k is equal or

arbitrary close to �G(kfk), that is, given any � > 0 there exists a signal f with kfk = s such that

�G(kfk)� kG(f)k < �. For all other u 2 `, kG(u)k � �G(kuk).
Note that this is not necessarily true for F in 2.1. The only information we have from F is that

for every u 2 `, kG(u)k � F (kuk)+�. The relation between F and �G is therefore �G(s) � F (s)+�

for all s � 0. In fact, there may exist s � 0 for which one cannot �nd any f 2 ` with kfk = s such

that kG(f)k = F (kfk) + �.
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Another important di�erence that follows from what was just discussed is that �G does not need

to be an homeomorphism. In fact, �G does not need to have an inverse or to be continuous. Also,

note that �G(0) does not need to be equal to zero.

Example 2.2 For a relay (see �gure 2), �G(s) = 1 for all s � 0. In 2.1, we can choose � = 1 and

F can be, for example, F (s) = �s, where � � 0.

The properties of �G will play a key role in section 4 and 5 when we talk about necessity of the

small gain theorem.

Consider the system in �gure 4.

Figure 4: Closed loop system

Let � denote the class of allowable perturbations. We now de�ne C�;p as the subset of �

containing elements with ��(s) < 
(s), where 
 is a monotonic increasing homeomorphism.

De�nition 2.5 Given a monotonic increasing homeomorphism 
 de�ne

C�;p = f� 2� : ��(s) < 
(s)g

This is the same to say that, for every f 2 `p, k�(f)kp � ��(kfkp) where ��(s) < 
(s). This

means that k�(f)kp < 
(kfkp).
For perturbations � 2 C�;p, the problem will be to �nd necessary and suÆcient conditions on

M to guarantee robust stability.

3 SuÆciency of the Small-Gain Theorem

In this section we will present a suÆcient condition to achieve robust stability when the perturbation

belongs to C�;p. First we will present some known results that will be used to derive a suÆcient

condition on some system M , perturbed by � 2 C�;p, that guarantees the robust stability of the

feedback system in �gure 4. This condition is not equivalent to the one that will be presented in

sections 4 and 5, where necessity will be discussed, but, as we will see, they are close in the sense

that both look in to the composition of the gain functions of the system that is being analyzed and

its perturbation.

De�nition 3.1 De�ne the following function classes:

Q = fF : <+ ! <+j F is a monotonic increasing homeomorphism of <+ onto <+g
N = fF 2 Qj 9�2Q s:t: F (x) � x� �(x)g
Ny = fF 2 Qj 9�2Q s:t: F (x) � x� �(x) for all x � yg where y � 0:
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So, N � Ny. De�ne also Q0 = Q [ fOF g and N0y = Ny [ fOF g where OF denotes the zero

function F � 0.

Let i denote the identity function.

Fact 3.1 If F1; F2 2 Q then F�1
1 , F1 Æ F2, F1 + F2 2 Q.

Proposition 3.1 F 2 Ny if and only if 9�2Q such that (i+ �) Æ F (x) � x for all x � y.

Proof: ()) Assume that F 2 Ny. This implies that 9�2Q such that F (x) � x��(x), 8x � y. This

is the same to say that 8x � y, F (x) + �(x) � x or (i + �) Æ F (x) � x where �(x) = � Æ F�1 2 Q

from fact 3.1.

(() (i+�) ÆF (x) = F (x)+�(F (x)) � x, 8x � y. Let �(x) = (� ÆF )(x) 2 Q by fact 3.1. Then,

F (x) � x� �(F (x)) = x� �(x), 8x � y, which means that F 2 Ny.

Consider the feedback system in �gure 1.

Let each system be monotone stable with gain functions F1 and F2, and �1 and �2 as in de�ni-

tion 2.1. This means that

ky1T k � F1(ku1T k) + �1 (6)

ky2T k � F2(ku2T k) + �2 (7)

The proof of the following result can be found in Mareels and Hill (1992).

