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Abstract

Input-output stability results for feedback systems are developed. Robust Stability conditions
are presented for nonlinear systems with nonlinear uncertainty defined by some function (with
argument equal to the norm of the input) that bounds its output norm. A sufficient small gain
theorem for a class of these systems is known. Here, necessary conditions are presented for the
vector space (£, || ||oo). These results capture the conservatism of the small gain theorem as it
is applied to systems that do not have linear gain. The theory is also developed for the case of
{5 signal norms, indicating some difficulties which make this case less natural than /..
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1 Introduction

This paper considers the development of necessary conditions (conditions that when not met imply
that there exists a perturbation that destabilizes the system) for the robust stabilization of certain
classes of nonlinear plants. The problem of robust stabilization may be stated as follows. Given a
nominal plant model and a family of possible true plants, under what condition does a compensator
which stabilizes the nominal plant also stabilize every plant in the given family?

The idea that a loop of less than unity gain ensures stability of a feedback loop has been appre-
ciated since the early days of classical control. In mathematical terms, it is related to well-known
ideas on invertibility of nonlinear operators of the form I + G1G2 where [ is the identity and Gy, G2
are nonlinear operators on Banach spaces.

The usual form of the small gain theorem assumes gain properties of the form

[(Mu)rlly <vllurllp (1)

|M x|,
. . . . ||me. . .
p-norm), and up denotes the truncation of the signal u at time T'. With this structure, it is shown, for

1 <p < oo, that, if M is linear and if [|Allg, ., <1 then the feedback system of A and M achieves
robust stability if and only if || M][le,_,,, < 1. For details, see Dahleh and Diaz-Bobillo (1995) and
Young and Dahleh (1995). If M is nonlinear, the necessity part only holds if M is fading memory
and p = 2 (see Shamma (1991) or Shamma and Zhao (1993)).

In Mareels and Hill (1992), a different notion of stability called monotone stability is used to
obtain sufficient conditions for stability of feedback systems (where the systems in the loop can
be nonlinear). This notion of stability is a generalization of (1). It allows more general bounding

functions of the form

for the operator M where u denotes the input signal, v = sup,_ (|l - |l denotes the usual

(Mu)r|| < F([lurl])

where F'(-) is a monotone function. Systems satisfying the last inequality are called monotone stable.

While sufficiency conditions for robust stability were shown with this new notion of nonlinear gain
(also used by others like Sontag et al. (1994), Teel (1995), or Teel (1996)) no results on the necessity
of such conditions are known. Such results are useful to understand the degree of conservatism that
the small gain theorem has. Necessity conditions for linear gain exists (see Dahleh and Diaz-Bobillo
(1995) or Khammash and Dahleh (1992)). There also exist necessity conditions for nonlinear systems
that have their output norm bounded by a linear function of the input norm (see Shamma (1991) or
Shamma and Zhao (1993)).

The main results of this paper are necessary conditions for the robust stability of nonlinear
systems. For the vector space ({eo, || - ||co) We give necessary conditions on a system M for robust
stability with either nonlinear time varying (NLTV) or nonlinear time invariant (NLTI) perturbations.
These conditions are also studied for the vector space (¢, ||-||2) but, here, in contrast to the (£, || ||o0)
vector space, the results lead to fundamental questions. On one hand, the necessary conditions derived
on M for robust stability are for non-causal perturbations. The construction of a causal perturbation
is still under investigation. On the other hand, several other problems arise in this vector space which
do not occur in £o,. These problems will be analyzed in section 5.

Using known sufficient results for robust stability (that we will recall here) we will derive an
equivalent sufficient condition that is close! to the necessary conditions.

The remainder of this paper is organized as follows. Section 2 starts by establishing notation and
giving some mathematical preliminaries. Section 3 deals with sufficiency of the small gain theorem.

'We will explain what we mean by close later.



Sections 4 and 5 present necessary conditions of the small gain theorem in (£oo, || - ||oo) and (Lo, || - [|2)
respectively. Section 6 shows, using an example, how the results given in the previous sections are
important when analyzing the robust stability of a given closed loop system. Finally, concluding
remarks are given in section 7.

2 Mathematical Preliminaries

We start by defining some standard concepts. The field of real numbers is denoted by &, the set of
n %X 1 vectors with elements in R is denoted by R”, and the set of all n x m matrices with elements in
R is denoted by R™*™. The set of nonnegative reals (integers) is denoted by R, (Z4). Superscript
()T denotes transpose.

The extended space of sequences in " is denoted by £, for every 1 < p < oo or just by ¢ when
it is obvious or when it just does not matter what p — norm is being used. The restriction of f to
the interval [a,b] is denoted by fljp. For every f = {f(0), f(1), f(2), -} € £ define || f[l,, , as

b 1/p
1 1oty = (Z |f(n)|p>

The set of all f € £ such that

o0 1/P
71l = (z |f(n)|”> < o0
n=0

is denoted by £,,. The set of all f € £ with f & ¢, is denoted by £\ £,,.

