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I. A BSTRACT

The BDFM shows economic promise as a variable speed
drive or generator. One practical obstacle to commercial
exploitation is the presence of operating speeds at which
BDFM synchronous action cannot be maintained under
open loop conditions. In [7] the authors proposed a control
strategy using feedback linearization, requiring full state
feedback. In this paper we present a simple rotor current
observer with an arbitrary rate of convergence. Simulation
results are given to validate the performance.

II. I NTRODUCTION

Research into modern applications for the BDFM has
accelerated over the last decade or so. As a motor the
machine has attracted this attention due its potential to rival
the induction machine as a variable speed drive (VSD), and
as a generator where the prime mover speed can be variable,
such as in a wind turbine. These advantages are realised
through a reduced capital installation cost, due to a frac-
tional inverter power requirement (as compared to that for
an induction machine VSD (or generator)), and further, the
advantages of brushless operation are maintained. This is
of particular interest for off-shore wind turbine applications
where maintenance costs are high.

Although the BDFM is similar in construction to an
induction machine its operation is very different [9]. The
machine has more in common with a synchronous machine,
therefore induction motor control strategies are not directly
applicable.

During investigations into the use of the BDFM as a
VSD Spée et al [4] noted that there are regions of shaft
speeds for which the machine shaft speed is very lightly
damped or even unstable. The authors have noted similar
stability problems in both simulation and experiment with
a prototype machine [7].

High performance control of the machine requires knowl-
edge of the rotor currents. However measurement of rotor
currents would be prohibitively expensive in all but the
largest of applications, and further would increase the
maintenance requirements for the machine.

Control strategies proposed in [2], [10], [11] offer meth-
ods of estimating the rotor currents, however the rate of

convergence cannot be controlled in these cases, and is
dependent on the dynamics of the particular machine.

Extending the work of Martin and Rouchon [5], we
present a rotor current observer for the BDFM. The pro-
posed rotor current observer error can be made to converge
to zero at an arbitrarily fast rate, while maintaining expo-
nential stability of observer system. The observer requires
measurement of the machine’s stator currents, and shaft
speed. In practice the rate of convergence will be limited
by model accuracy and the level of sensor noise.

The observer exploits the form of the BDFM equations
allowing derivation of an explicit solution for the observer
error, where the rate of convergence of the error can be
set by the designer. The advantage of this approach over
a Kalman filter is one of simplicity, a Kalman filter for a
time-varying system requires the state covariance estimate
to be computed in real time.

III. PRINCIPAL SYMBOLS

Xs1, Xs2, Xr: indicating a stator 1, 2, or rotor
quantityX

Xd, Xq: indicatingdirect, quadratureX
X−1, X†, X∗: indicating inverse, pseudo-inverse,

complex-conjugate transpose of
matrix X

Xxy: element of matrixX at xth row, and
yth column

X̂: estimated value ofX
<{X},={X}: denotes real, imaginary part ofX
X: vector quantityX
R, M, L: resistance, mutual, self inductance
V, I: instantaneous voltage, current
φs1, φs2: stator winding 1,2 phase offset with

rotor
Ps1,Ps2: stator winding pole pairs
ωr: BDFM rotational shaft speed (time-

varying)
θr: BDFM rotational shaft position

(time-varying)

IV. DYNAMIC BDFM MODEL

A reasonable dynamic model of the BDFM is given
by Boger et al [1]. This model uses a standarddirect-



quadrature (d-q) [3] transformation to represent the ma-
chine in the rotor reference frame. To apply the trans-
formation, the full coupled circuit model (see e.g. [8]) is
reduced in order by truncation of a Fourier series, and then
transformed.

The electrical equations of the Boger model are given as
follows. The state vector is the current vector,Idq:

Vdq = Mdq
dIdq

dt
+ (Rdq + ωrZdq)Idq

whereZdq is a spatial derivative of the mutual inductance
matrix transformed into d-q axis coordinates.