Theorem 3.1 Consider the system in �gure 1. Suppose G1 and G2 are stable and satisfy (6,7).

The feedback system is monotone stable if there exist � 2 Q and s� � 0 such that

F2 Æ (i+ �) Æ F1 2 Ns� (8)

Corollary 3.1 Consider the system in �gure 1. Suppose G1 and G2 are stable and satisfy (6,7).

The feedback system is monotone stable if there exist �1; �2 2 Q and s� � 0 such that

(i+ �1) Æ F2 Æ (i+ �2) Æ F1(s) � s for all s � s� (9)

Proof: The result follows from the last theorem and proposition 3.1.

Consider again the system in �gure 4. Assume that there exists a � 2 (0; 1) such that � 2
C
�
�;p = f� 2 � : ��(s) � (1 � �)
(s)g. It is easy to see that C

�
�;p � C�;p (C�;p is de�ned in

de�nition 2.5). Assume also that M is monotone stable with gain function m(s).

We will prove that it is suÆcient to have m(s) � (1 � �)
�1(s) for some 0 < � < 1 and

for all s � s�, for some s� � 0, in order to have robust stability. We will show that when M

satis�es this condition we can always �nd monotonically increasing functions �1 and �2 satisfying

(i+ �1) Æ �� Æ (i+ �2) Æm(s) � s and this way prove robust stability.

Corollary 3.2 The system in �gure 4 achieves robust stability for all � 2 C
�
�;p if there exist an

� 2 (0; 1) and an s� � 0 such that m(s) � (1� �)
�1(s) for all s � s�.

Proof: In equation (9), let �1(s) =
�

1�� s and �2(s) =
�

1��s. Using corollary 3.1 with F1 = m and

F2 = �� the result follows.

Note: this is not a new result. This last corollary says the same as corollary 3.1. Here, � and �

represent the same as �1 and �2 in corollary 3.1. The reason why we have included this corollary is

to give a suÆcient condition that is arbitrarily close to the necessary condition we will talk about in

the following sections. What we mean by arbitrary close is that when both � and � approach zero,

the suÆcient condition approaches (
 Æ �M )(s) � s which is (as we will see in sections 4 and 5) the

condition for necessity.
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4 `1 Stability Robustness Necessary Conditions

Consider the system in �gure 4. In Dahleh and Diaz-Bobillo (1995), Dahleh and Khammash (1993),

and Khammash and Pearson (1991) necessary conditions for stability robustness were presented for

the case when M is linear time invariant. We will now extend those conditions to certain classes of

nonlinear M . First, we will consider the case where the perturbation is NLTV. Then, we will prove

that the necessity conditions still holds if the perturbation is NLTI.

Before we move to the next section, a remark is in the order to the e�ect of initial conditions. Since

only input-output stability is considered, the e�ects of initial conditions is not addressed explicitly.

For general NLTV systems, the initial condition can dramatically alter the resulting input-output

behavior. However, since in the proofs of necessity in both `1 and `2 cases we assume having �nite

memory for M , the e�ects of initial condition vanish after some �nite time.

4.1 `1 stability robustness with NLTV perturbations

Before we present the main theorem of the section we give a lemma that will be used during the

proof of the theorem.

Lemma 4.1 Let A : <+ ! ftrue; falseg be some boolean function and f : <+ ! <+ an increasing

homeomorphism. Saying that there exists a monotonic increasing sequence fsng with sn ! 1 as

n ! 1 and f�1(sn+1) � f�1(sn) � L, for some L > 0, such that A(sn) = false, 8n2Z+
, is

equivalent to say that 9N>0 : 8s�;9s�<s�f(f�1(s�)+N) such that A(s) = false.

Proof: ()) Given any s� � 0, one can always �nd an n 2 Z+ such that sn � s� < sn+1. Pick s =

sn+1. Then A(s) = false and f�1(s)� f�1(s�) � f�1(sn+1)� f�1(sn) � L or s � f(f�1(s�) +L).

