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. ABSTRACT convergence cannot be controlled in these cases, and is

The BDFM shows economic promise as a variable speétfPendent on the dynamics of the particular machine.

drive or generator. One practical obstacle to commercial Extending the work of Martin and Rouchon [5], we
exploitation is the presence of operating speeds at whid§esent a rotor current observer for the BDFM. The pro-
BDFM synchronous action cannot be maintained unddosed rotor current observer error can be made to converge
open loop conditions. In [7] the authors proposed a contrd 2€ro at an arbitrarily fast rate, while maintaining expo-
strategy using feedback linearization, requiring full stat@ential stability of observer_system. The observer requires
feedback. In this paper we present a simple rotor currefiéasurement of the machine’s stator currents, and shaft
observer with an arbitrary rate of convergence. SimulatiopP€€d- In practice the rate of convergence will be limited

results are given to validate the performance. by model accuracy and the level of sensor noise.
The observer exploits the form of the BDFM equations
Il. INTRODUCTION allowing derivation of an explicit solution for the observer

Research into modern applications for the BDFM hasrror, where the rate of convergence of the error can be
accelerated over the last decade or so. As a motor tiset by the designer. The advantage of this approach over
machine has attracted this attention due its potential to rival Kalman filter is one of simplicity, a Kalman filter for a
the induction machine as a variable speed drive (VSD), aritne-varying system requires the state covariance estimate
as a generator where the prime mover speed can be varialitepe computed in real time.
such as in a wind turbine. These advantages are realised m
through a reduced capital installation cost, due to a frac-
tional inverter power requirement (as compared to that for
an induction machine VSD (or generator)), and further, the Xy, X,
advantages of brushless operation are maintained. This is X_’l }I(T X
of particular interest for off-shore wind turbine applications T
where maintenance costs are high.

. PRINCIPAL SymBOLS

X1, X2, X, indicating a stator 1, 2, or rotor
guantity X

indicatingdirect, quadrature X
indicating inverse, pseudo-inverse,
complex-conjugate transpose of

SRR . matrix X
. Alth_ough the. BDFM is swmlar in congtructlon to an Xoy: element of matrix¥ atzt" row, and
induction machine its operation is very different [9]. The 4 column

machine has more in common with a synchronous machine, <
therefore induction motor control strategies are not directly
applicable.

During investigations into the use of the BDFM as a

: estimated value o
R{X},S{X}: denotes real, imaginary part of
: vector quantityX

, . R,M,L: resistance, mutual, self inductance

VSD Spge et al [4] noted that there are regions of shaft VI instantaneous voltage, current
speeds for which the machine shaft speed is very lightly ¢’ .¢> i stator winding 1,2 pha’se offset with
damped or even unstable. The authors have noted similar sh Ps2: rotor '
ztatr)(ljllttc))/t prgt;:]earzﬁirl]r; ?;)]th simulation and experiment with Py P stator winding pole pairs

prototyp : . . Wyt BDFM rotational shaft speed (time-

High performance control of the machine requires knowl- varying)
edge of the rotor currents. However measurement of rotor 0, BDFM rotational shaft position

currents would be prohibitively expensive in all but the
largest of applications, and further would increase the
maintenance requirements for the machine. IV. DYNAMIC BDFM MODEL

Control strategies proposed in [2], [10], [11] offer meth- A reasonable dynamic model of the BDFM is given
ods of estimating the rotor currents, however the rate dfy Boger et al [1]. This model uses a standafidect-

(time-varying)



