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Abstract. In this contribution we consider the approach to the runway
as a case study of our research on conflict resolution for Air-Traffic Con-
trol with stochastic models. We simulate the approach for landing and
optimise the maneuver through a simulation based optimisation strategy.

1 Introduction
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In the current organisation of Air-Traffic Management the centralised Air-Traffic
Control is in complete control of the air-traffic and ultimately responsible for
safety. The main objective of Air-Traffic Control is to maintain safe separation
between aircraft by issuing proper instructions to the pilots. A conflict is de-
fined as the situation of loss of minimum safe separation between two aircraft.
If it is possible, Air-Traffic Control tries also to fulfil the (possibly conflicting)
requests of aircraft and airlines; for example, desired paths to avoid turbulence
or desired time of arrivals to meet schedule. In order to improve performance of
Air-Traffic Control, mainly in anticipation of increasing levels of traffic, research
effort has been spent in the last decade on creating tools for conflict detection
and resolution. A review of research work in this area of Air-Traffic Control is
presented in [1].

Uncertainty is introduced in air-traffic by the action of the wind field, incomplete
knowledge of the physical coefficients of the aircraft and unavoidable impreci-
sion in the execution of Air-Traffic Control instructions. In conflict detection the
objective is to evaluate conflict probability over a certain future horizon starting
from the current positions and flight plans of the aircraft. In conflict resolution
the objective is to calculate suitable maneuvers to avoid a predicted conflict. A
number of conflict resolution algorithms have been proposed for a determinis-
tic setting, for example [2–4]. In a stochastic setting, research has concentrated
mainly on conflict detection [5–8]. The main reason for this is the complexity
of stochastic prediction models which, even if it does not make it impossible to
estimate conflict probability through Monte Carlo methods, it makes the quan-
tification of the effects of possible control actions intractable.



Air-traffic conflict resolution involves several hybrid aspects related either to the
nature of the system and to the control problem. The system itself contains
continuous dynamics, arising from the physical motion of the aircraft, discrete
dynamics, arising from the logic embedded in the Flight Management System,
and stochastic dynamics, arising from the effect of wind on the aircraft tracks
and uncertainty in the physical parameters of the aircraft (for example the mass).
Other hybrid aspects, from the point of view of Air-Traffic Control, are the fact
that aircraft follow a nominal path that is a sequence of straight lines and that
the motion of aircraft can not be freely adjusted. For example descending air-
craft follow a prespecified speed profile and therefore “descent” can be seen as a
discrete state with only a “1/0” value. Moreover, in conflict resolution, there are
two rather separate problems one has to solve: (i) coordination between aircraft
(e.g. selecting a landing sequence), which is typically a discrete combinatorial
problem, and (ii) selecting the parameters of the resolution maneuver within
the constraints imposed by the coordination, which is typically an optimisation
problem over a continuous set.

We are currently investigating — see also [9] — on the use a Monte Carlo ap-
proach for conflict resolution in order to extend to this task the advantages of the
Monte Carlo framework, in terms of flexibility and complexity of the prediction
models that can be used. To this end, we adopt a Monte Carlo Markov Chain
randomised optimisation method introduced originally in [10, 11].

Here we illustrate our approach in the solution of a typical Air-Traffic Control
situation involving aircraft approaching the runway in Approach Sectors. In Sec-
tion 1 we give a general formulation of the problem. The Monte Carlo Markov
Chain optimisation procedure is described in Section 2. In Section 3 and 4 respec-
tively we illustrate Air-Traffic Control in Approach Sectors and the air-traffic
simulator. A simulation example with optimisation is presented in Section 5.
Section 6 contains conclusion and future objectives.