Vd1
Vq1
Vd2
Vq2
0
0


 =




Ls1 0 0 0
0 Ls1 0 0
0 0 Ls2 0
0 0 0 Ls2

M1 cos φs1 −M1 sin φs1 M2 cos φs2 −M2 sin φs2
M1 sin φs1 M1 cos φs1 −M2 sin φs2 −M2 cos φs2

M1 cos φs1 M1 sin φs1
−M1 sin φs1 M1 cos φs1
M2 cos φs2 −M2 sin φs2
−M2 sin φs2 −M2 cos φs2

Lr 0
0 Lr


 d

dt




Id1
Iq1
Id2
Iq2
Idr

Iqr


+

ωr




Rs1/ωr Ps1Ls1 0 0
−Ps1Ls1 Rs1 0 0

0 0 Rs2/ωr Ps2Ls2
0 0 −Ps2Ls2 Rs2/ωr

0 0 0 0
0 0 0 0

−Ps1M1 sin φs1 Ps1M1 cos φs1
−Ps1M1 cos φs1 −Ps1M1 sin φs1
−Ps2M2 sin φs2 −Ps2M2 cos φs2
−Ps2M2 cos φs2 Ps2M2 sin φs2

Rr/ωr 0
0 Rr/ωr







Id1
Iq1
Id2
Iq2
Idr

Iqr


 (1)

Due to the structure of the model, the voltages and
currents can be represented using complex phasors, for
example: [

Vd

Vq

]
=

√
2
[<Vc

=Vc

]

Using the following transformation matrix the model can
be converted into complex form:

Tcomplex , 1√
2


1 i 0 0 0 0
0 0 1 −i 0 0
0 0 0 0 1 i




i ,
√−1

Note thatT∗
complex = T†

complex.

Mc , TcomplexMdqT∗
complex

Rc , TcomplexRdqT∗
complex

Zc , TcomplexZdqT∗
complex

We can now put the model in state-space form as follows:

Vc = Mc
dIc
dt

+ (Rc + ωrZc)Ic


Vs1

Vs2

0


 =


 Ls1 0 M1e

−iφs1

0 Ls2 M2e
iφs2

M1e
iφs1 M2e

−iφs2 Lr


 d

dt


Is1

Is2

Ir


+

[
Rs1−iωrPs1Ls1 0 −ωrPs1M1ie−iφs1

0 Rs2+iωrPs2Ls2 ωrPs2M2ieiφs2

0 0 Rr

]
Is1

Is2

Ir



(2)

Defining:
A , −M−1

c (Rc + ωrZc)

gives:

A = KA′ = K

[
A′

11 A′
12

A′
21 A′

22
A′

31 A′
32

M1e−iφs1 (−iM2
2 ωrPs1−iM2

2 ωrPs2+iLs2LrωrPs1+RrLs2)

M2eiφs2 (−iLs1LrωrPs2+Ls1Rr+iM2
1 ωrPc+iM2

1 ωrPs1)

(−RrLs1Ls2+iM2
2 Ls1ωrPs2−iM2

1 Ls2ωrPs1)

]

(3)

where:

K =
1

Ls1Ls2Lr − Ls1M2
2 − Ls2M2

1

.

andA′
ij are of similar form to the terms in the 3rd column,

but the details are not significant here.
Then:

d

dt


Is1

Is2

Ir


 = A


Is1

Is2

Ir


 + M−1

c


Vs1

Vs2

0


 (4)

in which both the variables and coefficients are complex.