So, just take N = L and the result follows.

(() In this case we need to construct a sequence fsng according to the lemma. Let s�0 � 0.

Then, 9s�0<s0�f(f�1(s�0)+N) such that A(s0) = false. Let s�1 = s0 and S1 = fs�1 < s � f(f�1(s1)
� +

N) : A(s) = falseg. By assumption, S1 is non-empty. Let s1 = maxS1. Again, let s�2 = s1
and S2 = fs�2 < s � f(f�1(s�2) + N) : A(s) = falseg. Let s2 = maxS2. This means that

s2 � f(f�1(s�1) +N) = f(f�1(s0) + N) � f(N). Constructing s3; s4; � � � the same way and letting

L = N the result follows.

Next, assume that C�TV ;1 represents the set of all causal NLTV perturbations according to

de�nition 2.5. The case of time invariant M is considered �rst.

Theorem 4.1 Assume that M is �nite memory, monotone stable, causal, and NLTI. The system

in �gure 4 achieves robust stability for all � 2 C�TV ;1 only if given any N > 0, there exists an

s� � 0 such that (
 Æ �M )(s) � s for all s� < s � 
(
�1(s�) +N).

This theorem tells us that if the system in �gure 4 is robust stable it implies that for any N > 0,

there is an interval on the real line (the interval is (s�;
(
�1(s�) +N)) for some s� � 0) such that

the composition of 
 with �M in less or equal than the identity function in that interval.

Proof: To simplify the proof, consider M and � SISO.

The approach we use is to show that a destabilizing perturbation � 2 C�TV ;1 can be con-

structed whenever the conditions of the theorem are not satis�ed. So, assume that 9N>0 : 8s��0,
9s�<s�
(
�1(s�)+N): �M (s) > 
�1(s). From lemma 4.1 this is equivalent to say that there exists a

monotonic increasing sequence fsng with sn ! 1 as n ! 1 and 
�1(sn+1) � 
�1(sn) � L, for

some L > 0, such that �M (sn) > 
�1(sn), 8n2Z+
.
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Since M is �nite-memory, from de�nition 2.3, this means that there exists an increasing integer

function FM(�;M) : Z+ ! Z+ with FM(t;M) � t satisfying equation (4).

As in Dahleh and Diaz-Bobillo (1995), Dahleh and Khammash (1993), and Khammash and Pear-

son (1991), the proof is divided in two parts: construction of an unbounded signal and construction

of a destabilizing perturbation using that signal.

Construction of the unbounded signals

We need to construct � satisfying:

1. � is unbounded;

2. We want ��(s) < 
(s) which means that we need to have kPt�k1 < 
(kPtyk1) for all t � 0.

Assume that N0 = 0. The construction of � proceeds as follows (see �gure 5).

Figure 5: Construction of � for t = Nn�1; � � � ; Nn � 1

For all n = 1; 2; 3; � � �, let N0n = FM(Nn�1;M) (this will guarantee that z(N0n) = 0). From

assumption we know that �M (sn) > 
�1(sn). Let �n = �M (sn) � 
�1(sn). Now, choose Nn >

N0n and j�(t)j � sn for t = N0n; :::; Nn � 1 such that kPNn�1�k1 = sn and �M (kPNn�1�k1) �
kPNn�1zk1 < �n. This way kPNn�1zk1 > 
�1(sn). Since

y = z + r

= z + sgn(z)(
�1(sn+1)� 
�1(sn))

we have

kPNn�1yk1 = kPNn�1zk1 + (
�1(sn+1)�
�1(sn))

> 
�1(sn) + (
�1(sn+1)� 
�1(sn))

or

kPNn�1yk1 > 
�1(sn+1)

Since j�(t)j � sn+1 for t = N0n+1; :::; Nn+1 � 1 we actually have

kPtyk1 > 
�1 (kPt�k1) (10)

for all t. Also, since sn ! 1 as n ! 1 we have that k�(t)k ! 1 and ky(t)k ! 1 as n ! 1 (or

as t!1). So, both requirements for � are met.