2 Penalty formulation of an expected value optimisation

problem with constraints

In this paper we formulate conflict resolution as a constrained optimisation prob-
lem. Given a set of aircraft involved in a conflict, the conflict resolution maneuver
is determined by a parameter ω which defines the nominal paths of the aircraft
The actual execution of the maneuver is affected by uncertainty. Therefore, the
sequence of actual positions of the aircraft during the resolution maneuver (for
example: the sequence of positions every 6 seconds which is a typical time inter-
val between two successive radar sweeps) a-priori of its execution is a random
variable denoted by X. A conflict is defined as the event that the positions of
two aircraft during the execution of the maneuver are too close. The objective is
to select ω in order to maximise the expected value of some measure of perfor-
mance associated to the execution of the resolution maneuver while ensuring a
small probability of conflict. In this section we introduce the formulation of the
problem in a general fashion.



Let X be a random variable whose distribution depends on some parameter ω.
The distribution of X is denoted by pω(x) with x ∈ X. The set of all possible
values of ω is denoted by Ω. We assume that a constraint on the random vari-
able X is given in terms of a feasible set Xf ⊆ X. We say that a realisation x,
of random variable X, violates the constraint if x 6∈ Xf . Moreover, we assume
that for a realisation x ∈ Xf some definition of performance of x is given. In
general performance can depend also on the value of ω, therefore performance
is measured by a function perf(ω, x), x ∈ Xf , ω ∈ Ω. We assume that perf(ω, x)
takes values in (0, 1]. The probability of satisfying the constraint is denoted by
P(ω)

P(ω) =

∫

x∈Xf

pω(x)dx . (1)

The probability of violating the constraint is denoted by P̄(ω) = 1 −P(ω). The
expected performance for a given ω ∈ Ω is denoted by Perf(ω), where

Perf(ω) =

∫

x∈Xf

perf(ω, x)pω(x)dx . (2)

Ideally one would like to maximise the performance over all ω, subject to a
bound on the probability of constraint satisfaction. Given a bound P̄ ∈ [0, 1],
this corresponds to solving the constrained optimization problem

Perfmax |P̄ = sup
ω∈Ω

Perf(ω) (3)

subject to P̄(ω) < P̄. (4)

Clearly, a necessary condition for the problem to have a solution is that there
exists ω ∈ Ω such that P̄(ω) ≤ P̄, or, equivalently,

P̄min = inf
ω∈Ω

P̄(ω) < P̄. (5)

This optimization problem is generally difficult to solve, or even to approximate
by randomised methods. Here we approximate this problem by an optimisa-
tion problem with penalty terms. We show that with a proper choice of the
penalty term we can enforce the desired maximum bound on the probability of
violating the constraint, provided that such a bound is feasible, at the price of
sub-optimality in the resulting expected performance.

Let us introduce the function u(ω, x) defined as

u(ω, x) =







perf(ω, x) + Λ x ∈ Xf

1 x 6∈ Xf ,

(6)

where Λ > 1. The parameter Λ represents a reward for constraint satisfaction.
The expected value of u(ω, x) is given by

U(ω) =

∫

x∈X

u(ω, x)pω(x)dx ω ∈ Ω . (7)



Instead of the constrained optimization problem (3)–(4) we solve the uncon-
strained optimization problem:

Umax = sup
ω∈Ω

U(ω). (8)

Assume the supremum is attained and let ω̄ denote the optimum solution, i.e.
Umax = U(ω̄). For ω̄ we would like to obtain bounds on the probability of violat-
ing the constraints and the level of suboptimality of Perf(ω̄) over Perfmax |P̄.
A basic bound on the probability of violating the constraint at ω̄ is the following.

Proposition 1. P̄(ω̄) satisfies

P̄(ω̄) ≤
1

Λ
+

Λ − 1

Λ
P̄min . (9)

Proof. The optimisation criterion U(ω) can be written in the form

U(ω) =

∫

x∈Xf

(perf(ω, x) + Λ)pω(x)dx +

∫

x6∈Xf

pω(x)dx

= Perf(ω) + Λ − (Λ − 1)P̄(ω) .