V. A N OBSERVER

The following equation is an observer for the rotor
currents in the BDFM. The poles of the error evolution can
be set arbitrarily, so the observer can be made to converge
at an arbitrarily fast rate.

d

dt


 ˆIs1

ˆIs2

Îr


 = A


 ˆIs1

ˆIs2

Îr


+


 Q

Rr
ζ1−A11 −A12

−A21
Q

Rr
ζ1−A22

Q
Rr

ζ2
Ps2

Ps1+Ps2
γ−A31

Q
Rr

ζ2
Ps1

Ps1+Ps2
−A31


[

ˆIs1−Is1
ˆIs2−Is2

]

+ Mc
−1


Vs1

Vs2

0


 (5)

where:

γ , Ls1M2e
i(φs2+φs1)

Ls2M1

and:
Q , − 1

Rr
+ iωr

βr

Rr
(6)

and:

βr , M2
2

RrLs2
Ps2 − M2

1

RrLs1
Ps1 (7)

andζ1, ζ2 are gains chosen by the designer.



Which can also be written as:

d

dt


 ˆIs1

ˆIs2

Îr


 = A


Is1

Is2

Îr


 +




Q
Rr

ζ1

0
Q
Rr

ζ2
Ps2

Ps1+Ps2
γ

0
Q
Rr

ζ1
Q
Rr

ζ2
Ps1

Ps1+Ps2


[ ˆIs1 − Is1

ˆIs2 − Is2

]
+ Mc

−1


Vs1

Vs2

0


 (8)

in which the measured stator currents appear. Notice that
the observed system, and the observer feedback itself are
time-varying, and as such special treatment is required.

A. Proof

Let the error between the actual and estimated states be,
∆ = I − Î. Then from (8) and (4):

d

dt


∆s1

∆s2

∆r


 =




Q
Rr

ζ1 0
0 Q

Rr
ζ1

Q
Rr

ζ2
Ps2

Ps1+Ps2
γ Q

Rr
ζ2

Ps1
Ps1+Ps2

A13

A23

A33





∆s1

∆s2

∆r


 (9)

Notice that:

d

dt




Ps2
Ps1+Ps2

γ∆s1
Ps1

Ps1+Ps2
∆s2

∆r


 =




Q
Rr

ζ1
Ps2

Ps1+Ps2
γ 0 Ps2

Ps1+Ps2
γA13

0 Q
Rr

ζ1
Ps1

Ps1+Ps2

Ps1
Ps1+Ps2

A23
Q
Rr

ζ2
Ps2

Ps1+Ps2
γ Q

Rr
ζ2

Ps1
Ps1+Ps2

A33





∆s1

∆s2

∆r



(10)

Let:

∆sz , Ps2

Ps1 + Ps2
γ∆s1 +

Ps1

Ps1 + Ps2
∆s2

⇒ d∆sz

dt
=

Ps2

Ps1 + Ps2
γ

d∆s1

dt
+

Ps1

Ps1 + Ps2

d∆s2

dt

Adding the first row of (10) to the second gives:

⇒ d

dt

[
∆sz

∆r

]
=

[ Ps2
Ps1+Ps2

γ d∆s1
dt + Ps1

Ps1+Ps2

d∆s2
dt

d∆r

dt

]
=

[
Q

Rr
ζ1

Ps2
Ps1+Ps2

γ Q
Rr

ζ1
Ps1

Ps1+Ps2
A13

Ps2
Ps1+Ps2

γ+A23
Ps1

Ps1+Ps2
Q

Rr
ζ2

Ps2
Ps1+Ps2

γ Q
Rr

ζ2
Ps1

Ps1+Ps2
A33

]
∆s1

∆s2

∆r




=

[
Q
Rr

ζ1 A13
Ps2

Ps1+Ps2
γ + A23

Ps1
Ps1+Ps2

Q
Rr

ζ2 A33

][
∆sz

∆r

]
(11)

Defining:

∆ ,
[
∆sz

∆r

]

From appendix IX-A, and equation (3), with some ma-
nipulation:

d∆
dt

=
Q

Rr

[
ζ1 −KLs1RrM2e

iφs2

ζ2 KLs1Ls2Rr

]
∆ (12)

And notice that, by choice, all the time-varying elements
are now factorized into the scalarQRr

term.
Following the method of Martin and Rouchon [5], we

define a complex change of time,τ , given by:

τ , −t + i

∫ t

0

ωr(η)βrdη = −t + iθr(t)βr

since we can chooseθr(0) = 0.