Note that, from assumption, we have 
�1(sn+1) � 
�1(sn) � L for all n 2 Z+. Therefore,

krk1 = supn(

�1(sn+1)� 
�1(sn)) � L, i. e., r 2 `1.

Construction of the destabilizing perturbation

The idea now is to construct a destabilizing perturbation � 2 C�TV ;1 using the signals � and y

(see �gure 6).

We have � = f�(i)g1i=0 2 ` and y = fy(i)g1i=0 2 ` such that (10) is satis�ed. We can rewrite (10)

as kPt�k1 < 
(kPtyk1).
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Figure 6: Construction of �

Now, � is trivial if y = 0: just pick � itself to be zero. So, assume that y 6= 0. Constructing

(y(i1); y(i2); :::) as in Dahleh and Diaz-Bobillo (1995), Dahleh and Khammash (1993), and Kham-

mash and Pearson (1991) we can now construct our �.

So, � is constructed by having (see �gure 7) � = �(y) = ��
(y). This can be seen as a series of

two systems. The �rst is a static nonlinear system whose argument is y(t) while the second ( ��) is

just an LTV system.

Figure 7: Structure of �

�� is a matrix constructed as follows

�� =

0
BBBBBBBBBBBBBBBBBBBBB@

. . . 0

0
�(i1)


(y(i1))
0

...
...

. . .
�(i2�1)

(y(i1))

0 � � � 0
�(i2)


(y(i2))
0

...
...

. . .
�(i3�1)

(y(i2))

0 � � � 0
�(i3)


(y(i3))
0

...
. . .

1
CCCCCCCCCCCCCCCCCCCCCA

where the �rst nonzero column is i1th, the second is the i2th, and so on.

It is easy to see that � = �(y).

Each row of the above matrix has at most one nonzero element which has absolute value less

than 1. This means that k ��k`1�ind < 1.

Now, let's see if � belongs to the set C�TV ;1. For every t we have kPt�k1 = kPt�(y)k1 =

k ��Pt
(y)k1 � k ��k`1�indkPt
(y)k1 < kPt
(y)k1 = 
(kPtyk1) or just kPt�k1 < 
(kPtyk1)

which means that ��(s) � k ��k`1�ind
(s) < 
(s). So, � 2 C�TV ;1. Moreover, � is causal and

NLTV.

So, we found a bounded input that produces an unbounded output. This means that in de�n-

ition 2.2 there is no function F1 such that (3) is satis�ed because there exists a bounded u1 = r

10



(with u2 = 0) that produces an unbounded y1. Therefore, we conclude that the closed loop system

is unstable.

Corollary 4.1 Consider the system in �gure 4. If there exists an s� � 0 such that (
 Æ �M )(s) > s

for all s > s� then there exists a perturbation � 2 C�TV ;1 that makes the system unstable.

Proof: The proof follows from the last theorem since this corollary is just a special case of it.

Remark 4.1 For 
(s) = s, theorem 4.1 provides a necessity proof for `1 � stability of �nite

memory systems that satis�es

sup
kfk=s

kM(f)k
kfk = 1

Moreover, the destabilizing perturbation can be LTV.

Remark 4.2 In the previous theorem we consider the system M to be time invariant. The results

can actually be extended to the case where M is nonlinear time varying by replacing (
 Æ �M )(s) � s

with infk(
Æ�MSk)(s) � s (note that the operator MSk represents the original operator M restricted

to inputs which start after time k). The proof, omitted here, is based on the same ideas of the proofs

of the previous theorem and theorem 3.2 in Shamma (1991).

4.2 `1 stability robustness with NLTI perturbations

Assume here that C�TI ;1 represents the set of all NLTI perturbations according to de�nition 2.5.

The proof of the following theorem is similar to the one done in Dahleh and Diaz-Bobillo (1995).