By the definition of ω̄ we have that U(ω̄) ≥ U(ω) for all ω ∈ Ω. We therefore
can write

Perf(ω̄) + Λ − (Λ − 1)P̄(ω̄) ≥ Perf(ω) + Λ − (Λ − 1)P̄(ω) ∀ω

which can be rewritten as

P̄(ω̄) ≤
Perf(ω̄) − Perf(ω)

Λ − 1
+ P̄(ω) ∀ω . (10)

Since 0 < perf(ω, x) ≤ 1, Perf(ω) satisfies

0 < Perf(ω) ≤ P (ω) . (11)

Therefore we can use (11) to obtain an upper bound on the right-hand side of
(10) from which we obtain

P̄(ω̄) ≤
1

Λ
+

Λ − 1

Λ
P̄(ω) ∀ω ∈ Ω.

We eventually obtain (9) by taking a minimum to eliminate the quantifier on
the right-hand side of the above inequality.

Proposition 1 suggests a method for choosing Λ to ensure that the solution ω̄

of the optimization problem will satisfy P̄(ω̄) ≤ P̄. The following immediate
corollaries make this observation more explicit.

Corollary 1. Any

Λ ≥
1 − P̄min

P̄ − P̄min
(12)

ensures that P̄(ω̄) ≤ P̄.



Typically such a bound will not be useful in practice, since the value of P̄min

will be unknown. If we know that there exists a parameter ω ∈ Ω for which the
constraints are satisfied almost surely a tighter (and potentially more useful)
bound can be obtained.

Corollary 2. If there exists ω ∈ Ω such that P̄(ω) = 0, then any

Λ ≥
1

P̄
(13)

ensures that P̄(ω̄) ≤ P̄.

For cases where the existence of such an ω cannot be guaranteed, it suffices to
know P̄(ω) for some ω ∈ Ω with P̄(ω) < P̄ to obtain a bound.

Corollary 3. If there exists ω ∈ Ω for which P̂ = P̄(ω) is known, then any

Λ ≥
1 − P̂

P̄ − P̂
(14)

ensures that P̄(ω̄) ≤ P̄.

The last bound will of course be more conservative than those of the previous
two corollaries. In addition to bounds on the probability that ω̄ satisfies the
constraints, we would also like to obtain a bound on how far the performance
Perf(ω̄) is from the ideal performance Perfmax |P̄. The following proposition
provides a basic bound in this direction.

Proposition 2. The performance of the maximiser, ω̄, of U(ω) satisfies

Perf(ω̄) ≥ Perfmax |P̄ − (Λ − 1)(P̄ − P̄min). (15)

Proof. By definition of ω̄ we have that U(ω̄) ≥ U(ω) for all ω ∈ Ω. In particular,
we know that

Perf(ω̄) ≥ Perf(ω) − (Λ − 1)
[

P̄(ω) − P̄(ω̄)
]

∀ω : P̄(ω) ≤ P̄ .

Taking a lower bound of the right-hand side, we obtain

Perf(ω̄) ≥ Perf(ω) − (Λ − 1)
[

P̄ − P̄min

]

∀ω : P̄(ω) ≤ P̄ .

Taking the maximum and eliminating the quantifier on the right-hand side we
obtain the desired inequality.

Clearly to minimise the gap between the optimal performance and the perfor-
mance of ω̄ we need to select Λ as small as possible.



3 Simulation-based optimisation

In this section we recall a simulation-based procedure, to find approximate opti-
misers of U(ω). The only requirement for applicability of the procedure is to be
able to obtain realisations of the random variable X with distribution pω(x) and
to evaluate u(ω, x) pointwise. This optimisation procedure is in fact a general
procedure for the optimisation of expected value criteria. It has been originally
proposed in the Bayesian statistics literature [10].