quadrature (d-q) [3] transformation to represent the ma- Vi1 L 0 Mye™ "% Is

N — iger | 2
chine in the rotor reference frame. To apply the trans- Via| = 0A¢ L52_¢ Myer®e2 dt Lso| +
. . . . 1Ps —1QPs
formation, the full coupled circuit model (see e.g. [8]) is 0 Myer®t Mae™*% Ly I
reduced in order by truncation of a Fourier series, and then Ry —iw, Poy Loy 0 o Py Myie—i%a1 I
transformed. 0 RsotiwyPsaLsa  wy PsoMaie?®s2 Iso
The electrical equations of the Boger model are given as 0 0 Rr I,
follows. The state vector is the current vecthyy: (2)
i Defining:
dq 2 _ Mt
Vaq = qu? + (Rag + wrZag)laq 4 M (Be + wrZe)
. . L ) gives:
where Z,, is a spatial derivative of the mutual inductance
matrix transformed into d-q axis coordinates. , A Al
A=KA =K Aby A,
él Af}z
Vi Loy 0 0 0 Mye™ ?s1 (—iMj w,. Ps1 —i M3 wy Pso+iLss Lrw, Ps1+ Ry Lis2)
Va1 -| { 0 Lo 0 0 Ma2e'®s2 (—iLg1 Lywr Psao+ L1 Rp+iMiw,. Pe+iMiw, Ps1)
Vi | = 0 0 Ls2 L(12 (=RrLs1 Loa+iMZ Laiwr Poa—iM3 Laowr Pa1)
82 J \‘Ml cos ¢s1 —Miysingpsy Mz cospsz —Ma sin bs2 (3)
0 My sin ¢s1 My cos ps1 — Moz sin pso —Ma cos ¢s2
My cos¢ps1 My sin ¢s1 141 where:
—Mji sin¢s1 Mj cos ¢s1 d I 1
Mjycosgsz —Masinggs | % | la2 + K = .
Masinger —Maeosges | | fo2 LaLgpLy — LaM3 — Lo M7
(; - LLT . qu and Aj; are of similar form to the terms in the 3rd column,
_E;/f; R0 0 but the details are not significant here.
Wy 0 0 Rso/wr PsaLso Then:
0 0  —PsaLs2 Rea/wr 7 7 v
0 0 0 0
0 0 0 0 d sl sl . sl
— Py My sin g1 Ps1 My cos g I 7 Io| = A L2 + M | Vs2 4)
—Pg1 My cos ¢ps1 —Ps1 Mi sin ¢ps1 I I I 0
—PsaMa sin ¢s2 — Ps2 M2 cos ¢s2 Tgo (1) r r
Theplcosten Paallasinga || e in which both the variables and coefficients are complex.
0 Ry /wy Igr

V. AN OBSERVER

Due to the structure of the model, the voltages and The following equation is an observer for the rotor
currents can be represented using complex phasors, firrents in the BDFM. The poles of the error evolution can

example: be set arbitrarily, so the observer can be made to converge
Va| NG RV, at an arbitrarily fast rate.
Vo~V SV . .
d I I
Using the following transformation matrix the model can T Io| =A |l +
be converted into complex form: I, I,
%Cl—All —Ai2 .
A1 1L @ 0 0 0 0 — A2 1%(1—1422 [ﬁfl:?l]
Teompiex = ﬁ 0 L= 00 %CQ%’Y_AZH %Cz%—flsl e
0 00 0 1 1
Vi1
+ M7 | Ve| (B
* _mt where:
Note thatT7,,, e = Tiompres- o Lo Moei($s2+¢s1)
MC £ TcompledeqTéomplex LSQMl
Rc £ Tcompledequomplex and: Q A 1 +i Br (6)
y = - twr—
Zc = Tcompledechomplex Rr " Rr
. and:
We can now put the model in state-space form as follows: a M2 M?
67’:RL PSQ_RL Psl (7)
d ri/s2 rd/sl

Ve = Mcd—tc + (Re + wr Ze)le and(;, ¢, are gains chosen by the designer.



Which can also be written as:

I I ] A Q[G —KLaR M) o o
d X - s Br dt - <2 KLSILSQRT
% ISQ =A I§2 + 0
I, I, gg yoh pr ! And notice that, by choice, all the time-varying elements
0 A v are now factorized into the scal% term.
e I — I P Following the method of Martin and Rouchon [5], we
Cl ~ + M. Va2 (8) i : : .
Q Iso — I define a complex change of time, given by:
C2m 0

t
in which the measured stator currents appear. Notice that 7 = —t+z’/ wr(n)Brdn = —t +160,.(t) 5,
the observed system, and the observer feedback itself are 0

time-varying, and as such special treatment is required.
since we can choogg.(0) = 0.

A. Proof dr

_ C aiwn @
Let the error between the actual and estimated states be, = ar + iwy By = R,

A =1 —1. Then from (8) and (4): _
We can then define a new state vect(r):