Given f € £ define the support of f € £ by supp(f) = {n: f(n) # 0}.

For k € Z,, Sk denotes the kth-shift (time-delay) operator on ¢, and Pj the kth-truncation
operator on £. Let H : £ — £ be an operator. Then, H is called causal if PyHf = P HPyf, Viez,,
strictly causal if PyH f = PyHPy_1f, Vkez, , and time invariant if HS; = S1H.

Let X, and Y. be two signal spaces. Then an operator G : X, — Y, provides an input-output
system representation. We do not make explicit the role of initial conditions although this can be
important in a complete stability analysis (see Hill (1991), Jiang et al. (1994), or Teel (1996)).

The following definition provides a concept of input-output stability.

Definition 2.1 The system G is monotone stable if there exists a monotonic increasing homeo-
morphism? F : R, — R, with F(0) =0 and a constant B € Ry such that

1(Gu)r|l < F(llurl) + B (2)
forallu € X and T > 0.

If G is linear, causal, and bounded then F' in (2) can be written, for all s > 0, as F'(s) = s, where
7 = ||G|| > 0 (note that |G| represents the induced norm of G and it is defined as sup, %)

Consider now the feedback system in figure 1.

Assumption 2.1 Let Vi, and Vo, be two signal spaces. The operators G1 : Vie = Vae and G :
Voe — Vie are such that for all input signals Ty € Vie and 1o € Voo there exist unique signals
u1,y2 € Vie and ug,y1 € Vae.

2A function F is an homeomorphism if it is continuous and has a continuous inverse.



Figure 1: Closed loop system

This assumption ensures the feedback system model is mathematically well-posed in the sense
that unique signals exist in the chosen signal spaces. Sufficiency conditions to ensure this situation
are available in the literature (see Vidyasagar and Desoer (1975)).

Definition 2.2 The feedback system in figure 1 under assumption 2.1 is called monotone stable if
there ezist functions Fy, Fo : Ry x Ry — Ry and constants By, B2 € Ry such that

Fy([lrarll; llrar () + 6o (3)
Ey(lrazll; [lrarll) + Ba

lyar|

<
lyorll <

V720, Vo € Lpies Yoy € Lpye, and Fi(o,-), Fi(-,0), Fy(o,-), Fa(-,0) are monotonic increasing
homeomorphisms of Ry onto Ry for any o € R4 and with F1(0,0) = F5(0,0) = 0.

Comment: The last definition of stability has some implications. First, we see that if, for a certain
system, there exist bounded inputs (ri,79 € £) that produce unbounded outputs (y1,y2 € ¢) then
there are no functions F; and F, that satisfy the definition and therefore the system is unstable.
There is another important implication which has to do with the ;. There are systems that are
stable when we allow 3; # 0 but they are unstable when we impose (3; = 0. To see this, assume
for instance that (31, 32 can be different from zero (as in the definition). Then, we can actually have
systems such that the input norm can be made arbitrarily small but the output norm remains the
same. Although the ratio FlHLH goes to infinity (for any F; as in definition 2.2), with stability defined

(NIl

this way, these kinds of systems are stable. This is due to the fact that we considered 3; # 0.

Example 2.1 A very simple example is a relay (see figure 2). In o, this static nonlinear system
is stable if we allow B # 0 (in this case, § = 1). If we impose B = 0 then there is no F satisfying
definition 2.1 which means that the system is unstable

Figure 2: Relay

Definition 2.3 A nonlinear operator G is said to be finite memory if there exists an increasing
integer function FM(+;G) : Zy — Z, with FM(t;G) >t such that

(I = Prya))Gf = (I — Prya) G — P) f (4)

for all f € £, and t € Z,. The function FM(-;G) is called the finite memory function associated
with G.



Figure 3: G is finite-memory

The last definition states that (see figure 3) the effects of a finite-duration of the input eventually
vanish completely and therefore the recent operator output depends only on the recent inputs and
not on the extreme past inputs.

The following proposition is from Shamma (1991).

Proposition 2.1 Let G, a nonlinear operator, have finite-memory with associated finite-memory
function FM(-;G). Then for fi € fly with supp(fi) C [0,n] and fo € Ly with supp(f2) C
[FM(n;G) + 1,00)

G(fi+f2) =G +Gf

In the following definition, assume that G is some nonlinear operator and || - || = || - ||, for some
1 <p<oo.

Definition 2.4 Let ng(s) : Ry — Ry be a non-decreasing function defined, for all s >0, as

nG(s) = sup [[G(f)]] (5)
Ill=s

Note that ng may not exist. If there exist an f with ||f|| < oo such that [|G(f)|| = oo then
na (|| f1) is not defined and therefore, for this given system, g does not exist.