⇒ dτ

dt
= −1 + iωrβr =

Q

Rr

We can then define a new state vector∆̃(τ):

∆̃(τ) , ∆(t), ∀t

Substituting this back into equation (12) gives:

d∆̃
dt

=
Q

Rr

[
ζ1 −KLs1RrM2e

iφs2

ζ2 KLs1Ls2Rr

]
∆̃

⇒ d∆̃
dτ

dτ

dt
=

Q

Rr

[
ζ1 −KLs1RrM2e

iφs2

ζ2 KLs1Ls2Rr

]
∆̃

⇒ d∆̃
dτ

Q

Rr
=

Q

Rr

[
ζ1 −KLs1RrM2e

iφs2

ζ2 KLs1Ls2Rr

]
∆̃

⇒ d∆̃
dτ

=
[
ζ1 −KLs1RrM2e

iφs2

ζ2 KLs1Ls2Rr

]
∆̃ (13)

Notice that equation (13) is LTI, and can therefore be
solved explicitly, as long asζ1 andζ2 are constant.ζ1 and
ζ2 can be chosen to adjust the eigenvalues of the system
arbitrarily. In order that we may later ensure exponential
stability of the system, we assume that:

∀t > 0 sign(ωr(t)) = C, C constant. (14)

This condition onωr(t) may be relaxed for diagonalisable
systems, however the derivation, and corresponding condi-
tions for stability are not included in this paper.

Noting that∆̃(0) = ∆(0):

∆̃(τ) = exp
([

ζ1 −KLs1RrM2eiφs2

ζ2 KLs1Ls2Rr

]
τ
)
∆̃(0)

⇒ ∆(t) = exp
([

ζ1 −KLs1RrM2eiφs2

ζ2 KLs1Ls2Rr

]
(−t+

iθr(t)βr)
)
∆(0) (15)

Equation (15) shows the evolution of the error with
time. In general the eigenvalues of equation (13) can be
expressed as shown in equation (16) below (note they are
not necessarily a conjugate pair as the matrix in equation
(13) will, in general, have complex elements). Defining:

λ1 , λ1a + iλ1b

λ2 , λ2a + iλ2b (16)



and:

k1 , −KLs1RrM2e
iφs2 (17)

k2 , KLs1Ls2Rr. (18)

From equation (13) the eigenvalues can be explicitly com-
puted:

(ζ1 − λ)(k2 − λ) − k1ζ2 = 0
⇒ λ2 − (ζ1 + k2)λ + (ζ1k2 − ζ2k1) = 0

⇒ λ =
(ζ1 + k2) ±

√
(ζ1 + k2)2 − 4(ζ1k2 − ζ2k1)

2
(19)

thereforeζ1 andζ2 can be computed, for a desiredλ1, λ2:

ζ1 = λ1 + λ2 − k2

ζ2 =
(λ2 − k2)(k2 − λ1)

k1
. (20)

So the solution must be bounded by linear combinations of:

e(λ1a+iλ1b)(−t+iβrθr(t)) =

e−(λ1at+βrλ1bθr(t))e(iθr(t)λ1a−iλ1bt) (21)

e(λ2a+iλ2b)(−t+iβrθr(t)) =

e−(λ2at+βrλ2bθr(t))e(iθr(t)λ2a−iλ2bt) (22)

So the solutions can be bounded bye(−λ1at−βrλ1bθr(t))

ande(−λ2at−βrλ2bθr(t)). Thereforeζ1 andζ2 must be chosen
such that these terms decay away. This can be satisfied by
ensuring that:

λ1a, λ2a, λ1bsign(ωr)sign(βr), λ2bsign(βr)sign(ωr) > 0,
(23)

but may be satisfied in other ways. Notice that if the
eigenvalues were made entirely real (soλ1b, λ2b = 0), then
the potentially advantageous convergence of these terms at
significant rotor speeds is lost. For, an imaginary eigenvalue
of a set magnitude will converge faster than a real one at
higher motor speeds.