The optimisation strategy relies on extractions of a random variable Ω whose
distribution has modes which coincide with the optimal points of U(ω). These
extractions are obtained through Monte Carlo Markov Chain (MCMC) simula-
tion [12]. The problem of optimising the expected criterion is then reformulated
as the problem of estimating the optimal points from extractions concentrated
around them. In the optimisation procedure, there exists a tunable trade-off
between estimation accuracy of the optimiser and computational effort. In par-
ticular, the distribution of Ω is proportional to U(ω)J where J is a positive
integer which allows the user to increase the “peakedness” of the distribution
and concentrate the extractions around the modes at the price of an increased
computational load. If the tunable parameter J is increased during the opti-
misation procedure, this approach can be seen as the counterpart of Simulated
Annealing for a stochastic setting. Simulated Annealing is a randomised opti-
misation strategy developed to find tractable approximate solutions to complex
deterministic combinatorial optimisation problems [13]. A formal parallel be-
tween these two strategies has been derived in [11].

The MCMC optimisation procedure can be described as follows. Consider a
stochastic model formed by a random variable Ω, whose distribution has not
been defined yet, and J conditionally independent replicas of random variable
X with distribution pΩ(x). Let us denote h(ω, x1, x2, . . . , xJ ) the joint distribu-
tion of (Ω,X1, X2, X3, . . . , XJ ). It is straightforward to see that if

h(ω, x1, x2, . . . , xJ ) ∝
∏

j

u(ω, xj)pω(xj) (16)

then the marginal distribution of Ω, say h(ω), satisfies

h(ω) ∝

[
∫

u(ω, x)pω(x)dx

]J

= U(ω)J . (17)

This means that if we can extract realisations of (Ω,X1, X2, X3, . . . , XJ ) then
the extracted Ω’s will be concentrated around the optimal points of U(Ω) for a
sufficiently high J . These extractions can be used to find an approximate solu-
tion to the optimisation of U(ω).

Realisations of the random variables (Ω,X1, X2, X3, . . . , XJ ), with the desired
joint probability density given by (16), can be obtained through Monte Carlo
Markov Chain simulation. The algorithm is presented below. In the algorithm,
g(ω) is known as the instrumental (or proposal) distribution and is freely chosen



by the user; the only requirement is that g(ω) covers the support of h(ω).

MCMC algorithm

Given ω(k), xj(k), j = 1, . . . , J realisations of random variable X(k) with dis-

tribution pω(k)(x), and uJ(k) =
∏J

j=1 u(ω(k), xj(k)) :

1 Extract
Ω̃ ∼ g(ω)

2 Extract
X̃j ∼ pΩ̃(x) j = 1, . . . , J

and calculate
ŨJ =

∏

j

u(Ω̃, X̃j)

3 Extract the new state of the chain as

[ω(k+1), uJ(k+1)] =







[Ω̃, ŨJ ] with probability ρ(ω(k), uJ (k), Ω̃, ŨJ )

[ω(k), uJ(k)] with probability 1 − ρ(ω(k), uJ (k), Ω̃, ŨJ )

where

ρ(ω, uJ , ω̃, ũJ ) = min

{

1,
ũJ

uJ

g(ω)

g(ω̃)

}

This algorithm is a formulation of the Metropolis-Hasting algorithm for a desired
distribution given by h(ω, x1, x2, . . . , xJ ) and proposal distribution given by

g(ω)
∏

j

pω(xj) .

In this case, the acceptance probability for the standard Metropolis-Hastings
algorithm is

h(ω̃, x̃1, x̃2, . . . , x̃J)

h(ω, x1, x2, . . . , xJ)

g(ω)
∏

j pω(xj)

g(ω̃)
∏

j pω(x̃j)
.

By inserting (16) in the above expression one obtains the probability ρ(ω, uJ , ω̃, ũJ ).
Under minimal assumptions, the Markov Chain Ω(k) is uniformly ergodic with
stationary distribution h(ω) given by (17). Results that characterise the conver-
gence rate to the stationary distribution can be found for example in [12].

