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Abstract

This paper uses quadratic surface Lyapunov functions to efficiently check if a double
integrator in feedback with a saturation nonlinearity has £»-gain less than v > 0. We
show that for many of such systems, the £5-gain is non-conservative in the sense that
this is approximately equal to the lower bound obtained by replacing the saturation
with a constant gain of 1. These results allow the use of classical analysis tools like pu-
analysis or IQCs to analyze systems with double integrators and saturations, including
servo systems like some mechanical systems, satellites, hard-disks, CD players, etc.

1 Introduction

There are many control applications that can be modeled as a rational plant with a single
integrator, a saturation nonlinearity, and a PI controller as shown in figure 1. One of the
most simple is the position control of a body with a PI controller and a power limit actuator.
In this case, the force F' = mZ + k&, where m and k represents the mass of the body and the
coefficient of friction, respectively. Typically, if the position z(t) is to track some reference
command u(t), a PI controller is used. In this case, P(s) = (ms+ k)~ !.
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Figure 1: PI position control system with power limited actuator

Not only systems satisfying the Newton’s law F' = ma can be modeled as in figure 1.
Many servo systems, including mechanical systems, are often modeled this way. A double
integrator system may be used as a simple model for satellite control, modeling the relation
between the angular position and velocity and the reaction jets. Other examples are the
control of a hard-disk drive head, the laser beam of a CD, etc.

Analysis of saturation systems with double integrators has been done for many years. As
explained in [9], in order to perform robustness analysis the system is typically transformed



into one shown in figure 2, where the saturation is treated as an uncertainty. The problem
with this approach is that it gives us a nominal plant that is marginally unstable, preventing
us to apply some classical analysis tools such as the Popov criterion, y-analysis, and Integral
Quadratic Constraints (IQCs).
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Figure 2: Nominal system and uncertainty

An alternative is to encapsulate the unstable operator in an artificial feedback loop which
defines a bounded operator. Robustness analysis can then be performed on the transformed
system which consists of bounded operators. Assuming P(s) is stable, this leaves us with
the double integrator and the saturation to worry about. A possible loop transformation is
shown in figure 3. In order to analyze the system, we mush first check if A is a bounded
operator. In this case, A is a double integrator in feedback interconnection with a saturation
nonlinearity, where the output consists of signals from both the first and second integrator.
The question whether the system # = sat(—kiz — ko + u) has finite Lo-gain from u to =,
Z, or &, has been posted as an open problem [2]. It has been shown, meanwhile, that the
Lo-gain from u to z is infinite [10], and the Ly-gain from u to £ is also infinite [9]. This
means the loop transformation in figure 3 does not result in a finite L9-gain operator A.
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Figure 3: Loop transformation with an unstable operator A

In this paper, we propose the loop decomposition shown in figure 4, where k1, ko, and
G(s) are functions of k,, k;, and P(s), and G(s) is stable (see appendix A for details). The
loops of both systems in figures 1 and 4 are identical and analysis properties can be inferred
from one to another and vice versa. The low-pass filter is used to exclude high frequency
content from the feedback loop, as expected from real applications. In [3], it is shown that
for k& = k2 = 1 and a = 0, the L,-gain of A is finite, but no upper bound of this gain is
given. The goal of this paper is, for given k1 > 0, ko > 0, and a > 0, to give sufficient
conditions to (1) check if the L£o-gain of A is finite and (2) find upper bounds on the L2-gain
of A. We show that our method is not conservative for many values of k1, ko, and « since
we are able to find upper bounds on the L£9-gain of A that are approximately equal to lower
bounds obtained when the saturation is replaced by a unity constant gain'. The method
is based on constructing quadratic Lyapunov functions on the switching surface associated
with the saturation system. The construction of such Lyapunov functions is done by solving
a set of LMIs.

'In other words, a lower bound is obtained when the saturation y = sat(£) is replaced by a unit constant
gain y = &.
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Figure 4: Loop transformation with stable operators

This paper is organized as follows. The following section contains the main result of
the paper and several illustrative examples. Section 3 proves the main result and section 4
gives conclusions. Finally, computational details can be found in appendix.

