
OPTIMIZED ROBUST CONTROL INVARIANT

SETS FOR CONSTRAINED LINEAR

DISCRETE-TIME SYSTEMS ⋆
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1. INTRODUCTION

The theory of set invariance plays a fundamental
role in the control of constrained systems. The
interested reader is referred to the important and
comprehensive survey paper (Blanchini, 1999) for
an introduction to set invariance and a number
of relevant references. Two important issues, the
computation of the minimal robust positively in-
variant (mRPI) set and the maximal robust posi-
tively invariant (MRPI), set are studied in detail
in (Kolmanovsky and Gilbert, 1998).
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From the control theory point of view, set in-
variance provides useful tools for the synthesis
of reference governors (Gilbert and Kolmanovsky,
1999) and predictive controllers (Bemporad and
Morari, 1999; Findeisen et al., 2003; Mayne, 2001)
with guaranteed invariance, stability and con-
vergence properties. Since the mRPI set is the
smallest invariant set for a system, it is also a
suitable target set in robust time-optimal con-
trol (Bertsekas and Rhodes, 1971; Blanchini, 1992;
Mayne and Schroeder, 1997) and plays an integral
part in a novel robust predictive control method
recently proposed in (Langson et al., 2004).

It is the main purpose of this paper to provide a
novel characterization of a family of the polytopic
robust control invariant sets. Verifying existence



of a constraint admissible member of this family
as well as the computation of the corresponding
feedback controller can be efficiently realized by
solving a single linear programming problem (LP).
This paper is organized as follows. Section 2 is
concerned with the preliminaries. Section 3 ad-
dresses the robust control invariance issue. Sec-
tion 4 provides an interesting comparison to exist-
ing methods. Finally, Section 5 indicates possible
applications of the results and presents conclu-
sions.

Notation: Let N , {0, 1, 2, . . .}, N+ , {1, 2, . . .}
and Nq , {0, 1, . . . , q}. Let 1t denote the vector
(1, 1, . . . , 1)′ ∈ R

t. Let abs(A) denote the matrix
whose elements are the absolute values of the
corresponding components of the matrix A. Given
two matrices A and B , vec(A) denotes standard
stack operator and A⊗B is the Kronecker product
of matrices A and B. A polyhedron is the (convex)
intersection of a finite number of open and/or
closed half-spaces and a polytope is the closed and
bounded polyhedron. Let B

n
p (r) , {x ∈ R

n |
|x|p ≤ r} be a p–norm ball in R

n, where r ≥ 0
and | · |p denotes the vector p–norm. Given two
sets U and V, such that U ⊂ R

n and V ⊂ R
n, the

Minkowski (vector) sum is defined by U⊕V , {u+
v | u ∈ U , v ∈ V}. Given the sequence of sets

{Ui ⊂ R
n}b

i=a, we define
⊕b

i=a Ui , Ua ⊕· · ·⊕Ub.
The support function of a set Π ⊂ R

n, evaluated
at z ∈ R

n, is defined as h(Π, z) , supπ∈Π zT π.

2. PRELIMINARY DEFINITIONS AND
EXISTING RESULTS

We consider the following discrete-time linear
time-invariant (DLTI) system:

x+ = Ax + Bu + w, (2.1)

where x ∈ R
n is the current state, u ∈ R

m

is the current control action x+ is the successor
state, w ∈ R

n is an unknown disturbance and
(A,B) ∈ R

n×n × R
n×m. The disturbance w is

persistent, but contained in a convex and compact
set W ⊂ R

n that contains the origin. We make
the standing assumption that the couple (A,B) is
controllable.

The system (2.1) is subject to the following set of
hard state and control constraints:

(x, u) ∈ X × U (2.2)

where X ⊆ R
n and U ⊆ R

m are polyhedral and
polytopic sets respectively and both contain the
origin as an interior point.

Most of the previous research considered the case
u = µ(x) = Kx and the corresponding au-
tonomous DLTI system:

x+ = AKx + w, AK , (A + BK), (2.3)

where AK ∈ R
n×n and all the eigenvalues of

AK are strictly inside the unit disk. Given any
K ∈ R

m×n let XK , {x | x ∈ X, Kx ∈ U} ⊂ R
n.

Definition 1. The set Ω ⊂ R
n is a robust positively

invariant (RPI) set for the system (2.3) and
constraint set (XK ,W ) if Ω ⊆ XK and AKx +
w ∈ Ω for all x ∈ Ω and all w ∈ W .