A general guideline to obtain faster convergence is to concentrate the search
distribution g(ω) where U(ω) assumes nearly optimal values. The algorithm
represents a trade-off between computational effort and the “peakedness” of the
target distribution. This trade-off is tuned by the parameter J which is the
power of the target distribution and also the number of extractions of X at each
step of the chain. Increasing J concentrates the distribution more around the
optimisers of U(ω), but also increases the number of simulations one needs to
perform at each step. Obviously if the peaks of U(ω) are already quite sharp,
this implies some advantages in terms of computation, since there is no need to
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Fig. 1. Schematic representation of approach maneuver: elevation view.

increase further the peakedness of the criterion by running more simulations. For
the specific U(ω) proposed in the previous section, a trade-off exists between its
peakedness and the parameter Λ, which is related to probability of constraint
violation. In particular, the greater Λ is the less peaked the criterion U(ω) be-
comes, because the relative variation of u(ω, x) is reduced, and therefore more
computational effort is required for the optimisation of U(ω).

4 Air-Traffic Control in Terminal Airspace and Approach

Sectors

Terminal Airspace and Approach Sectors are perhaps the most difficult scenar-
ios in Air-Traffic Control. The management of traffic, in this case, includes tasks
such as determining landing sequences and issuing of “vector” maneuvers to
avoid collisions, holding the aircraft in “stacks” in case of congested traffic, etc.
Here, we give a schematic representation of the problem as described in [14].

During most of the flight, aircraft stay at cruising altitudes, above 30000 ft. In
the current organisation, the traffic at these altitudes has an en-route structure,
which facilitates the action of Air-Traffic Control. Aircraft follow prespecified
corridors at different flight levels. Two adjacent flight levels are separated by
100 ft ; for example, the altitude of 30000 ft is denoted by FL300.

Towards the end of the flight, aircraft enter the Terminal Airspace where air-
traffic controllers guide them from cruising altitudes to the entry points of the
Approach Sector, between FL50 and FL150. Ideally, aircraft should enter the
Approach Sector in a sequence properly spaced in time. Air-traffic controllers of
the Approach Sector are then responsible for guiding the aircraft towards the
proper runway. The tasks of Air-Traffic Control in the Approach Sectors include:

1) Maintain safe separation between aircraft. This is the most important require-
ment for safety, in any sector, during all parts of the flight. Aircraft must always
maintain a minimum level of separation. A conflict between two aircraft is de-
fined as the situation of loss of minimum safe separation between them. Safe
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Fig. 2. Schematic representation of approach maneuver: plan view.

separation is defined by a protected zone centred around each aircraft. The level
of accepted minimum separation can vary with the density of the traffic and the
region of the airspace. A largely accepted shape of the protected zone is defined
by a vertical cylinder, centred on the aircraft with having radius 5 nmi and
height 2000 ft, so that aircraft which do not have 5 nmi of horizontal separation
must have 1000 ft of vertical separation.

2) Descend aircraft from entry altitude to intercept localiser. Once aircraft have
entered the Approach Sector, Air-Traffic Control must guide them from the en-
try altitude (FL50 to FL150) to FL15. This is the altitude at which they can
intercept the localiser, i.e. the radio beacons which will guide them onto the
runway. The point at which the aircraft will actually start the descent towards
the runway is an important variable which has to be carefully chosen since it
can affect the rest of the maneuver and the coordination with other aircraft. The
reason is that aircraft fly following prespecified speed profiles which depend on
the altitude; they fly faster at high altitudes and slower at low altitudes. This
implies that aircraft, flying at lower altitudes, are slower in joining the landing
queue.