2 Main Results

2.1 Preliminaries

Let L9 denote the space of all functions f : [0,00) — IR which are square summable, i.e.,

912 = [ £t < w0

The extended space Lo, consists of all functions f(¢) which satisfy Prf(t) € Lo, forallT > 0,
where P is a truncation operator defined as (Ppf)(t) = f(t) if t < T and (Prf)(t) =0
otherwise.

We say that the Lo-gain from input u to output y of some system is less than v > 0 if

T T
| vwar <y [ 1)
0 0

for all T > 0, and all u € L9.. The Lo-gain v* of the system from wu to y is the infimum
over all y such that (1) is satisfied.

Consider the operator A in figure 4. For given ki, ko, @, we are interested in finding an
upper bound of the L9-gain of A. The following proposition gives an easy way to find a
lower bound of the L9-gain of A. The proof, based on the fact that the saturation behaves
linearly for small inputs, can be found in appendix B.

Proposition 2.1 Consider the system A in figure 4. The Lo-gain vr of the same system
but with the saturation replaced by a constant gain of 1 is a lower bound of the Lo-gain of
A, e, 0 <y <%

Note that when the saturation is replaced by a constant gain of 1, the system becomes
linear. Thus, 7, is simply the square of the Hy.-norm of the linear system

Y (s) s

U(s) (as+1)(s2+kis+ ko)
From this expression we immediately see that it is necessary k1 > 0, k9 > 0, and a > 0, or
otherwise v, = 0co. When ks = 0 the original system is reduced to a single integrator which
was studied in [8, 11]. Hence, throughout the paper we assume ko > 0. Note that the case
of k2 = 0 could also be analyzed using the same ideas described below [5]. The proof of the
following proposition can be found in appendix B.




Proposition 2.2 Consider the system A in figure 4. If there exists an a = a1 > 0 such

that the Lo-gain of A is finite then the La-gain is finite for any o > 0.

A state-space representation of system A in figure 4 is

Ty =
Ty =
—
y =

koxo

4 1 1

—E’U + E’UI

sat(—x1 — k1z9 — v)

(2)

where sat(-) denotes the standard saturation, defined as sat(¢) = sign(¢) min(|¢[,1). Let
z = [z1 z2 v]' and C = [1 k1 1]. In the state-space, the system can be seen as a piecewise
linear system, with 3 cells and two switching surfaces (see figure 5). The switching surfaces

are

S:{mE]R3: C’:czl}
and S = —S. When Cz > 1, 29 = —1, when Cz < —1, 2o = 1, and, finally, when

-1<Cz<1,39=—-Crz.

Figure 5: Possible trajectories in the state-space

2.2 Double Integrator
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where the notation e;; = e;;(T) was used for simplification. Finally, define

1 ki -1 0 0 ~1
0 1 0 0 0 0
0 0 1 0 0 0
W=l Wa=] ¢ ki -1 Ws=1 4
0 0 0 1 0 0
0 0 0 0 1 0

We are now ready for the main result of the paper. In this result, we drop the argument
(T') for simplification.

Theorem 2.1 Consider the system A in figure 4. Given ki,ka,a > 0, let v > 1. Let also
p >0 be a2 by 2 diagonal matriz and g € R%. Define

r=(5 %) o= (%) = (%)

If
wet [ W;— W.PW, _W!(PW, + G) )
Ri(T) = (—(W;P L OYW, T — W PW,—2w'G ) O )
def WQIWtWQ —P WQ’WtW1 — G)
Rua(T) = (W{WtWQ —a www, )70 )
at [ WoW,Wo— P WIW,W; — (;)
B (T) = (WéWtWQ —a  wiww, )Y (6)

for all T > 0 then the Lo-gain of A is less or equal than ~y.

The last theorem gives us a set of infinite dimensional LMIs that, when satisfied, guar-
antee that A not only has finite Lo-gain, but also that this is upper bounded by «y. This
allows us to write an IQC of the form

T T
/ y2(t)dt < / u2(t)dt (7)
0 0

which, in turn, allows us to perform robustness and performance analysis on the system in
figure 4 or, equivalently, on the original system in figure 1.

