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for all ¢. Hence,x(t) grows without bound ag — oo and cannot thaté, < ¢/2 and choosé, = t;+1u(26; /¢) if 261 /¢ > 1, otherwise,
belong to£2[0, oc). This is a contradiction which establishes thehooset] = t;. This ensures that for arty > ¢}

lemma. u
The lemma proves the relevant boundedness prope#tgt dfor [1, L
Examples 8 and 9] with(¢) = 62 cos § anda(¢) = —# respectively. [(t)] <e " Hos, 4 6
We are most grateful to R. Ortega [2] for pointing out the need to clarify < eft’1+t661 16 <e

this step of our paper.

We now turn to b). The relevant fact is proved in the seven lines of
parenthetic comments in [1, p. 1216, lines 32—38]. We now restate ménce, foralk > f=1(#}), |«(t)| < e which establishes the clainm
claim in the form of a lemma and give an alternative proof. - -
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