Definition 2. The minimal robust positively in-
variant (mRPI) set F∞ for the system (2.3) and
constraint set (Rn,W ) is the RPI set for the sys-
tem (2.3) and constraint set (Rn,W ) that is con-
tained in every closed, RPI set for the system (2.3)
and constraint set (Rn,W ).

The mRPI set F∞ exists, is unique, compact and
contains the origin (Kolmanovsky and Gilbert,
1998, Sect. IV). The mRPI set F∞ is the limit
of the set sequence {Fi} defined by:

Fi ,

i−1
⊕

j=0

A
j
KW, i ∈ N+ and F0 , {0} (2.4)

The mRPI set is then given by:

F∞ = closure

(

∞
⊕

i=0

Ai
KW

)

(2.5)

It is impossible in general to obtain an explicit
characterization of the mRPI set F∞. In (Raković
et al., 2005) a method for computation of an ε

(ε > 0) outer RPI approximation of the mRPI
F∞ is given:

Theorem 1. If 0 ∈ interior(W ), then for all ε > 0,
there exists ζ ∈ [0, 1) and a corresponding integer
s such that the following set inclusions

As
KW ⊆ ζW and ζ(1 − ζ)−1Fs ⊆ B

n
p (ε) (2.6)

are true. Furthermore, if (2.6) is satisfied, then
the set F(ζ,s) defined by:

F(ζ,s) , (1 − ζ)−1Fs (2.7)

where Fi is defined by (2.4), is an RPI set for the
system (2.3) and constraint set (Rn,W ) such that
F∞ ⊆ F(ζ,s) ⊆ F∞ ⊕ B

n
p (ε).

This result can be extended to case when the
origin is in the relative interior of W (Raković,
2005).

Definition 3. The set Ω ⊂ R
n is a robust control

invariant (RCI) set for the system (2.1) and
constraint set (X,U,W ) if Ω ⊆ X and for all
x ∈ Ω there exists a u ∈ U such that Ax + Bu +
w ∈ Ω for all w ∈ W .

An RPI set for the system (2.3) and constraint set
(XK ,W ) exists if and only if F∞ ⊆ XK ; this con-



dition is not necessarily satisfied for an arbitrary
selected stabilizing feedback controller K. In this
note we provide a method for checking existence
of a RCI set for the system (2.1) and constraint
set (X,U,W ) as well as the computation of the
corresponding control policy via an optimization
procedure.

3. ROBUST CONTROL INVARIANCE ISSUE

Let Mi ∈ R
m×n, i ∈ N and for each k ∈ N let

Mk , (M0,M1, . . . ,Mk−2,Mk−1). An appropri-
ate characterization of a family of RCI sets for
the system (2.1) and constraint set (Rn, Rm,W )
is given by the following sets for k ≥ n:

Rk(Mk) ,

k−1
⊕

i=0

Di(Mk)W (3.1)

where the matrices Di(Mk), i ∈ Nk, k ≥ n are
defined by:

D0(Mk) = I, Di(Mk) , Ai+
i−1
∑

j=0

Ai−1−jBMj , i ≥ 1

(3.2)
providing that Mk satisfies:

Dk(Mk) = 0 (3.3)

Since the couple (A,B) is assumed to be con-
trollable, such a choice exists for all k ≥ n. Let
Mk denote the set of all matrices Mk satisfying
condition (3.3):

Mk , {Mk | Dk(Mk) = 0} (3.4)

Theorem 2. (Raković, 2005) Given any Mk ∈
Mk, k ≥ n and the corresponding set Rk(Mk)
there exists a control law µ : Rk(Mk) → R

m such
that Ax + Bµ(x)⊕W ⊆ Rk(Mk), ∀x ∈ Rk(Mk),
i.e. the set Rk(Mk) is RCI for the system (2.1)
and constraint set (Rn, Rm,W ).

The feedback control law µ : Rk(Mk) → R
m in

Theorem 2 is a selection from the set valued map:

U(x) , MkW(x) (3.5)

where Mk ∈ Mk and the set of disturbance
sequences W(x) is defined for each x ∈ Rk(Mk)
by:

W(x) , {w | w ∈ Wk, Dw = x}, (3.6)

where Wk , W × W × . . . × W and D =
[Dk−1(Mk) . . . D0(Mk)]. A µ(·) satisfying The-
orem 2 can be defined, for instance, as follows:

µ(x) , Mkw
0(x) (3.7a)

w0(x) , arg min
w

{|w|22 | w ∈ W(x)} (3.7b)

The function w0(·) is piecewise affine, being the
solution of a parametric quadratic programme;
since the feedback control law µ : Rk(Mk) → R

m

is a linear map of a piecewise affine function it is
piecewise affine.