The method of proof is as follows. First, inequality (7) is satisfied if for every u € Lo
there exists a Lyapunov function V(-) such that the solution z(¢) from the initial state
z(0) = 0 satisfies

T
7 o =] dt > Vi) - V() ®
for all 0 < T; < Ty. To see this, let 7; = 0. Then, V(x(0)) = 0 and V(z(Ty)) > 0, since V
is a Lyapunov function.

Figure 5 shows possible trajectories of (2) starting at S. Depending on the control input
u, a trajectory may enter the region where y = —1. Since u € Lo, a switch must eventually
occur at some point £1 € S. The control u may also be such that the trajectory enters the
linear region where y = —C'z. In this case, there are three possibilities: the trajectory does
not switch again and goes to zero as ¢ — oo, it returns to S, or it intersects S. Since the
system is symmetric around the origin, for analysis purposes, any other trajectories can be
reduced the ones just described.



Second, define two Lyapunov functions Vi and V5 on the switching surface S. Condi-
tion (8) is satisfied if

T
| et - @ld = Valen) - Vatao) ©
Trar g 2
| Pt —vr 0] @t > Vitew) - Valan) (10)
Ty 9 9
|7 b o] dt > Viom) - V(o) (11)
for all zg, 1,2, —xop € S, and T1,Toq, Top > 0, and where u;i(t) € L2 is such that a
trajectory starting at =z satisfies z; = z(T1) and y = —1, ¢t € [0,71], and u;(t) € Lo,
i = 2a,2b is such that a trajectory starting at x; satisfies z; = z(7;) and y = —Clu,
t €0,

Finally, under certain assumptions, the inputs u;, ¢ = 1, 2a,2b, that minimize the in-
tegrals on the left side of the above inequalities can be explicitly found. If the Lyapunov
functions are chosen to be quadratic functions, the result are conditions (4)-(6). The details
of the proof can be found in section 3.

2.3 Examples

In order to solve an infinite dimensional set of LMIs, there are some extra steps we need to
take to make this solution computationally attractive. Obviously, it is not possible to solve
the three quadratic inequalities for all 7' > 0. The idea is to find a finite sequence of times
{T;} defined on some bounded set 7 = (0,7%] such that it is sufficient (4)-(6) are satisfied
in T to prove the desired result. It is then necessary to guarantee they are also satisfied
inT € (T}4,), and T € (T;,T;y1) for all T;,T;+1 € T. The latest can be guaranteed by
estimating bounds on the derivative of each condition (4)-(6) between T;,T;+1 € T (see [4]
for more details). Conditions to guarantee that (4)-(6) are also satisfied in 7' € (7'}, ),
for some 0 < 7'y < oo, are given in propositions C.1 and C.2.

The following examples were processed in matlab code. The latest version of this soft-
ware is available at [7]. Before presenting the examples, we briefly explain the matlab
function we developed. The user supplies k1 > 0, ko > 0 (the case when ky = 0 results
in the single integrator which will be dealt in the next section), and a > 0. If all three
conditions (4)-(6) are satisfied for all T € T, the function returns a graphic showing the
minimum eigenvalues of each R;(T'), which, obviously, must be positive for all T € T.

Example 2.1 Let k1 = 0.5, ko = 2, and = 2. In this example, we find the smallest upper
bound 7y of the Lo-gain of A in figure 4 using theorem 2.1. A lower bound can be found by
computing the linear gain, i.e., the L2-gain of A when the saturation nonlinearity is replaced
by a constant gain of 1. Here, this is v, = 0.8892297. Using the software described above,
we found an upper bound of the Lo-gain of A of v = 0.8892299. Note that the difference
between the upper and lower bound is smaller than 2 x 1077, i.e., the precision is less than
2.15 x 1075%.