Note also that G is monotone stable if and only if ng exists. If G is monotone stable then
there exists a monotone increasing homeomorphism F' and a 5 € R, satisfying (2). Since ng(s) <
F(s) + B < oo it means that ng exists. Conversely, make 8 = ng(0) and if 9 exists and it
is a homeomorphism, then just make F(s) = ng(s) — 8. If ng is not a homeomorphism, pick a
homeomorphism F' satisfying F'(s) > ng(s) — . This means that G is monotone stable.

This last definition is the natural extension of the gain of a linear system defined as v =
Sup .o % Note that (5) can be written as

N 7]
s e (71D

In the case where G is a linear system, 7n¢ is just a linear function, that is, ng(s) = 7s. But,
in general, if G is a nonlinear operator, 7¢g is some non-decreasing function. As in the linear case,
(5) tells us that for any s > 0, there exists a signal f with ||f|| = s such that ||G(f)] is equal or
arbitrary close to ng(]|f]|), that is, given any € > 0 there exists a signal f with [|f|| = s such that
16 (If1) = G < e. For all other u € £, |G(u)|| < n(|lul).

Note that this is not necessarily true for F' in 2.1. The only information we have from F is that
for every u € £, ||G(u)|| < F(||u||) + 5. The relation between F' and 7 is therefore ng(s) < F(s)+
for all s > 0. In fact, there may exist s > 0 for which one cannot find any f € ¢ with || f|| = s such

that [G(F)| = F(If1) + 8-

=1



Another important difference that follows from what was just discussed is that 1 does not need
to be an homeomorphism. In fact, g does not need to have an inverse or to be continuous. Also,
note that 7 (0) does not need to be equal to zero.

Example 2.2 For a relay (see figure 2), na(s) =1 for all s > 0. In 2.1, we can choose =1 and
F can be, for example, F(s) = es, where € > 0.

The properties of ng will play a key role in section 4 and 5 when we talk about necessity of the
small gain theorem.

Consider the system in figure 4.

Figure 4: Closed loop system

Let A denote the class of allowable perturbations. We now define C'a j, as the subset of A
containing elements with na(s) < Q(s), where € is a monotonic increasing homeomorphism.

Definition 2.5 Given a monotonic increasing homeomorphism Q define
Cap={A € A: na(s) <Q(s)}

This is the same to say that, for every f € £y, [|A(f)llp < na(l|lfllp) where na(s) < ©(s). This
means that [|A(f)]l, < 2(1f,)-

For perturbations A € Ca p, the problem will be to find necessary and sufficient conditions on
M to guarantee robust stability.

3 Sufficiency of the Small-Gain Theorem

In this section we will present a sufficient condition to achieve robust stability when the perturbation
belongs to Ca ,. First we will present some known results that will be used to derive a sufficient
condition on some system M, perturbed by A € Ca jp, that guarantees the robust stability of the
feedback system in figure 4. This condition is not equivalent to the one that will be presented in
sections 4 and 5, where necessity will be discussed, but, as we will see, they are close in the sense
that both look in to the composition of the gain functions of the system that is being analyzed and
its perturbation.

Definition 3.1 Define the following function classes:

Q = {F:Ry — Ry| F is a monotonic increasing homeomorphism of Ry onto RN}
N = {FeQ|3q st Flx) <o—pla)}
N, = {FeQ| 3pcq st Flz) <z —p(x) for all z >y} wherey > 0.



So, N C N,,. Define also Q0 = Q U {Op} and NO, = N, U{Op} where Of denotes the zero
function F' = 0.
Let ¢ denote the identity function.

Fact 3.1 If Fi,F, €Q then F{ ', Fyo Fy, F| + F, € Q.
Proposition 3.1 F € N, if and only if 3,cq such that (i + p) o F(z) <z for all z > y.

Proof: (=) Assume that F' € N,. This implies that 3,¢¢ such that F(z) <z —a(x), Vo > y. This
is the same to say that Vz >y, F(z) + a(z) < z or (i + p) o F(z) < z where p(z) = ao F 1 € Q
from fact 3.1.

(<) (i+p)oF(x)=F(x)+p(F(x)) <z, Vr>y. Let £(x) = (po F)(x) € Q by fact 3.1. Then,
F(z) <z —p(F(z)) =z —§&(x), Vo > y, which means that F' € N,. ]

Consider the feedback system in figure 1.
Let each system be monotone stable with gain functions F; and F5, and 81 and By as in defini-
tion 2.1. This means that

lyar| Fi([luirl) + 5 (6)
lyor| Ey([luzrll) + B2 (7)
The proof of the following result can be found in Mareels and Hill (1992).

ININ

Theorem 3.1 Consider the system in figure 1. Suppose G1 and Go are stable and satisfy (6,7).
The feedback system is monotone stable if there exist p € Q and s* > 0 such that

FQO(’i+p)OF1€NS* (8)

Corollary 3.1 Consider the system in figure 1. Suppose G1 and Go are stable and satisfy (6,7).
The feedback system is monotone stable if there exist p1,p2 € Q and s* > 0 such that

(i+p1)oFro(i+py)oFi(s)<s forall s>s" 9)

Proof: The result follows from the last theorem and proposition 3.1. [ |

Consider again the system in figure 4. Assume that there exists a § € (0,1) such that A €
C’Z,p ={A e A: na(s) <(1-p)Q(s)}. It is easy to see that ngp C Cap (Cayp is defined in
definition 2.5). Assume also that M is monotone stable with gain function m(s).