Theorem 2 states that for any k ≥ n the RCI
set Rk(Mk), finitely determined by k, is easily
computed if W is a polytope. The set Rk(Mk)
is parametrized by the matrix Mk; this allows us
to formulate an LP that yields the set Rk(Mk)
while minimizing an appropriate norm of the set
Rk(Mk).

3.1 Optimized Robust Control Invariance

We provide a full exposition for the case when:

W , {Ed + f | |d|∞ ≤ η} (3.8)

where d ∈ R
t, E ∈ R

n×t and f ∈ R
n. We

are interested in the computation of a RCI set
Rk(Mk) for the system (2.1) and constraint set
(Rn, Rm,W ) contained in a ‘minimal’ p–norm
ball, i.e. we wish to find R0

k = Rk(M0
k) where:

(M0
k, α0) = arg min

Mk,α
{α | Rk(Mk) ⊆ Bp(α), α > 0}

(3.9)
We show that our problem can be posed as an LP
if p = 1,∞ by considering a more general problem:

Pk : (M0
k, α0) = arg min

Mk,α
{α | (Mk, α) ∈ Ω}

(3.10)
where

Ω , {(Mk, α) | Mk ∈ Mk, Rk(Mk) ⊆ P (α),

α > 0}, (3.11)

and P (1) is a polytope that contains the origin
in its interior so that P (α) , {x | Cpx ≤
αcp}, α > 0 with Cp ∈ R

q×n and cp ∈ R
q.

Before proceeding we recall few preliminary and
elementary results (Raković, 2005):

Proposition 1. Let Π be a non-empty set in R
n

and Ψ =
{

ψ ∈ R
n

∣

∣ fT
i ψ ≤ gi, i ∈ Nl

}

, where
fi ∈ R

n, gi ∈ R. Then, Π ⊆ Ψ if and only if
h(Π, fi) ≤ gi for all i ∈ Nl.

Proposition 2. Let each matrix Lk ∈ R
n×m and

each Φk be a non-empty, compact set in R
m for

all k ∈ NK . If Π =
⊕K

k=0 LkΦk, then h(Π, z) =
∑K

k=0 maxφ∈Φk
(zT Lk)φ.

The fact that maxd{a
′d | |d|∞ ≤ η} = η|a|1 (Horn

and Johnson, 1985) allows one to establish the
following result:

Proposition 3. Let matrices A ∈ R
n×n, C ∈

R
q×n, D ∈ R

n×p and M ∈ R
p×n and let w ∈ W



where W = {Ed + f | |d|∞ ≤ η} and E ∈ R
n×t

and f ∈ R
n. Then

max
w∈W

C(A + DM)w =

ηabs(C(A + DM)E)1t + C(A + DM)f (3.12)

where the maximization is taken row-wise. More-
over, there exists a matrix L ∈ R

q×t such that

−L ≤ C(A + DM)E ≤ L, (3.13)

where the inequality is element-wise, and the
solution to (3.12) satisfies

max
w∈W

C(A+DM)w = ηL1q+C(A+DM)f (3.14)

Proposition 1 implies that the set inclusion
Rk(Mk) ⊆ P (α) is true if and only if:

max
x∈Rk(Mk)

Cpx ≤ αcp, (3.15)

where the maximization is taken row-wise. It
follows from Propositions 2 and 3 that there exist
a set of matrices Li ∈ R

q×t, i ∈ Nk−1 such that:

max
x∈Rk(Mk)

Cpx =

k−1
∑

i=0

(ηLi1t + CpDi(Mk)f)

(3.16)
where Λk , {L0, L1, . . . , Lk−1} and each Li satis-
fies:

−Li ≤ CpDi(Mk)E ≤ Li, i ∈ Nk−1 (3.17)

Since each Di(Mk) is affine in Mk it follows by the
basic properties of the Kronecker product (in par-
ticular vec(ABC) = (C ′ ⊗A)vec(B)) that the set
inclusion Rk(Mk) ⊆ P (α) can be expressed as a
set of linear inequalities in (vec(Mk), vec(Λk), α).
The condition Mk ∈ Mk is a set of linear equal-
ities in (vec(Mk), vec(Λk), α). Since the cost (of
Pk) is a linear function of (vec(Mk), vec(Λk), α)
we can state the following:

Proposition 4. The minimization problem Pk de-
fined in (3.10) is a linear programming problem.