3) Sequence aircraft towards the runway. The air-traffic controllers must direct
the aircraft towards the runway in a properly spaced queue. This is done by
adjusting the waypoints (corners) of a standard approach route (STAR) — see
Figures 1 and 2. Typically the route is composed of four legs. During their
descent, aircraft are first aligned, on one of the two sides of the runway, in the
direction of the runway but with opposite heading. This leg is called the left/right
downwind leg, since aircraft are expected to land against the wind. Aircraft then
they perform a turn of approximately 90◦, to approach the localiser. This second
segment is called the base leg. Aircraft perform an additional turn in order to
intercept the plane of the localiser with an angle of incidence of approximately
30◦. The reason is that 30◦ is a suitable angle for pilots to perform the final turn
in the direction of the runway as soon as possible when the localiser has been
intercepted. It is required that aircraft intercept the localiser plane at least 5



Fig. 3. Several trajectory realisations of an approach maneuver (altitude is expressed
in feet and plan coordinates are expressed in meters).

nmi from the beginning of the runway and at an altitude of 1000−−1500 ft, so
that they can follow a 3◦ −−5◦ glide path to the runway.

This approach geometry (which is referee to as the “trombone”) is advantageous
to air-traffic controllers as it allows them great flexibility in spacing aircraft by
adjusting the length of the downwind leg.

5 Simulation of the air-traffic

We have developed an air-traffic simulator that simulates adequately the be-
haviour of a set of aircraft for Air-Traffic Control purposes [15, 16]. Realistic
models of current commercial aircraft have been implemented according to [17].
The simulator contains also realistic stochastic models of the wind disturbance
[18]. The models contain continuous dynamics, arising from the physical motion
of the aircraft, discrete dynamics, arising from the logic embedded in the Flight
Management System, and stochastic dynamics, arising from the effect of the
wind and incomplete knowledge of physical parameters (for example the aircraft
mass, which depends on fuel, cargo and number of passengers). The simulator
has been coded in Java and can be used in different operation modes either to
generate accurate data, for validation of the performance of conflict detection
and resolution algorithm, or to run faster simulations of simplified models.

The nominal path for each aircraft is entered in the simulator as a sequence of
waypoints. The actual trajectories of the aircraft are then a perturbed version of
the nominal path, depending on the particular realisations of wind disturbances
and uncertain parameters. In Figures 3 and 4 several trajectory realisations cor-
responding to the same nominal path are displayed. In this example, the aircraft,
initially at 15000 ft, performs the approach maneuver described in the previous
section. In addition to stochastic wind terms, uncertainty about the mass of the



Fig. 4. Travelled distance (meters) versus time (seconds) for several trajectory reali-
sations of an approach maneuver.

aircraft is introduced as an uniform distribution between two extreme values.
The figures suggest that the resulting uncertainty in the position of aircraft is
of the order of magnitude of a few kilometres.

6 Simulation of arrivals and optimisation

In this section, we optimise an approach maneuver with coordination between
two aircraft. We consider Aircraft One (A1) and Aircraft Two (A2) approaching
the runway as illustrated in Figure 5. In the figure, the glide path towards the
runway starts at the origin of the reference frame and coordinates are expressed
in meters. The aircraft are initially in level flight. The parameters of the ap-
proach maneuver are the distance, from initial position, of the start of the final
descent (ω1) and the length of the downwind leg (ω2).

The initial position of A1 is [0 50000] and altitude 10000 ft. The approach maneu-
ver of this aircraft is fixed to ω̄1 = 30000 and ω̄2 = 50000. The initial position of
A2 is [0 50000] and altitude 10000 ft. The parameters of its approach maneuver
will be selected using the optimization algorithm. The range of the optimisation
parameters is ω2 ∈ [35000, 60000] and ω1 ∈ [0, ω2]. The motion of the two air-
craft is affected by the same uncertainty as in the simulation example of Section
5.