We will prove that it is sufficient to have m(s) < (1 — €)Q !(s) for some 0 < ¢ < 1 and
for all s > s*, for some s* > 0, in order to have robust stability. We will show that when M
satisfies this condition we can always find monotonically increasing functions p; and py satisfying
(i + p1)ona o (i+ p2) om(s) < s and this way prove robust stability.

Corollary 3.2 The system in figure 4 achieves robust stability for all A € Cg,p if there exist an
€ € (0,1) and an s* > 0 such that m(s) < (1 —€)Q~1(s) for all s > s*.

Proof: In equation (9), let pi(s) = %s and pa(s) = 7=s. Using corollary 3.1 with F; = m and
Fy = na the result follows. [ ]

Note: this is not a new result. This last corollary says the same as corollary 3.1. Here, € and (3
represent the same as p; and po in corollary 3.1. The reason why we have included this corollary is
to give a sufficient condition that is arbitrarily close to the necessary condition we will talk about in
the following sections. What we mean by arbitrary close is that when both € and 3 approach zero,
the sufficient condition approaches (€2 o nyr)(s) < s which is (as we will see in sections 4 and 5) the
condition for necessity.



4 [/, Stability Robustness Necessary Conditions

Consider the system in figure 4. In Dahleh and Diaz-Bobillo (1995), Dahleh and Khammash (1993),
and Khammash and Pearson (1991) necessary conditions for stability robustness were presented for
the case when M is linear time invariant. We will now extend those conditions to certain classes of
nonlinear M. First, we will consider the case where the perturbation is NLTV. Then, we will prove
that the necessity conditions still holds if the perturbation is NLTI.

Before we move to the next section, a remark is in the order to the effect of initial conditions. Since
only input-output stability is considered, the effects of initial conditions is not addressed explicitly.
For general NLTV systems, the initial condition can dramatically alter the resulting input-output
behavior. However, since in the proofs of necessity in both £, and ¢ cases we assume having finite
memory for M, the effects of initial condition vanish after some finite time.

4.1 [/, stability robustness with NLTV perturbations

Before we present the main theorem of the section we give a lemma that will be used during the
proof of the theorem.

Lemma 4.1 Let A: Ry — {true, false} be some boolean function and f : R; — Ry an increasing
homeomorphism. Saying that there exists a monotonic increasing sequence {s,} with s, — 0o as
n — oo and f~Y(spt1) — f1(sn) < L, for some L > 0, such that A(sp) = false, Vnez, , is
equivalent to say that Inso : Ve, Jgeco< (51 (s%)4+n) Such that A(s) = false.

Proof: (=) Given any s* > 0, one can always find an n € Z such that s, < s* < s,41. Pick s =
Sny1. Then A(s) = false and f=1(s) — f~1(s*) < f (spy1) — fHsn) < Lor s < f(f~1(s*) + L).
So, just take N = L and the result follows.

(<) In this case we need to construct a sequence {s,} according to the lemma. Let sj > 0.
Then, Jg: < go< (-1 (s5)+n) such that A(so) = false. Let s7 = so and S = {s] <s < FOfF s +
N) : A(s) = false}. By assumption, S; is non-empty. Let s; = maxS;. Again, let s5 = s
and Sy = {s3 < s < f(f (s3) + N) : A(s) = false}. Let s = maxSy. This means that
so > f(f7(st) + N) = f(f~%(s0) + N) > f(N). Constructing s3, s4,- - - the same way and letting
L = N the result follows. ]

Next, assume that Ca,, o represents the set of all causal NLTV perturbations according to
definition 2.5. The case of time invariant M is considered first.

Theorem 4.1 Assume that M 1is finite memory, monotone stable, causal, and NLTI. The system
in figure 4 achieves robust stability for all A € Cayy 0o only if given any N > 0, there exists an
s* >0 such that (Qonu)(s) < s for all s* <5 < QQ1(s*) + N).

This theorem tells us that if the system in figure 4 is robust stable it implies that for any N > 0,
there is an interval on the real line (the interval is (s*, Q(27!(s*) + N)) for some s* > 0) such that
the composition of 2 with 1,7 in less or equal than the identity function in that interval.

Proof: To simplify the proof, consider M and A SISO.

The approach we use is to show that a destabilizing perturbation A € Ca,y o can be con-
structed whenever the conditions of the theorem are not satisfied. So, assume that In>o : Vs<>o,
o <s<a@-1(s*)+N): M(s) > Q~1(s). From lemma 4.1 this is equivalent to say that there exists a
monotonic increasing sequence {s,} with s, — oo as n — oo and Q7! (s,41) — Q7 '(s,) < L, for
some L > 0, such that nas(sn) > Q7 (sp), Vnez, -



Since M is finite-memory, from definition 2.3, this means that there exists an increasing integer
function FM (-, M) : Z, — Z4 with FM(t; M) > t satisfying equation (4).