Q 0 -
d A 7, ¢ o A(r) 2 A1), vt
E ASQ = 0 R, Cl
A, QQP Loy £ 9 o 1P+P - Substituting this back into equation (12) gives:
Az [As _ ) o
Aoz | |As2| (9) da Q [G —KLgaR,Mye'=> A
A33 Ar dt RT _C2 KLSILSQRT’ ]
Notice that: _ da dAdr _ Q [G —KLaR M) 1
A dr dt RT _C2 KLSILSQRT’ ]
4 511+prﬂA N _dAQ _ Q[a —KLaR M) 5
dt | PR dr R, R, [ KLaLoR, |
' dA ¢ —KLaR, Maei®2] «
Q P, o= 1 s14up VI
R_TCI Py +2Psz v 0 .. Ps1 +P<z PyAm Aq = dr B CQ KL, LR, A (13)
0 R, Cl Pb1+P52 Ps1 +P52 Az A . : P
Q G ~ G Ass A, Notice that equation (13) is LTI, and can therefore be
sl At (10) solved explicitly, as long ag; and(, are constant(; and
(> can be chosen to adjust the eigenvalues of the system
Let: P P arbitrarily. In order that we may later ensure exponential
A, 2 "2 A, +—1 A stability of the system, we assume that:
Psl + PsQPy ! Psl + PsQ .
iA. P dA,, P dAu Yt > 0 sign(w,(t)) = C, C constant (14)
dt Py + PSQ7 dt Pi1 + Psy dt This condition onw,.(t) may be relaxed for diagonalisable

systems, however the derivation, and corresponding condi-

Adding the first row of (10) to the second gives:
g (10) ¢ tions for stability are not included in this paper.

Psy dA, Py dAs: i A — :
= i |:A5Z:| = |: <1+P<2’y dt1 + P<1+1qu dtz:| = NOtmg thatA(O) A(O)
dt | Ay dt A(T) = exp ({21 leglezMzRew.&} T)A(O)
_ . Ay 2 salazftr
Tt T e A et | AL L S A = exp([ G KL P | (<
HC2W7 Ry CZW Ass A C2 s1Lso Ry
T

i6(1)3,)) A0)  (15)

_ RQTCI flldp1_;’_132’)/"—‘%1231314_13z ASZ (11) ] ] .
£ G Assz A, Equation (15) shows the evolution of the error with
7 time. In general the eigenvalues of equation (13) can be
Defining: expressed as shown in equation (16) below (note they are
A not necessarily a conjugate pair as the matrix in equation
A sz . . ..
A {A } (13) will, in general, have complex elements). Defining:

From appendix IX-A, and equation (3), with some ma- M= A + A
nipulation: A2 £ Aoq + iAo (16)



and: Defining:
—K LR, Mse'®s2 (17)

kl é t
b & KL LR am o0 2w{ [ Faa}--riau-ssG0.0
From equation (13) the eigenvalues can be explicitly com- = —(A1a + Aaa — k2)t — Br-(A1p + A2p)0:- (1) (27)
puted:
From consideration of the initial condition response, a
(L= A)(k2 = A) = k12 =0 necessaryondition for exponential decay af,, is that:
=A% — (G + k)N + (Gka — Goky) =0
\ = (C1 4 ko) £ /(G + k2)? — 4(Gika — Goka) 19 V> 0,3K; >0:
= A= 9 (19) A (Jo #=Cudt)| — A alt) < A —K1t
_ [As, (0)] |eMo 7 = A5, (0)[ ™ < [As, (0)] e
therefore(; and({, can be computed, for a desired, \s: (28)
G = Mth—k From (27) this is satisfied if:
(e = ko) (k2 — A1)
G = . (20)
k1 Ma + Aag > ko, and
So the solution must be bounded by linear combinations of: (A1 + Aap)Sign(B,)signiw,) > 0. (29)

e(/\1a+i)\1b)(7t+i,3rr~9r(t)) —

From (14) 6,.(t) is monotonic. If we now assume the
conditions expressed in (29) and (23) are satisfied, then from
e(M2atirap) (—t+iBr0r(t)) _ equation (27):

= (2at+6: 2200, (6) (6, (D Aza—idant) (D)

e~ A1at+BrA160:(8)) o (10 () Ao —id1pt) (21)

So the solutions can be bounded dy *1et—FrA1u0x(1) —olt) 2 —aln) Vn:0sm<t (30)

ande(—*2at=BrA20-(1) Thereforel; and(, must be chosen  Therefore:
such that these terms decay away. This can be satisfied by
ensuring that: vt > 0, [e(Jo 7 Gudt= g 7-Cudn)