Figure 6 shows the minimum eigenvalues of R;(T), i = 1,2a,2b. For visualization
purposes, the minimum eigenvalues of Ry, (T) and Rgy(T) were scaled by 2 x 10°. |

Example 2.2 Let k1 = ko = 1. In this example we find the smallest upper bound ~y of the
Lo-gain of A for different values of o > 0. The left side of figure 7 shows the lower bound
~r, and the upper bound v on the L9-gain of A. The right side of figure 7 plots v — 7.
Logarithmic scales were used for better visualization.
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Figure 6: Minimum eigenvalues of R;(T), i = 1, 2a,2b
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Figure 7: v and ~y;, as a function of « (left) and v — 7y, (right)

From this figure we can see that the difference between the upper and lower bound goes
to zero as « goes to infinity. In fact, for o > 0.5 the difference between v and ~yy, is less than
0.76%. For o > 5 this difference is already smaller than 0.009% and less than 6 x 1078%
for a > 100.

If v > v, is chosen small enough, the Hamiltonian matrix H in (3) has pure imaginary
eigenvalues. For a > 0.5, it turns out that for all v > v, such that H has no pure imaginary
eigenvalues, it was always possible to find p, g such that conditions (4)-(6) are satisfied. In
other words, numerically we found that for & > 0.5 conditions (4)-(6) are satisfied if and
only if H has no pure imaginary eigenvalues. Thus, for a > 0.5, figure 7 also shows the
smallest v such that H does not have pure imaginary eigenvalues. For a < 0.5, however,
we encountered several numerical problems and « tended to be higher than the smallest v
such that H has no pure imaginary eigenvalues.

Several questions can now be raised: is the gap between v and i increasing as «
approaches zero due to numerical errors, conservatism of the method, or the fact that the
Lo-gain of the system is just larger than ~7, and this gap increases as « approaches zero?
Or is true that v = y7 or v = 7, for all @ > 0?7 Answers to such questions are currently
under investigation.

For sure, this example shows that our method is not conservative, except maybe for small
values of «, since the upper and lower bounds of the Ls-gain of A are almost identical. =

3 Proof of Theorem 2.1

In this section, we show that if conditions (4)-(6) are satisfied then so are conditions (9)-
(11). But, before we do, consider conditions (9) and (10). If 1 = g = z9, € S and
Ty = Tyq = 0 then it results that the left side of both conditions is equal to zero, i.e.,

0 > Va(zo) — Vi(zo)



0 > Vi(zo) — Va(zo)

which means that Vi(-) = V,(-), i.e., the Lyapunov functions must be identical. So, from
now on, we consider V(-) = Vi(-) = Va(+).

A notion that will be usefully throughout the rest of the proof is the notion of impact
map [6, 4]. An impact map is simply a map from one switching surface to the next switching
surface. There are three impact maps of interest associated with a saturation system (see
figure 5). The fist impact map (impact map 1) takes points 2y € S and maps them back
to 1 € S such that the trajectory stays in the region where y = —1. The second impact
map (impact map 2a) takes points from z; € S and also maps them back to zo, € S, but
this time the trajectory stays in the region where y = —C'z. Finally, the third impact map
(impact map 2b) takes points from from z; € S and maps them to z9, € S such that the
trajectory stays in the region where y = —Cx.

Each of these impact maps is associated with each condition (9)-(11). We will start with
impact map 1 and condition (9).

3.1 Impact Map 1

The first map we consider is the map that leaves S and returns to S and the trajectory
remains in the region where Cx > 1. Here, y = —1 and therefore o = —1. Let xg,z1 € S
and T' > 0. For simplicity, write 2(0) = zo = [z10 220 vo|' and z(T) = zp = [z11 T2r v1]'-
Note that, in this region, only the last state v is controllable. The first two states z; and
z9 do not depend on the input. Integrating, we get zo(t) = —t + x99 and, at t = T,
xor = —T + x99. This means that #1(t) = —kot + koxoo. Integrating, and evaluating
at t = T, we get 17 = —koT?/2 + kowaoT + z10. Since zo,z1 € S, it is also true that
z10 + k1zog +vo = 1 and z17 + k1zor + v = 1. This gives us four equations with six
variables. Let the free variables be vy and vy and define