As in Dahleh and Diaz-Bobillo (1995), Dahleh and Khammash (1993), and Khammash and Pear-
son (1991), the proof is divided in two parts: construction of an unbounded signal and construction
of a destabilizing perturbation using that signal.

Construction of the unbounded signals

We need to construct ¢ satisfying:

1. £ is unbounded;
2. We want na(s) < Q(s) which means that we need to have || Pl < Q(||Pryl|oo) for all £ > 0.

Assume that Ny = 0. The construction of ¢ proceeds as follows (see figure 5).

Figure 5: Construction of ¢ for t = Np,_1,---, N, — 1

For all n = 1,2,3,---, let Ny, = FM(N,_1; M) (this will guarantee that z(Np,) = 0). From
assumption we know that nas(sn) > Q71(s,). Let €, = nar(sn) — Q7 (sn). Now, choose N,, >
Non and [(t)] < s, for t = Ny, ..., N, — 1 such that ||Py, —1€]lec = sn and nas(|| Py, —1€]lec) —
| PN, —12]lo0 < €n. This way ||Py, —12]lcc > Q2 (s,). Since

y = z+r
= 2+ sgn(2)(Q (sns1) — Q (sn))

we have

1PN, —1Ylloc = [IPN,-12lloc + (7 (5n41) — Q7' (sn))
> Qfl(sn) + (Qfl(snﬂ) —Q! Sn))

or
1PN, —19llo0 > Q@ (sn41)

Since |£(t)] < spy1 for ¢ = Nopti, oo, Npt1 — 1 we actually have

1Peylloc > Q7" (1P£ o) (10)

for all t. Also, since s, — oo as n — oo we have that ||£(¢)|| — oo and ||y(¢)|| — oo as n — oo (or
as t — 00). So, both requirements for ¢ are met.

Note that, from assumption, we have Q (s,11) — Q '(s,) < L for all n € Z,. Therefore,
I7|loo = sup,, (2 (sp41) — Q7 (sn)) < L, i. e, 7 € loo.

Construction of the destabilizing perturbation

The idea now is to construct a destabilizing perturbation A € Ca,, o0 using the signals £ and y
(see figure 6).

We have & = {£(4)}2, € ¢ and y = {y(7)}32, € £ such that (10) is satisfied. We can rewrite (10)
as [|[Pilloo < QI Pyllso)-



Figure 6: Construction of A

Now, A is trivial if y = 0: just pick A itself to be zero. So, assume that y # 0. Constructing
(y(i1),y(42),...) as in Dahleh and Diaz-Bobillo (1995), Dahleh and Khammash (1993), and Kham-
mash and Pearson (1991) we can now construct our A.

So, A is constructed by having (see figure 7) £ = A(y) = AQ(y). This can be seen as a series of

two systems. The first is a static nonlinear system whose argument is y(¢) while the second (A) is
just an LTV system.

Figure 7: Structure of A

A is a matrix constructed as follows

0
£(i1)
0 agmy O
£(in—1)
i oua) O 0 "
_ 12
A= Ay O

where the first nonzero column is ¢;th, the second is the ioth, and so on.

It is easy to see that & = A(y).

Each row of the above matrix has at most one nonzero element which has absolute value less
than 1. This means that ||Afl, _, , < 1.

Now, let’s see if A belongs to the set Ca,, 0. For every ¢t we have ||Pil|lcc = [|PA(Y)]l00 =
AP oo < 1Al PRWIoo < IPL2W)Iloo = QIPylloc) or just [Piclloe < | Prylloo)
which means that na(s) < [|A]le Qs) < Qs). So, A € Cayy,00- Moreover, A is causal and
NLTV.

So, we found a bounded input that produces an unbounded output. This means that in defin-
ition 2.2 there is no function F; such that (3) is satisfied because there exists a bounded u; = r

co—ind

10



(with uy = 0) that produces an unbounded y;. Therefore, we conclude that the closed loop system
is unstable. [

Corollary 4.1 Consider the system in figure 4. If there exists an s* > 0 such that (Qonp)(s) > s
for all s > s* then there exists a perturbation A € Ca,, 0 that makes the system unstable.

Proof: The proof follows from the last theorem since this corollary is just a special case of it. m

Remark 4.1 For Q(s) = s, theorem 4.1 provides a necessity proof for b, — stability of finite
memory systems that satisfies
M)

sup

ifl=s L

Moreover, the destabilizing perturbation can be LTV.