Theorem 4.2 The system in �gure 4 achieves robust stability for all � 2 C�TI ;1 only if given any

N > 0, there exists an s� � 0 such that (
 Æ �M )(s) � s for all s� < s � 
(
�1(s�) +N).

Proof: The proof of this theorem follows exactly as the proof of theorem 4.1 except for the con-

struction of the destabilizing perturbation. Given the signals y and �, we show that a nonlinear time

invariant perturbation can be constructed to destabilize the closed-loop system.

Let the signals y and � be given as before. Then � must be such that

��(s) � k ��k`1�ind
(s) < 
(s) (11)

and � = �(y). We just need to rede�ne ��. So, let �� be de�ned as follows

( ��f)(t) =

(
k�(t� j); if for some integer j � 0; Ptf = PtSj�y;

0; otherwise:

where Sj is the shift operator by j steps. It is easy to see that the new � is a nonlinear, time invariant,

and causal system. It satis�es (11) (because k ��k`1�ind < 1) which means that � 2 C�TI ;1 and

maps y to �.

5 `2 Stability Robustness Necessary Conditions

Once again, we will extend the conditions for stability robustness presented in Dahleh and Diaz-

Bobillo (1995) to certain classes of nonlinear M .

11



5.1 `2 stability robustness with non-causal perturbations

The following theorem gives a necessary condition on the system in �gure 4 in order to guarantee

that the closed loop system is stable. Here,M is assumed to be some NLTI and �nite memory system

with its output `2 � norm bounded (to an input u) by �M (kuk2) according to de�nition 2.4.

De�ne C
�
�NC ;2;x

(with x > 0), for some given k > 0 and � > 0, as

C
�
�NC ;2;x

= f� 2� : ��(s) < (1 + �)ksx; � non causalg

This is a special case of de�nition 2.5 where 
(s) = (1 + �)ksx and � is non-causal.

One of the assumptions in the next theorem is having x � 1. The reason why the theorem does

not follow for x > 1 is because it is assumed thatM is �nite memory. In fact, if x > 1 andM is NLTI

then it can not be �nite memory. It has to be in�nite memory. This can be shown by contradiction.

Assume �M (s) = ( sk )
1
x and M is �nite memory. Then, there exists an f 2 `2 and an integer

N � 0 such that supp(f) = [0; N �1] and kMfk2j[0;N�1]
= �M (kfk2j[0;N�1]

). This means that for this

particular f we have

kMfk2j[0;N�1]
= kMfk2 =

�
1

k
kfk2

� 1
x

(12)

Let T = FM(N ;M) + 2. De�ne

� =
1X
i=0

SiT f = (f; 00s; f; 00s; f; 00s; � � �) (13)

where 00s denotes a string of zeros of length T � N � 1. From proposition 2.1 it follows that the

response M� = M
P

n fn =
P

nMfn despite the nonlinearity of M . Given this decomposition, M�

may be block partitioned as follows

y = (Mf; x1;Mf; x2;Mf; � � �) (14)

where xi 2 `2 are some signals. From (13) we see that

kPnT�1�k2 =
q
kfk22 + kfk22 + � � � + kfk22

=
p
nkfk2

and from (14) we have

kPnT�1yk2 =
q
kMfk22 + kx1k22 + kMfk22 + kx2k22 + � � � + kMfk22 + kxnk22

� p
nkMfk2

Therefore

kPnT�1yk2�
1
kkPnT�1�k2

� 1
x

�
p
nkMfk2�

1
k

p
nkfk2

� 1
x

=

p
nkMfk2

(
p
n)

1
x kMfk2

= n
x�1
2x > 1

for x > 1. This means that in fact �M (s) > ( s
k
)
1
x which is a contradiction.
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Theorem 5.1 Let x � 1 and � > 0. Assume that M is �nite memory, monotone stable, causal,

and NLTI. The system in �gure 4 achieves robust stability for all � 2 C
�
�NC ;2;x

only if there exists

an s� � 0 such that �M (s) � ( s
k
)
1
x for all s � s�.