ZoT
A1> def ur (’UT)
le — W, (T) + Wy(T
(AO o () +wir) ("
Vo

Next, we solve the following minimization problem
T )
* = mi t) —y(t)) dt
J uelg;/o (vu () —y( ))

subject to ¥ = —2v + Lu, v(0) = vy, v(T) = vr, and u is such that Cz(t) > 1, t € [0, 7).
In order to find an explicit solution for u, we relax the problem by ignoring the fact that
Cxz(t) > 1, t € [0,T]. The problem then becomes a standard Hs optimization problem
whose solution can be found, for example, in [1, 5]. In this case,

= () () -

Define a quadratic surface Lyapunov function V() in S as V(4;) = AlpA; + 2Alg,
where p = p’ > 0. Hence,

AN /A A\
vian vy = (x1) P ()2 () @
! !
= (?:}T) WéPW,,(ZT) +2<7;T) Wy(PWo + G) + W, PW, + 2W,G
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where W, = W,(T') and W}, = W},(T') were used for simplification. Finally, J* > V(A;) —
V(Ap) is equivalent to (4).

The reason why p > 0 is chosen a diagonal matrix versus a symmetric one comes from
the following proposition. The proof can be found in [5].

p= (Zh P3) >0
p3 P2

If ps # 0 then (4) is never satisfied for large enough values of T > 0.

Proposition 3.1 Let

3.2 Impact Maps 2a and 2b

The next map we consider is the map that leaves S and returns to S and the trajectory
remains in the region where where —1 < Cx < 1. This means y = —Cz, or o = —Cx.
In this region, the system is linear given by £ = Az + Bu. Let x1 = [z19 T20 vo]', T2 =
[z17 Zor vr] € S and T > 0. Here, all the states are controllable and finding the optimal
cost J* follows the same way as above or in [1, 5], yielding

!
T = (372a> Wt(T) (-’E?a)
T 1
T2a \ AZa
(331 ) _W1+W2(A1>

where Ay = [z99 vg]’ and Ag, = [zor vr]'. Hence

Since z1,Z2, € S

* AQa ' ! A2a A2a ! ! !
T={aAr) WaWiWs (00 ) +2( A" ) WaWiWi + WiW, W

On the other hand,

_ A2(1 ' A2(1 A2a !
V(Aza)—V(Al)_<A1) P(Al ) +2(Al G
Finally, J* > V(Ag,) — V(A1) is equivalent to (5).
The last impact map to consider is impact map 2b from S to S and where the trajectory

remains in the same region as the previous map. The proof for this map is similar to the
one from impact map 2a. The only difference is that

Top\ Agyp
($1>_WI+W3<A1>
since 1 € S and z9p € S. This means that —z9p, € S resulting in J* > V(—=Ag) — V(4Ay),
which is equivalent to (6).
4 Conclusions

This paper gives conditions in the form of LMIs that, when satisfied, guarantee a system with
a double integrator in feedback with a saturation nonlinearity has finite £s-gain. Moreover,
for a large class of such systems, we showed that the linear Lo-gain of the system, i.e., the



Lo-gain of the same system but with the saturation nonlinearity replaced by a constant
gain of 1, is approximately equal to the Lo-gain of the original system. These results allow
the use of classical analysis tools like p-analysis or IQCs to analyze systems with double
integrators and saturations, including servo systems like some mechanical systems, satellites,
hard-disks, CD players, etc.

Appendix

A Loop Transformation to Find Stable Operators

In this section, we show how to chose ki, ko, and G(s) as functions of k,, k;, and P(s) so
that G(s) is a proper stable system and the systems in figures 1 and 4 are equivalent, in
the sense that both loops are identical. In other words, analysis properties can be inferred
from one to another and vice versa. First, let P(s) be written as

def n(s) _ Ems™ + -+ &is + &o
d(s) 8"+ 15"+ + Bis+ o

where m < n, & # 0 or otherwise the system would have only one integrator, and also
Bo # 0 or otherwise the system would have three integrators and therefore be unstable
(Sussmann and Yang [12] showed that a chain of n integrators, n > 3, cannot be stabilized
by bounded linear feedback).