=1

Remark 4.2 In the previous theorem we consider the system M to be time invariant. The results
can actually be extended to the case where M is nonlinear time varying by replacing (Qonar)(s) < s
with inf,(Qonars, )(s) < s (note that the operator M Sy, represents the original operator M restricted
to inputs which start after time k). The proof, omitted here, is based on the same ideas of the proofs
of the previous theorem and theorem 3.2 in Shamma (1991).

4.2 [/, stability robustness with NLTI perturbations

Assume here that Ca,; - represents the set of all NLTI perturbations according to definition 2.5.
The proof of the following theorem is similar to the one done in Dahleh and Diaz-Bobillo (1995).

Theorem 4.2 The system in figure 4 achieves robust stability for all A € Ca,; 00 only if given any
N >0, there exists an s* > 0 such that (Qonyr)(s) < s for all s* < s < QQ71(s*) + N).

Proof: The proof of this theorem follows exactly as the proof of theorem 4.1 except for the con-
struction of the destabilizing perturbation. Given the signals y and &, we show that a nonlinear time
invariant perturbation can be constructed to destabilize the closed-loop system.

Let the signals y and & be given as before. Then A must be such that

1a(s) < 1Al ;. 2s) < Q(s) (11)

and £ = A(y). We just need to redefine A. So, let A be defined as follows

< ) k&(t—j), if for some integer j >0, P,f = P,S;y,
(Af)E) = { 0, otherwise.

where S is the shift operator by j steps. It is easy to see that the new A is a nonlinear, time invariant,
and causal system. It satisfies (11) (because ||All,__, , < 1) which means that A € Ca,, 0 and
maps y to &. [ |

5 {5 Stability Robustness Necessary Conditions

Once again, we will extend the conditions for stability robustness presented in Dahleh and Diaz-
Bobillo (1995) to certain classes of nonlinear M.

11



5.1 /(5 stability robustness with non-causal perturbations

The following theorem gives a necessary condition on the system in figure 4 in order to guarantee

that the closed loop system is stable. Here, M is assumed to be some NLTT and finite memory system

with its output ¢ — norm bounded (to an input u) by nas(||ul|2) according to definition 2.4.
Define ngvoﬂ,:v (with 2 > 0), for some given k > 0 and 3 > 0, as

CZNCQ,Q: ={A e A:na(s) < (14 pP)ks®, A non causal}

This is a special case of definition 2.5 where Q(s) = (1 + 8)ks” and A is non-causal.

One of the assumptions in the next theorem is having = < 1. The reason why the theorem does
not follow for > 1 is because it is assumed that M is finite memory. In fact, if z > 1 and M is NLTI
then it can not be finite memory. It has to be infinite memory. This can be shown by contradiction.

Assume nps(s) = (%)% and M is finite memory. Then, there exists an f € f3 and an integer
N = 0 such that supp(f) = [0, N —1] and | M fll2, y_; = m([[fll2) y_y;)- This means that for this

particular f we have

1
1 z
197 oy = 194712 = (11 (12)
Let T'= FM(N; M) + 2. Define

£ = ZSle = (fa Olsafa OIS,f, 0,33 e ) (13)
=0

where (/s denotes a string of zeros of length T'— N — 1. From proposition 2.1 it follows that the
response M&§ =M Y., fn =2, M f, despite the nonlinearity of M. Given this decomposition, M¢
may be block partitioned as follows

y:(MfaxlaMfaanva'“) (14)

where z; € /5 are some signals. From (13) we see that

1P alls = IFIB+ B+ + £13
vl fll2

and from (14) we have

|Par—aylle = IMEIG+ llzall + IMFI5 + w2l + -+ IMFI3 + lzal3
> V/n|[Mfll
Therefore
| Par—1y |2 V|| M fll2
T = I
(H1Paraéla)”  (RvAlfl)®
Vil Mflla
- I

(vn)® | M fll2

= nE2__acl>1

which 1is a contradiction.

Bl
SN—
8=

for 2z > 1. This means that in fact nps(s) > (
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Theorem 5.1 Let z < 1 and 8 > 0. Assume that M is finite memory, monotone stable, causal,
and NLTI. The system in figure 4 achieves robust stability for all A € ngvc,%x only if there exists

an s* > 0 such that ny(s) < (%)% for all s > s*.

Proof: The method of proof will again be similar to the one in Dahleh and Diaz-Bobillo (1995) or
Shamma (1991) and Shamma and Zhao (1993). We will show that one can construct a destabilizing

perturbation A € CZNC,Z:U whenever the conditions of the theorem are not satisfied. So, assume that

Vs*ZO; 3525*: num(s) > (%)%

A particular signal € € £\ /5 is constructed for which there is an admissible A such that one has
(I — AM)E € £y. The lack of invertibility of (I — AM) then follows immediately.

This will be done in two steps. The first step is to construct that signal £. The next step is to
use this signal to construct a destabilizing perturbation.

As is the proof of theorem 4.1, we have the assumption that M is finite memory. This means
that there exists an increasing integer function FM (-; M) : Z, — Z, according to definition 2.3.