Proof: The method of proof will again be similar to the one in Dahleh and Diaz-Bobillo (1995) or

Shamma (1991) and Shamma and Zhao (1993). We will show that one can construct a destabilizing

perturbation � 2 C
�
�NC ;2;x

whenever the conditions of the theorem are not satis�ed. So, assume that

8s��0, 9s�s�: �M (s) > ( s
k
)
1
x .

A particular signal � 2 ` n `2 is constructed for which there is an admissible � such that one has

(I ��M)� 2 `2. The lack of invertibility of (I ��M) then follows immediately.

This will be done in two steps. The �rst step is to construct that signal �. The next step is to

use this signal to construct a destabilizing perturbation.

As is the proof of theorem 4.1, we have the assumption that M is �nite memory. This means

that there exists an increasing integer function FM(�;M) : Z+ ! Z+ according to de�nition 2.3.

Construction of the unbounded signals

The signal � to be constructed has to satisfy (a) be unbounded and (b) if y is the output of M

to � then kPtyk2 >
�

1
(1+�)k

kPt�k2
� 1
x
for all t.

Assume that s0 = 1 and t0 = 0. The construction of � proceeds as follows. For all n = 1; 2; 3; � � �,
choose �n > 1 big enough (we will see what we mean by big enough soon) and let s�n = �nsn�1.

Then 9sn�s�n : �M (sn) > ( sn
k
)
1
x . Let �n = �M (sn)� ( sn

k
)
1
x . Also, let an = sn

s�n
� 1 and cn = an�n > 1.

Then,

sn = ans
�
n = an�nsn�1

= cnsn�1 = cncn�1sn�2

= cncn�1 � � � c2c1s0
= cncn�1 � � � c2c1

Now, choose Nn > 0 and fn 2 `2 with kfnk2 = sn and supp(fn) = [0; Nn] such that �M (sn) �
kMfnk2j[0;Nn] < �n. This means that

kMfnk2 >
�
sn

k

� 1
x

=

�
cncn�1 � � � c2c1

k

� 1
x

Note that kfnk2j[0;Nn] = kfnk2 = sn. For simplicity, from now on, let kMfik2 = kMfik2j[0;Ni] . Also,
let xi represent some signals in `2 of appropriate length for i = 1; 2; 3; � � �.

Let tn = FM(Nn;M) + tn�1 + 2 and

Ptn�1� = (f1; 0; f2; 0; � � � ; fn; 0)
From proposition 2.1 it follows that the responseM� =M

P
n fn =

P
nMfn despite the nonlinearity

of M . Given this decomposition, M� may be block partitioned as follows

Ptn�1y = (Mf1; x1;Mf2; x2; � � � ;Mfn; xn) (15)

Therefore, we have kPtn�1�k2 given by

kPtn�1�k2 =
q
kf1k22 + kf2k22 + � � � + kfnk22

=
q
c21 + c22c

2
1 + � � � + (cncn�1 � � � c2c1)2

= s1

q
1 + c22 + � � � + (cncn�1 � � � c2)2
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and kPtn�1yk2 given by

kPtn�1yk2 =
q
kMf1k22 + kx1k22 + kMf2k22 + kx2k22 + � � � + kMfnk22 + kxnk22

>

s�
c1

k

� 2
x

+

�
c2c1

k

� 2
x

+ � � � +
�
cncn�1 � � � c2c1

k

� 2
x

=

�
s1

k

� 1
x
q
1 + c

2=x
2 + � � � + (cncn�1 � � � c2)2=x

=

�
1

k
kPtn�1�k2

� 1
x

vuut 1 + c
2=x
2 + � � � + (cncn�1 � � � c2)2=x�

1 + c22 + � � � + (cncn�1 � � � c2)2
�1=x

=

�
1

(1 + �n)k
kPtn�1�k2

� 1
x

where

�n =

 
1 + c

2=x
2 + � � � + (cncn�1 � � � c2)2=x�

1 + c22 + � � �+ (cncn�1 � � � c2)2
�1=x

!�x
2

� 1 > 0

It is easy to see that when �n !1, cn !1, and therefore �n ! 0. So, we need to choose �n
big enough so that 0 < �n < �.