Further, let us now assume, that we have chosen our
eigenvalues such that∆r decays exponentially. Then as
long asωr is bounded thenA13∆r andA23∆r also decay
exponentially. From equation (9) we can write:

d

dt

[
∆s1

∆s2

]
=

[
Q
Rr

ζ1 0
0 Q

Rr
ζ1

] [
∆s1

∆s2

]
+

[
A13∆r

A23∆r

]
(24)

Notice that equation (24) is really two similar scalar
differential equations of the form:

d∆s1

dt
=

Q

Rr
ζ1∆s1 + f(t) (25)

Equation (25) can be solved using anintegrating factor,
to give:

∆s1 =
∫ t

0

e(
R

t
0

Q
Rr

ζ1dt−R
η
0

Q
Rr

ζ1dη)f(η)dη+

∆s1 (0)e(
R t
0

Q
Rr

ζ1dt) ∀η : 0 ≤ η < t (26)

Defining:

α(t) , <
{∫ t

0

Q
Rr

ζ1dt

}
= −<{ζ1}t − βr={ζ1}θr(t)

= −(λ1a + λ2a − k2)t − βr(λ1b + λ2b)θr(t) (27)

From consideration of the initial condition response, a
necessarycondition for exponential decay of∆s1 is that:

∀t ≥ 0 , ∃K1 > 0 :

|∆s1(0)|
∣∣∣e(R t

0
Q

Rr
ζ1dt)

∣∣∣ = |∆s1 (0)| eα(t) ≤ |∆s1(0)| e−K1t

(28)

From (27) this is satisfied if:

λ1a + λ2a > k2, and

(λ1b + λ2b)sign(βr)sign(ωr) > 0. (29)

From (14) θr(t) is monotonic. If we now assume the
conditions expressed in (29) and (23) are satisfied, then from
equation (27):

−α(t) ≥ −α(η) ∀η : 0 ≤ η ≤ t. (30)

Therefore:

∀t ≥ 0,
∣∣∣e(R t

0
Q

Rr
ζ1dt−R η

0
Q

Rr
ζ1dη)

∣∣∣
= e(α(t)−α(η)) ≤ 1. (31)

Recall that|f(t)| is exponentially decaying, therefore we
can say:

∀t > 0 , ∃K2, K3 > 0 : |f(t)| ≤ K2e
−K3t. (32)

From (26), (29), (31), (32), and recalling
∣∣∫ f(z)dt

∣∣ ≤∫ |f(z)|dt, z ∈ C:

|∆s1 | ≤
∫ t

0

K2e
−K3ηdη + |∆s1(0)|eα(t) (33)

which is guaranteed to converge.
From (25) it can be shown that:

d|∆s1 |
dt

= <{ Q

Rr
ζ1}|∆s1 |+

<{∆s1}<{f(t)} + ={∆s1}={f(t)}
|∆s1 |

(34)

By choice we made<{ Q
Rr

ζ1} < K, ∀t > 0, therefore,
from (33):

<{ Q

Rr
ζ1}|∆s1 | < 0, ∀t > 0 (35)

|f(t)| decays exponentially, the real and imaginary parts
of f(t) decay exponentially; and note that|<{z}|

|z| ≤ 1, ∀z ∈



C (and similarly for the imaginary part). Therefore for any
ε > 0:

∃t0 > 0 :

− ε <
<{∆s1}<{f(t)} + ={∆s1}={f(t)}

|∆s1 |
< ε,

∀t > t0 (36)

and hence:

d|∆s1 |
dt

< <{ Q

Rr
ζ1}|∆s1 | + ε, ∀t > t0 (37)

thus,|∆s1 | is guaranteed to decrease until<{ Q
Rr

ζ1}|∆s1 | =
ε, as ε can be made arbitrarily small|∆s1 | must converge
to zero.