Construction of the unbounded signals

The signal £ to be constructed has to satisfy (a) be unbounded and (b) if y is the output of M

1

to & then || Piylla > (ke Piéll2) * for all ¢.
Assume that sy = 1 and £y = 0. The construction of ¢ proceeds as follows. For alln =1,2,3,-- -,
choose a;, > 1 big enough (we will see what we mean by big enough soon) and let s}, = apsp_1.

Then 3, >4:: nar(sn) > (%)% Let €, = nas(sn) — (%)% Also, let a, = 3 > 1 and ¢, = apon > 1.
Then, !

*
Sp = QnS, = GpQpSp—1
CnSn—1 = CpCp—15n—-2
CpCp—1 -+ - C2C180

= CpCp—1---C2C1

Now, choose N, > 0 and f, € ¢y with ||fnl|l2 = s, and supp(fn) = [0, Ny] such that nas(sn) —
| M fr, < €p. This means that

1 1
Sp | @ CnCn—1-""C2C1 \ =
n — = -
Mgl > (S0)7 = ()

Note that || fnll2|, v, ; = [lfallz = sn. For simplicity, from now on, let ||M fillz = [[M f;
let x; represent some signals in ¢y of appropriate length for i =1,2,3,---.
Let t, = FM(Ny; M) +t, 1 +2 and

Ptn—lg = (flaoanaOa"'afnaO)

From proposition 2.1 it follows that the response M&{ = M >, f,, = >,, M f,, despite the nonlinearity
of M. Given this decomposition, M¢ may be block partitioned as follows

Ptn—ly:(MflaxlaMfZaxZa"'7anaxn) (15)
Therefore, we have ||P;, _1&||2 given by
1Pocatlls = IAIE+ 1203+ + 1 £all3

= A+ Bt + -+ (epen—1 - c201)?

12110.31

“2|[0,Ni]' Also,

= 81\/1—1-0%4----—1—(cncn_1-'-c2)2
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and ||P,—1y|l2 given by

1Pt -1yl = \/Ile1||§ +llz1ll5 + 1M f2l5 + llz2ll5 + - + M full3 + lzall
2 Pl 2
1\ = CoC1\ 7 CnCp—1°""C2C1\ ®
J(k) +< k) " +< k )
1
S z
= (f) \/1+c§/x+---+(cncn_y'-cz)Z/m

= (l“Pt —1€||2>% 1+C§/x+ + (Cncn—l"‘CQ)Q/x
k n (1+C%+...+(cncn_l___CQ)Q)l/:v

V

=(afgwmn@@%

where

Bn = (1+C§/x+"'+(Cncn—l“‘c2)2/m>_§—1>0

(L+c3 4+ (cnep—1- 02)2)1/:1;

It is easy to see that when a,, — 00, ¢, — 00, and therefore 5, — 0. So, we need to choose ay,
big enough so that 0 < 3, < .

Also, s1 > 1 and for all 1 =1,2,---,n, ¢; > 1. This means that

51\/14-0%—{—---—1—(cncn,l---CZ)Q
> VItit - +1
= /n

Therefore, when n — oo, ||P;, —1£||2 — oo and therefore ¢ is unbounded. So, both requirements
for £ are met.

Construction of the destabilizing perturbation

Given the signals y and &, we show that a nonlinear, non-causal perturbation can be constructed
to destabilize the closed-loop system.

Let the signals y and £ be given as before. A must be constructed such that na(s) < ks® and
¢ = A(y). Consider the perturbation defined as follows

| Pt, 1€l

0, if ¢ <tq,
(Af)(t) =14 &(t—j), if for some integer j >0, P,f = P,S;y,
0, otherwise.

It can be verified that A is a nonlinear and non-causal perturbation. We notice that the maximum
amplification occurs when the input signal of A is y. We also know that

x

1Pl > (g P16

1
(1+ Bn
or equivalent
1P, -1€ll2 < (14 Bn) k|| P, —1yll3

Since £, < [ we have
1P, 1€l < (1 + B)kl Pr, —1yll3
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which means that na(s) < (14 §)ks™ and therefore A € CZNC,Z’I and maps y to &.

So, A is constructed to have A(y) =& — (f1,0,0,0,--+) = (0,0, f2,0, f3,0, fa,---).

Now, we just need to show that this is indeed a destabilizing perturbation. If we let £ be the
input to (I — AM) then we have

(I-AM)(E) = &—AME)

(f1?03f2_anOa"'aOafn_fnaOa"')
= (flaoaoaoaoa"')EEQ

This implies that the system in figure 4 is not £ — stable because it maps a signal in /5 to a signal
in £\ ¢5. Therefore, as in the case of the £, proof, we conclude that the system is not monotone
stable. This completes the proof. [ |

Comment: Since, by construction, A is infinite memory, we can have na(s) < (1 + §)ks® with
Tz <1

Comment: In the /5 case, the construction of a causal perturbation A instead of a non-causal
one, like in the /,, case where the conditions for stability hold for both NLTV and NLTI causal
perturbations, is under investigation.