Also, s1 > 1 and for all i = 1; 2; � � � ; n, ci > 1. This means that

kPtn�1�k2 = s1

q
1 + c22 + � � � + (cncn�1 � � � c2)2

>
p
1 + 1 + � � � + 1

=
p
n

Therefore, when n! 1, kPtn�1�k2 ! 1 and therefore � is unbounded. So, both requirements

for � are met.

Construction of the destabilizing perturbation

Given the signals y and �, we show that a nonlinear, non-causal perturbation can be constructed

to destabilize the closed-loop system.

Let the signals y and � be given as before. � must be constructed such that ��(s) < ksx and

� = �(y). Consider the perturbation de�ned as follows

(�f)(t) =

8><
>:

0; if t < t1;

�(t� j); if for some integer j � 0; Ptf = PtSjy;

0; otherwise:

It can be veri�ed that � is a nonlinear and non-causal perturbation. We notice that the maximum

ampli�cation occurs when the input signal of � is y. We also know that

kPtn�1yk2 >
�

1

(1 + �n)k
kPtn�1�k2

� 1
x

or equivalent

kPtn�1�k2 < (1 + �n)kkPtn�1ykx2
Since �n < � we have

kPtn�1�k2 < (1 + �)kkPtn�1ykx2
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which means that ��(s) < (1 + �)ksx and therefore � 2 C
�
�NC ;2;x

and maps y to �.

So, � is constructed to have �(y) = � � (f1; 0; 0; 0; � � �) = (0; 0; f2; 0; f3; 0; f4; � � �).
Now, we just need to show that this is indeed a destabilizing perturbation. If we let � be the

input to (I ��M) then we have

(I ��M)(�) = � ��(M�)

= (f1; 0; f2 � f2; 0; � � � ; 0; fn � fn; 0; � � �)
= (f1; 0; 0; 0; 0; � � �) 2 `2

This implies that the system in �gure 4 is not `2�stable because it maps a signal in `2 to a signal

in ` n `2. Therefore, as in the case of the `1 proof, we conclude that the system is not monotone

stable. This completes the proof.

Comment: Since, by construction, � is in�nite memory, we can have ��(s) < (1 + �)ksx with

x � 1.

Comment: In the `2 case, the construction of a causal perturbation � instead of a non-causal

one, like in the `1 case where the conditions for stability hold for both NLTV and NLTI causal

perturbations, is under investigation.

6 Example { Linear system with a nonlinear feedforward term

In this section we will give an example where the theorems presented in the previous sections can be

applied to conclude stability or instability of closed loop systems in the form of the one in �gure 4.

6.1 System description

Consider the following SISO system

_x(t) = Ax(t) + bu(t)

y(t) = cx(t) + f(ut)

where t � 0, x(t) 2 <n�1, u(t); y(t) 2 <, A 2 <n�n, b 2 <n�1, c 2 <1�n, and the only information

we have of f is that kf(uT )k1 < kuT k21, for every u 2 ` and T � 0.

Suppose that only the output is available for feedback and that some control law u = K(y) was

designed. In this example, we will show that the controller K needs to be nonlinear in order to have

the feedback system robustly stable.

We need to rearrange the system to make it look like the one in �gure 4. For a given control law

u = K(y), the result is in �gure 8.

Let P represent the initial system but with f(u) = 0, that is, P is a linear system with matrices

(A; b; c; 0). Then, we redraw the closed loop system to a simpler form (�gure 9).