We assume that the performance of the approach maneuver is measured by the
arrival time of A2 at the start of the glide path (T2). The measure of performance
is given by perf = e−a·T2 with a = 5 · 10−4. The constraint is that the trajectory
of A2 is not in conflict with the trajectory of A1. Aircraft 2 must also reach the
altitude of 1500 ft before the start of the glide path. We optimise initially with
an upper bound on probability of constraint violation given by P̄ = 0.3. It is
easy to see that there exists a maneuver in the set of optimisation parameters
that gives negligible conflict probability. Therefore, based on inequality (13), we
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select Λ = 3.5 in the optimisation criterion.

The results of the optimisation procedure are illustrated in Figures 6-9 for dif-
ferent values of J and proposal distribution g. Each figure shows the scatter plot
of the accepted parameters during MCMC simulation. In all cases the first 10%
of accepted parameters was discarded as a burn in period to allow convergence
of the chain to its stationary distribution. Figure 6 illustrates the case J = 5 and
proposal distribution g uniform over the parameter space. In this case, the ratio
between accepted and proposed parameters during MCMC simulation was 0.36.
A region characterised by a low density of accepted parameters can be clearly
seen in the figure. These are parameters which correspond to a conflicting ma-
neuver where the aircraft are performing an almost symmetrical approach. The
figure also shows two distinct “clouds” of accepted maneuvers. They correspond
to a discrete choice that the air traffic controller has to make: either land A2
before A1 (bottom right cloud) or land A1 before A2 (top left cloud).

Figure 7 illustrates the case J = 50 and g uniform. In this case the ratio be-
tween accepted and proposed states was 0.08. The case J = 50 is illustrated
also in Figure 8. In this case, however, the proposal distribution g was a sum of
100 Gaussian distributions N(µ, σ2I) with variance σ2 = 105 m2. The means
of Gaussian distributions were 100 parameters chosen from those accepted in
the MCMC simulation for J = 5 and belonging to the cloud corresponding to
“A2 arrives before A1”. This appears to be the more promising cloud because
of the higher density of points; recall that the distribution of accepted points is
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Fig. 6. Accepted states (50000) during MCMC simulation (J = 5, g uniform).
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Fig. 7. Accepted states (1000) during MCMC simulation (J = 50, g uniform ).

concentrated around the maximisers of U(ω). The choice of this proposal dis-
tribution gives clear computational advantages since less computational time is
spent searching over regions of non optimal parameters. For this choice of g

the ratio between accepted and proposed parameters increased to 0.2. Figure
9 illustrates the case J = 100 and proposal distribution constructed as before
from states accepted for J = 50. In this case the ratio between accepted and
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Fig. 8. Accepted states (1000) during MCMC simulation (J = 50, g sum of Gaussian
distributions).
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Fig. 9. Accepted states (1000) during MCMC simulation (J = 100, g = sum of Gaus-
sian distributions).

proposed parameters was 0.5. Figure 9 indicates that a nearly optimal maneuver
is ω1 = 35000 and ω2 = 35000. The probability of conflict for this maneuver,
estimated by 1000 Monte-Carlo runs, was zero.



7 Conclusions

In this paper we illustrated a Monte Carlo approach to air traffic conflict resolu-
tion in a stochastic setting. The main motivation for our approach is to enable the
use of realistic stochastic hybrid models of aircraft flight; Monte Carlo methods
appear to be the only ones that allow such models. We have formulated conflict
resolution as the optimisation of an expected value criterion with probabilis-
tic constraints. Here, a penalty formulation of the problem has been considered
which guarantees constraint satisfaction but delivers a suboptimal solution. A
side effect of the optimization procedure is that structural differences between
maneuvers (e.g. the sequencing choices in the landing example considered here)
are highlighted as “clouds” of maneuvers accepted by the algorithm.

Our current research is concerned with overcoming the suboptimality imposed
by the need to provide constraint satisfaction guarantees. A possible way is to
use the Monte Carlo Markov Chain procedure presented in Section 3 to obtain
optimisation parameters that satisfy the constraint and then to optimise over
this set in a successive step. Formulation of the the conflict resolution procedure
in the Sequential Monte Carlo [19, 20] framework is also under investigation.
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