An LP formulation of the problem Pk is:

Pk : min
γ

{α | γ ∈ Γ} (3.18)

where γ , (vec(Mk), vec(Λk), α) and:

Γ , {γ |
k−1
∑

i=0

(ηLi1t + CpDi(Mk)f) ≤ αc,

− Li ≤ CpDi(Mk)E ≤ Li, i ∈ Nk−1,

Mk ∈ Mk, α > 0} (3.19)

3.2 Optimized Robust Control Invariance Under
Constraints

In this case it is possible to formulate an LP,
whose feasibility establishes existence of a RCI set

Rk(Mk) for the system (2.1) and constraint set
(X,U,W ). The control law µ(x) satisfies µ(x) ∈
U(Mk) for all x ∈ Rk(Mk) where:

U(Mk) ,

k−1
⊕

i=0

MiW (3.20)

The state and control constraints (2.2) are satis-
fied if:

Rk(Mk) ⊆ αX, U(Mk) ⊆ βU (3.21)

where αX , {x | Cxx ≤ αcx}, βU , {u | Cuu ≤
βcu}, (with Cx ∈ R

qx×n, cx ∈ R
qx , Cu ∈ R

qu×n,
cu ∈ R

qu) and (α, β) ∈ [0, 1] × [0, 1].

Let now:

Ω̄ , {(Mk, α, β, δ) | Mk ∈ Mk, Rk(Mk) ⊆ αX,

U(Mk) ⊆ βU,

(α, β) ∈ [0, 1] × [0, 1],

qαα + qββ ≤ δ} (3.22)

where Rk(Mk) is given by (3.1) and U(Mk)
by (3.20). Consider the following minimization
problem:

P̄k :(M0
k, α0, β0, δ0) =

arg min
Mk,α,β,δ

{δ | (Mk, α, β, δ) ∈ Ω̄} (3.23)

Proposition 5. The minimization problem P̄k is a
linear programming problem.

The problem P̄k is an LP:

P̄k : min
γ

{δ | γ ∈ Γ̄} (3.24)

where γ , (vec(Mk), vec(Λk), vec(Θk), α, β, δ)
and :

Γ̄ , {γ |
k−1
∑

i=0

(ηLi1t + CxDi(Mk)f) ≤ αcx,

− Li ≤ CxDi(Mk)E ≤ Li, i ∈ Nk−1,

k−1
∑

i=0

(ηTi1t + CuSiMkf) ≤ βcu,

− Ti ≤ CuSiMkE ≤ Ti, i ∈ Nk−1,

(α, β) ∈ [0, 1] × [0, 1],

Mk ∈ Mk, qαα + qββ ≤ δ} (3.25)

where Θk , {T0, T1, . . . Tk−1} (each Ti ∈ R
qu×t)

and Si is selection matrix of the form Si =
[0 0 . . . I . . . 0 0]. It is possible to specify a
variety of objective functions by minor modifica-
tion of the definition of the set Ω̄ (3.22) and still
obtain a tractable convex optimization problem.
However, an appropriate objective function is the
minimization of qαα, qββ subject to the existence
of a RCI set Rk(Mk) for the system (2.1) and
constraint set (αX, βU,W ). The weights qα and
qβ express a preference for relative contraction of
the state and control constraint sets.



The solution M0
k to problem P̄k (which exists if

Ω̄ 6= ∅) yields a set R0
k , Rk(M0

k) and feedback
control law µ0(x) = M0

kw
0(x) satisfying R0

k ⊆
α0X and µ0(x) ∈ U(Mk) ⊆ β0U for all x ∈ R0

k.
It follows from Theorem 2 and the discussion
above that the set R0

k, if it exists, is RPI for
system x+ = Ax + Bµ0(x) + w and constraint set
(Xµ0 ,W ), where Xµ0 , α0X∩{x | µ0(x) ∈ β0U}.
There might exist more than one set Rk(Mk) that
yields the optimal cost δ0. The cost function can
be modified. For instance, an appropriate choice
is a positively weighted quadratic norm of the
decision variable γ that yields a unique solution,
since in this case problem becomes a quadratic
programming problem of the form minγ{|γ|

2
Q | γ ∈

Γ̄}, where Q is positive definite and it represents
the suitable weight. A relevant observation is:

Proposition 6. Suppose that the problem P̄k is
feasible for some k ∈ N and the optimal value of
δk is δ0

k, then for every integer s ≥ k the problem
P̄s is also feasible and the corresponding optimal
value of δs satisfies δ0

s ≤ δ0
k.