So, in �gure 4, we de�ne M as the system that maps the signal w to u and � as the system that

maps u to w. The dynamics of M , at any time t � 0, are

_x(t) = Ax(t) + bu(t)

u(t) = K(w(t) + cx(t))

and for � are

w(t) = f(ut)
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Figure 8: Closed loop system

Figure 9: Simpli�ed closed loop system

M can be written as the operatorM = (1�PK)�1K. For � it is easy to see that ��(s) < s2 and

therefore � 2 C�;1 = f� 2 � : ��(s) < s2g. In de�nition 2.5, 
(s) = s2 which is a monotonic

increasing homeomorphism.

Let's now study the stability of the closed loop system for di�erent control laws.

6.2 Linear controller

Assume that K is a linear controller (static or dynamic) such that (1 � PK)�1K is stable. This

means that �M (s) = �s where � = kMk`1�ind. In this case, for any N > 1=� there is no s� � 0

such that �M (s) � p
s for s� < s � (

p
s� + N)2 = s� + �N . This can be seen by noticing that

�N = (
p
s� + N)2 � s� = 2

p
s�N + N2 > 2

p
s� 1� + 1

�2
� 1

�2
, or �N > 1

�2
. Since there is no

interval on the positive real bigger than 1
�2

such that �M (s) � p
s, the result follows. Therefore,

using theorem 4.1, we conclude that the closed loop system is unstable. Moreover, there is no linear

controller K that can stabilize the system.

6.3 Saturation controller

Assume now that in the previous section we add a saturation after the controller K (in the feedback

loop). This way, u(t) = sat(Ky(t)), for every t � 0, where sat(�) denotes the usual saturation

function.

In order to prove the stability of the closed loop system, we need to �nd �M or an upper bound
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m of �M such that the conditions of theorem 4.1 are satis�ed. Here, it is assumed that �M exists,

that is, it is assumed that M is stable.

If the input w is such that it produces an output u with kuk1 � 1 thenM can be viewed as a linear

system because the saturation is in the linear region. In this case, as seen before, kMk`1�ind = �,

and therefore �M (s) � m(s) = �s for 0 � s � 1
�
. For kwk1 > 1

�
we can bound kuk1 by 1.

1

1 s

s

Figure 10: m(s) for di�erent values of �

From �gure 10 it is easy to see that for every � > 0 there always exists s� � 0 such that

�M (s) � m(s) � p
s for all s � s� (note that s� = 1 will work for every � > 0). Therefore, using

theorem 4.1, we conclude that the closed loop system is stable3.

7 Concluding Remarks and Future Work

This paper presented necessary conditions for robust stability of a system M perturbed by a family

of disturbances �. SuÆcient conditions were also included for completeness. It was shown that,

for the vector space (`1; k � k1), those suÆcient conditions are arbitrarily close to the necessary

conditions under appropriate assumptions on the system M .

While in the vector space (`1; k � k1) the results were completely analyzed, in the vector space

(`2; k � k2) several problems arose. The fact that only �nite memory systems were being considered

imposed immediately, in this vector space, restrictions on the gain function of the system M . Also,

while necessary conditions with either NLTV or NLTI perturbations were presented for the vector

space (`1; k � k1), only necessary conditions with non-causal perturbations were found for the vector

space (`2; k � k2).
For future work, these results should be extended to the general case where M is not �nite

memory but it is in�nite memory. In particular, we believe that it should not be very di�erent from

the proofs we have here, to show that these results still hold when M is fading memory (see Shamma

and Zhao (1993)) instead of �nite memory. This is not done here to make the proofs more readable.

In Vidyasagar (1993) results for the case where the nonlinearities are sector bounded by linear

functions are given. For future work, this results can be extended to the case where the nonlinearities

are sector bounded by a certain class of monotonic increasing functions. Also, as future work, in the

`2 case, a causal perturbation � should be constructed instead of non-causal one like in the `1 case

where the conditions for stability hold for both NLTV and NLTI causal perturbations.

3Note that this notion of stability is the one given in de�nition 2.2.
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