Ala, A2, A1pSIGN(w;)SigN(5;-), AapSign( G, )signw,.) > 0, — ele®—am) < 1, (31)
(23)
but may be satisfied in other ways. Notice that if theRecall that|f(¢)| is exponentially decaying, therefore we
eigenvalues were made entirely real ¢s@, Aop, = 0), then can say:
the potentially advantageous convergence of these terms at
significant rotor speeds is lost. For, an imaginary eigenvalueVt > 0,3K, K3 > 0 : |f(t)] < K.e %3t (32)
of a set magnitude will converge faster than a real one at _
higher motor speeds. From (26), (29), (31), (32), and recallingf f(z)dt| <
Further, let us now assume, that we have chosen ol f(2)]dt, z € C:
eigenvalues such thah, decays exponentially. Then as ¢
long asw, is bounded them;3A, and A;3A, also decay 1A, ] < / Koe 5odn 4+ |A,, (0)[e®  (33)
exponentially. From equation (9) we can write: 0
which is guaranteed to converge.
From (25) it can be shown that:

d [Asl} _ [R%gl 0

i R e

% ASQ 0 %Cl ASQ
Notice that equation (24) is really two similar scalar dlAs| %{QQ}IA I+
differential equations of the form: dt R, *
R{A IR{S ()} + S{A IS{Sf (¢
B Qo - (A JREA( >|}AS |{ ISUWO} (54
dt R, % 1
Equation (25) can be solved using itegrating factor By choice we madé%{R%gl} < K,vt > 0, therefore,
to give: from (33):
%{RQQHASJ <0,¥t>0 (35)

t
B, = [ el G s i
0 (i & coar) | f(t)| decays exponentially, the real and imaginary parts
A, (0)ello 7ot Vn:0<n<t (26) of f(t) decay exponentially; and note th {jl” <1,Vze



C (and similarly for the imaginary part). Therefore for any 2000+ /\ @ A — actual
e>0: A /) I - - - estimated
1500 | | = I R T
TR R T2 T A N
Jto>0: 1ooor \ B A N il
I P [
o RARUO) + ${ALSU0) 2 S0/ / R R -
‘ ] - : TR S |
* s 0O I { R / o
YVt >ty (36) g / | ! '\“\\ f | | \ | \
-500f ’, \ | , | \‘ | I 1
and hence: ~1000/ | L Y Y - / L)

W, i " \ /
dA,, Q i} f B L) \ \
Bl Leyan+emsn @ )0

dt R, \
-2000F : : :
thus,|A,, | is guaranteed to decrease U< }A,, | = 2 209 © 21 2.15
€, ase can be made arbitrarily small\,, | must converge
to zero.

Therefore the condition given in (29) for exponentials'g’réé's_ld'ax's estimated and actual rotor current step response, at around

convergence o\, , is sufficient. It follows from (24), using

a similar argument, that the same condition guarantees thi ‘ ‘ — d—axis error
Ag, decay exponentially. 6001 - - g-axis error ||
\ - - - envelope

So we can ensuréd\;, A, & A, all to converge to

zero, if Ma, A2a, A1pSIgn(w;.)sign( B, ), AepSign( 3, )sign(w;.) 400¢ s
are strictly positive and\;, + A2, > k2. As before, note 2000 T
that this is not a necessary condition. < ;
5 o
VI. EXAMPLE OBSERVERDESIGN 8_2007

To illustrate this observer design technique, it will applied _aool
to a model of our BDFM. Physical machine data is available
in the appendix. -600
From the machine data we calculateé, = 0.02149.
We wish to design an observer for rotational speeds abov
50 rad s !. Our objective is to ensure that the slowest mode

of the error system has a time constant of no greater than
1lg Fig. 2. dand g-axis observer error evolution from step response, at around
40 = 75rads !

We want to ensure that the stator current errors also

converge to zero, therefor&\; + R\ > ko. From the

2.05 21 2.15
time (s)

N -

machine data, = 40.51, thereforeRA; + RA2 > 40.51. If VII. CONCLUSIONS ANDFURTHER WORK
we assumeitA; > 20, to give some convergence at slower \ye have presented an observer for the rotor current states
speeds, thefitA; > 20.51. of the BDFM. The observer has been shown to have a rate
At 50 rad s, w,B, = 1.07, thereforeSA; o > (2% —  of convergence which can be set by the designer arbitrarily,
20), from (21), (22). if certain mild conditions hold.
These conditions can be satisfied by choosing= 20 + Work is currently in progress implementing the observer
207, A2 = 25 + 20i. on our prototype BDFM machine, and investigating the

Figure 1 shows the response of the direct-axis rotabbustness of the observer to noise and modelling errors.
current to a step disturbance on the state of the observEfie observer output is compared with the actual rotor bar

att =2s of: currents measured using Bluetooth technology [6].
28 This work is being done in the context of devising robust
35 | amps controllers for the BDFM.
707
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