If the origin is an interior point of W , the condi-
tion (3.3) can be replaced by the following condi-
tion:

Mk ∈ M̄k , {Mk | Dk(Mk)W ⊆ ϕW} (3.26)

for ϕ ∈ [0, 1) and k ≥ n. A family of the sets
R(ϕ,k)(Mk) defined by:

R(ϕ,k)(Mk) , (1 − ϕ)−1Rk(Mk) (3.27)

for couples (ϕ, k) such that (3.26) is true, is a
family of the polytopic RCI sets:

Theorem 3. Given any couple (ϕ,Mk) ∈ [0, 1) ×
M̄k, k ≥ n and the corresponding set R(ϕ,k)(Mk),
there exists a control law µ : R(ϕ,k)(Mk) → R

m

such that Ax + Bµ(x) ⊕ W ⊆ R(ϕ,k)(Mk), ∀x ∈
R(ϕ,k)(Mk).

4. COMPARISON

A theoretical comparison of the proposed proce-
dure with the previous results is given in (Raković,
2005). The advantages of our method lie in the
facts that: (i) hard state and control constraints
are incorporated directly into the optimization
problem and, (ii) the feedback control law µ :
Rk(Mk) → U is piecewise affine function of x ∈
Rk(Mk). These advantages are illustrated bellow
by a numerical example:

x+ =

[

1 1
0 1

]

x +

[

1
1

]

u + w (4.1)

where w ∈ W ,
{

w ∈ R
2 | |w|∞ ≤ 1

}

. The hard
state and control constraints are:

X ={x | − 3 ≤ x1 ≤ 1.85, −3 ≤ x2 ≤ 3,

x1 + x2 ≥ −2.2}, U = {u | |u| ≤ 2.4} (4.2)

where xi is the ith coordinate of a vector x. In the
first attempt we obtain the closed loop dynamics
by applying two linear stabilizing state feedback
control laws:

K1 = −[0.72 0.98], K2 = −[1 1] (4.3)

and compute the corresponding sets FK
(ζK ,sK) by

application of Algorithm 1 of (Raković et al.,
2005). The computed sets violate the state con-
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), i = 1, 2

straints as illustrated in Figure 1. The correspond-
ing control polytopes are:

U(K1) = {u | |u| ≤ 2.4680}, U(K2) = {u | |u| ≤ 3},
(4.4)

where U(K) , KFK
(ζK ,sK) so that the control

constraints are also violated.

By solving the optimization problem P̄k with the
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Fig. 2. Invariant Sets Rki(Mk
0
i ), i = 1, 2

following design parameters:

(k, qα, qβ)1 = (5, 0, 1), (k, qα, qβ)2 = (5, 1, 0) (4.5)

we computed the following matrices Mk
0
i , i =

1, 2:

Mk
0
1 =













−0.4875 −1
0.2199 0
0.1154 0
0.0596 0
0.0926 0













, Mk
0
2 =













−0.5038 −1
0.2456 0
0.1132 0
0.0521 0
0.0930 0













(4.6)
The sets constructed from the solution of the
optimization problem P̄k satisfy state and control
constraints as it can be seen from Figure 2 and
from the fact that:



U(Mk
0
i ) = {u | |u| ≤ 1.975}, i = 1, 2, (4.7)

To make our comparison as fair as possible, we
consider also the following two linear state feed-
back control laws, constructed from the first row
of the optimized matrices Mk:

K3 = −[0.4875 1], K4 = −[0.5038 1] (4.8)

The corresponding sets FK
(ζK ,sK) are shown in

Figure 3. The control constraints are satisfied, but
the computed sets violate the state constraints.
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5. APPLICATIONS AND CONCLUSIONS

The results of this paper can be used in the
design of robust reference governors, predictive
controllers and time-optimal controllers for con-
strained, linear discrete time systems subject to
additive, but bounded disturbances.

The main contribution of this note is a novel
characterization of a family of polytopic robust
control invariant sets for which the correspond-
ing control law is non-linear (piecewise affine)
enabling better results to be obtained compared
with existing methods where the control law is
linear. Construction of a member of this family
contained in the minimal p–norm ball or reference
polytopic set can be obtained from the solution of
an appropriately specified LP. The optimized ro-
bust control invariance algorithms were illustrated
by an example, in which significant improvements
over existing methods was illustrated.

The results can be extended to the case when dis-
turbance belongs to an arbitrary polytope. More-
over, it is also possible to extend the results to the
case when the system dynamics are parametrically
uncertain.
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