Proposition A.1 Let

IR TS - A
kl_ﬁokarﬂo(& &’ﬁo)’“” ko =gk

and the proper system

ni(s)
G(s) = ——= 1
(9= 5 (as+)
where the degree of 1i(s) is strictly less than the degree of d(s). Then, the systems in figures 1
and 4 are have identical loops and analysis properties can be inferred from one to another
and vice versa. Moreover, G(s) is stable if and only if P(s) is stable.

The proof, omitted here, is based on replacing the above equalities in the system in
figure 4 and showing that this loop is indeed identical to the one in figure 1.

B Proof of Propositions 2.1 and 2.2

Proof of proposition 2.1: Consider the system Ay obtained from system A in figure 4
with the saturation replaced by a constant gain of 1, and let 7, be the respective Lo-gain.
For simplicity, and without loss of generality, assume there exist a control input u}; € Lo
such that |y.|?> = yL|lui|? (a similar argument can be applied if such u} € Ly does not
exist by considering a sequence of u; € L9 resulting in -y; arbitrarily close to 7z,). Since Ay,
is linear, u} can be scaled such that |y (¢)| < 1. Hence, by applying such input u} to A,
we obtain ||y|2 = vy |ju}||? since the saturation never leaves the linear region. This means
that 7, is a lower bound of the L,-gain of A. [ ]
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Proof of proposition 2.2: Let 71 < oo be an upper bound of the Ls-gain of A when
a = a1 > 0. Let now a > 0 and consider the following subsystem

U(s) as+1

U(s) as+1

The Lo-gain of this subsystem is ¥ = max(1,a;/a). Then, the L£,-gain v of A when a > 0
(Lo-gain from u to y) is upper bounded by 7y, i.e., ¥ < Jy1 < oo. [ ]

C Computational Details

In order to be able to solve for the parameters of the Lyapunov function, we need to first
to solve several computational issues associated with conditions (4)-(6) in theorem 2.1. In
particular, we need to guarantee the conditions are satisfied for large enough values of T'.
We start with impact map 1.

C.1 Impact Map 1

Proposition 3.1 establishes that p > 0 must be a diagonal matrix, i.e., p = diag(p1,p2),
where p1,p2 > 0. Hence, After some manipulation, R;(T") reduces to

2 2 _T
—TLor —py  —— e @ 5P~ g2
l-e” « - 1—e azT
B =| - Thpe e tm ante
—5P1— 92 =P1+ g2 T (2p1f2 +201 — 1)

From the main diagonal of R;(T'), we see immediately that it is necessary that
kq
2p1k—+2gl—1>0 and 0 < p2 < 2y« (12)
2

The next proposition guarantees that if the inequalities in (12) are satisfied, then for
any large enough T > 0 condition R;(T") > 0 is always satisfied. The proof, omitted here,
is based on showing that for large enough 7' all the eigenvalues of R1(T") are positive.

Proposition C.1 If both inequalities in (12) are satisfied then there exists a Ti4 € [0,00)
such that Ri(T) >0 for all T > T

C.2 Impact Maps 2¢ and 2b

The goal of this section is to give a similar result to proposition C.1 for impact maps 2a
and 2b. Lets start by decomposing the Hamiltonian matrix H in H = VXU where

Vi1 V12) (D 0 ) (Un U12)
V= , D= , U=
<V21 Va2 0 -D Ua1 U
and D is such that all its eigenvalues are in the left-half plane. Define matrices M and m

such that Wy = diag(M, M) and Wi = (m' m')". Define also

. :(M'VQQVEM 0 ) I :(M'Vﬁvlglm) :(—M'V22V151m>
. 0 MU Uy M ) 72 MUy Upm )’ =% M'Us; Uyym
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and L3 = m'(Vgngg1 + U2}1U21)m. Denote G, = G and Gy = G. Then, after some
manipulation of Ro,(T') and Roy(T), we get

T . (L1 —P Ly—G;
Roico = Th—I)r;o Roi(T) = (LI2Z _ G; Ls

for ¢ = a,b. Then, the following proposition follows.

Proposition C.2 If Ryjoc > 0, i = a, b, then there ezist T;y € [0,00) such that Ryi(T) > 0
for all T > T;y, i = a,b.

Note that T, T,+, and Tj in the last propositions can be found explicitly, although
this is not done here.
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