6 Example — Linear system with a nonlinear feedforward term

In this section we will give an example where the theorems presented in the previous sections can be
applied to conclude stability or instability of closed loop systems in the form of the one in figure 4.

6.1 System description
Consider the following SISO system

z(t) = Ax(t) + bu(t)
y(t) = cx(t)+ flu)

where t > 0, z(t) € R, u(t),y(t) € R, A € R, b e R™*!, ¢ € R1*", and the only information
we have of f is that || f(ur)|leo < |Jur||%, for every u € £ and T > 0.

Suppose that only the output is available for feedback and that some control law v = K (y) was
designed. In this example, we will show that the controller K needs to be nonlinear in order to have
the feedback system robustly stable.

We need to rearrange the system to make it look like the one in figure 4. For a given control law
u = K(y), the result is in figure 8.

Let P represent the initial system but with f(u) = 0, that is, P is a linear system with matrices
(A,b,¢,0). Then, we redraw the closed loop system to a simpler form (figure 9).

So, in figure 4, we define M as the system that maps the signal w to v and A as the system that
maps u to w. The dynamics of M, at any time ¢t > 0, are

z(t) = Ax(t) + bu(t)
u(t) = K(w(t) + cx(t))

and for A are

w(t) = f(u)

15



Figure 8: Closed loop system

Figure 9: Simplified closed loop system

M can be written as the operator M = (1—PK)~'K. For A it is easy to see that na (s) < s? and
therefore A € Ca o = {A € A : na(s) < s}. In definition 2.5, Q(s) = s? which is a monotonic
increasing homeomorphism.

Let’s now study the stability of the closed loop system for different control laws.

6.2 Linear controller

Assume that K is a linear controller (static or dynamic) such that (1 — PK)~'K is stable. This
means that 7y/(s) = as where o = || M||¢,, —ina- In this case, for any N > 1/« there is no s* > 0
such that npr(s) < /s for s* < s < (Vs* + N)2 = s* + N. This can be seen by noticing that
N = (Vs* + N)? — s* = 2y/s*N + N? > 2\/3_’%4—% > #, or N > ﬁ Since there is no
interval on the positive real bigger than a—12 such that na(s) < /s, the result follows. Therefore,
using theorem 4.1, we conclude that the closed loop system is unstable. Moreover, there is no linear

controller K that can stabilize the system.

6.3 Saturation controller

Assume now that in the previous section we add a saturation after the controller K (in the feedback
loop). This way, u(t) = sat(Ky(t)), for every ¢ > 0, where sat(-) denotes the usual saturation
function.

In order to prove the stability of the closed loop system, we need to find 77 or an upper bound
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m of npr such that the conditions of theorem 4.1 are satisfied. Here, it is assumed that nys exists,
that is, it is assumed that M is stable.

If the input w is such that it produces an output u with ||u||sc < 1 then M can be viewed as a linear
system because the saturation is in the linear region. In this case, as seen before, |M||s,. —ind = @,

and therefore 77 (s) < m(s) = as for 0 < s < 1. For ||lw||e > L we can bound ||u/|o by 1.

s

1 S

Figure 10: m(s) for different values of «

From figure 10 it is easy to see that for every a > 0 there always exists s* > 0 such that
nar(s) < m(s) < /s for all s > s* (note that s* = 1 will work for every o > 0). Therefore, using
theorem 4.1, we conclude that the closed loop system is stable®.

7 Concluding Remarks and Future Work

This paper presented necessary conditions for robust stability of a system M perturbed by a family
of disturbances A. Sufficient conditions were also included for completeness. It was shown that,
for the vector space (foo, || - |loo), those sufficient conditions are arbitrarily close to the necessary
conditions under appropriate assumptions on the system M.

While in the vector space (£, || - ||s) the results were completely analyzed, in the vector space
(£a,] - ||]2) several problems arose. The fact that only finite memory systems were being considered
imposed immediately, in this vector space, restrictions on the gain function of the system M. Also,
while necessary conditions with either NLTV or NLTI perturbations were presented for the vector
space (Yoo, || - |loo), only necessary conditions with non-causal perturbations were found for the vector
space (£a, | - [|2)-

For future work, these results should be extended to the general case where M is not finite
memory but it is infinite memory. In particular, we believe that it should not be very different from
the proofs we have here, to show that these results still hold when M is fading memory (see Shamma
and Zhao (1993)) instead of finite memory. This is not done here to make the proofs more readable.

In Vidyasagar (1993) results for the case where the nonlinearities are sector bounded by linear
functions are given. For future work, this results can be extended to the case where the nonlinearities
are sector bounded by a certain class of monotonic increasing functions. Also, as future work, in the
£y case, a causal perturbation A should be constructed instead of non-causal one like in the /., case
where the conditions for stability hold for both NLTV and NLTT causal perturbations.

*Note that this notion of stability is the one given in definition 2.2.
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