Therefore the condition given in (29) for exponential
convergence of∆s1 , is sufficient. It follows from (24), using
a similar argument, that the same condition guarantees that
∆s2 decay exponentially.

So we can ensure∆s1, ∆s2 & ∆r all to converge to
zero, if λ1a, λ2a, λ1bsign(ωr)sign(βr), λ2bsign(βr)sign(ωr)
are strictly positive andλ1a + λ2a > k2. As before, note
that this is not a necessary condition.

VI. EXAMPLE OBSERVERDESIGN

To illustrate this observer design technique, it will applied
to a model of our BDFM. Physical machine data is available
in the appendix.

From the machine data we calculate,βr = 0.02149.
We wish to design an observer for rotational speeds above
50 rad s−1. Our objective is to ensure that the slowest mode
of the error system has a time constant of no greater than
1
40 s.

We want to ensure that the stator current errors also
converge to zero, therefore,<λ1 + <λ2 > k2. From the
machine datak2 = 40.51, therefore<λ1 +<λ2 > 40.51. If
we assume<λ1 ≥ 20, to give some convergence at slower
speeds, then<λ2 > 20.51.

At 50 rad s−1, ωrβr = 1.07, therefore=λ1,2 ≥ ( 40
1.07 −

20), from (21), (22).
These conditions can be satisfied by choosingλ1 = 20+

20i, λ2 = 25 + 20i.
Figure 1 shows the response of the direct-axis rotor

current to a step disturbance on the state of the observer
at t = 2 s of: 

 28
35
707


 amps.

These values correspond to roughly 30% of the current
amplitudes at this point in the simulation.

Figure 2 shows the envelope bounding the error decay
computed from equation (19), and the evolving rotor current
errors, calculated from the simulation.
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Fig. 1. d-axis estimated and actual rotor current step response, at around
75rads−1
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Fig. 2. d and q-axis observer error evolution from step response, at around
75rads−1

VII. C ONCLUSIONS ANDFURTHER WORK

We have presented an observer for the rotor current states
of the BDFM. The observer has been shown to have a rate
of convergence which can be set by the designer arbitrarily,
if certain mild conditions hold.

Work is currently in progress implementing the observer
on our prototype BDFM machine, and investigating the
robustness of the observer to noise and modelling errors.
The observer output is compared with the actual rotor bar
currents measured using Bluetooth technology [6].

This work is being done in the context of devising robust
controllers for the BDFM.
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IX. A PPENDIX

TABLE I

TEST MACHINE DATA

Ls1 0.1022 Ls2 0.0931 Lr 7.3563 × 10−5

Ps1 2 φs1 2.0508 M1 2.1723 × 10−3

Ps2 4 φs2 3.0544 M2 1.4906 × 10−3

Rs1 0.3190 Rs2 0.7000 Rr 1.4268 × 10−4

A. Q
Rr

Factor

To show that a factor of Q
Rr

is present in
Ps2

Ps1+Ps2

Ls1M2eiφs2

Ls2M1e−iφs1 A13 + Ps1
Ps1+Ps2

A23.
From (3):

Ps2
Ps1+Ps2

Ls1M2eiφs2

Ls2M1e−iφs1
A13+

Ps1
Ps1+Ps2
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=
Ps2
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KLs1M2eiφs2
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2 ωrPs1−iM2
2 ωrPs2+

iLs2LrωrPs1)

+
Ps1
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KM2eiφs2 (−iLs1LrωrPs2+Ls1Rr+iM2

1 ωrPs2+

iM2
1 ωrPs1)

=
Ps2

Ps1+Ps2
KM2eiφs2 (−iM2

2
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Ls2

ωrPs1−iM2
2

Ls1
Ls2
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iLs1LrωrPs1+RrLs1)

+
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2
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Ps2
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