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Abstract: In this contribution we discuss a stochastic framework for air traffic
conflict resolution. The conflict resolution task is posed as the problem of
optimising an expected value criterion. Optimisation is carried out by Monte Carlo
Markov Chain (MCMC) simulation. A numerical example illustrates the proposed
strategy.
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1. INTRODUCTION

In the current organisation of Air Traffic Manage-
ment the centralised Air Traffic Control (ATC)
is in complete control of the air traffic and ul-
timately responsible for safety. Aircraft, before
take off, receive flight plans which cover the entire
flight. During the flight, ATC sends additional
instructions to them, depending on the actual
traffic, in order to avoid dangerous encounters.
The main objective of ATC is to maintain safe
separation. The level of accepted minimum safe
separation can vary with the density of the traffic
and the region of airspace. For example, a largely
accepted value for horizontal minimum safe sepa-
ration is 5 nmi in general en-route airspace which
is reduced to 3 nmi during in approach sectors
with aircraft landing and departing. A conflict is
defined as the situation of loss of minimum safe
separation between two aircraft. If it is possible,
ATC tries also to fulfil, the, possibly conflicting,
requests of aircraft and airlines (desired path to
avoid turbulence, desired time of arrivals to meet
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schedule, etc.. ).
In order to improve performance of ATC, mainly
in view of increasing levels of traffic, research
effort has been spent in the last decade to create
tools for Conflict Detection and Conflict Resolu-
tion. A review of research work on ATC is pre-
sented in (Kuchar and Yang, 2000).
In Conflict Detection one has to evaluate the
possibility of future conflict starting from the
current state of the airspace and taking into ac-
count uncertainty in the future position of aircraft
while they follow given nominal paths. In doing
Conflict Detection one needs a model to predict
the future. In a probabilistic setting, the model
could be either an empirical distribution of fu-
ture position or a stochastic differential equation
that describes the aircraft motion and defines
implicitly a distribution for future aircraft posi-
tions. The stochastic part enters the system as
the action of the wind field and several uncertain-
ties in the physics of the aircraft. On the basis
of the prediction model one can evaluate met-
rics related to safety. One example of a possible
metric is conflict probability over a certain time
horizon. Several methods have been developed to



estimate different metrics related to safety for
a number of prediction models, e.g (Blom and
Bakker, 2002; Hu et al., 2003; Irvine, 2001; Paielli
and Erzberger, 1997; Prandini et al., 2000).
Among other methods, Monte Carlo (MC) meth-
ods have the main advantage of allowing flexibility
in the complexity of the prediction model since the
model is used only as a simulator and, in principle,
it is not involved in explicit calculations. In all
methods a trade off exists between computational
effort (simulation time in the case of MC meth-
ods) and complexity of the model. Techniques to
accelerate MC methods by saving computational
time are under development, see e.g. (Krystul and
Blom, 2004).
In Conflict Resolution one wants to calculate
suitable maneuvers to avoid a predicted conflict.
A number of Conflict Resolution algorithms has
been proposed for a deterministic setting, see
(Kuchar and Yang, 2000). In a stochastic setting,
the research effort has been concentrated mainly
on Conflict Detection while few resolution strate-
gies dedicated to a stochastic setting have been
proposed, the main reason being the complexity of
stochastic prediction models. Simple conflict reso-
lution maneuvers have been considered in (Paielli
and Erzberger, 1997; Prandini et al., 2000).
In this paper we present a Monte Carlo Markov
Chain (MCMC) framework (Robert and Casella,
1999) for Conflict Resolution in a stochastic set-
ting. The approach is borrowed from Bayesian
statistics (Mueller, 1999; Mueller et al., 2002). We
will consider a resolution criterion that takes into
account separation and other factors (e.g. aircraft
requests). Then, the procedure of (Mueller, 1999)
is employed to estimate the resolution maneu-
ver that optimises the expected value criterion
through MCMC simulation. The interesting point
in this approach is that it extends the advantages
of Monte Carlo techniques, in terms of flexibility
and complexity of the problems that can be tack-
led, to Conflict Resolution.
In this contribution, we restrict our attention to
level flight. The case of level flight is meaningful
from an application point of view since aircraft
typically tend to fly at the same altitude most
of the time. However, even if it is common ATC
practice to solve conflicts between aircraft flying
at the same altitude through lateral maneuvers
(EUROCONTROL Experimental Centre, 2002a),
also vertical resolution maneuvers (ie maneuvers
involving one aircraft climbing or descending) are
frequently used. Therefore the extension to three
dimensional context will be crucial to make the
contribution valuable for applicability in ATC.
The extension to a three dimensional context goes
beyond the scope of this paper, which is devoted
to present the framework that we propose for Con-
flict Resolution. The approach to Conflict Reso-
lution presented in this paper extends to three
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dimensional flight without additional theoretical
issues, though more work would be needed to
identify the action of ATC in three dimensional
context.
The paper is organised as follows. In the next sec-
tion we recall modelling of the motion of commer-
cial aircraft in level flight. In Section 3 we discuss
the choice of resolution criteria. The MCMC pro-
cedure for optimisation is described in Section 4.
In Section 5 we show effectiveness of the algorithm
in the resolution of a simple conflict. Section 6
contains conclusions and future objectives.

2. MODELLING OF AIRCRAFT MOTION

We recall modelling of the motion of commercial
aircraft in level flight from the point of view of
ATC. The model is based on description of com-
mercial aircraft contained in the Base of Aircraft
Data (BADA) database (EUROCONTROL Ex-
perimental Centre, 2002b). The reader is referred
to (Glover and Lygeros, 2003) for a detailed pre-
sentation of the model.
Commercial aircraft receive a flight plan (Fig.
1), which covers the entire flight, before take off.
Aircraft are equipped with a Flight Management
System (FMS) that assists the pilot in following
the flight plan. A flight plan contains a sequence
of waypoints {Ōi}

M
i=1

which in the case of level
flight are expressed as coordinates in a 2D refer-
ence frame. The reference path is the sequence of
straight lines joining each waypoint to the next.
Correspondingly, for each segment of the reference
path, the reference heading is defined as Ψ̄i =
∠[Ōi − Ōi−1]. Each time a waypoint is reached,
the waypoint is eliminated from the flight plan
and the aircraft heads to the next one accord-
ing to the corresponding new reference heading.
The first segment of the flight plan is therefore
defined by the current reference heading Ψ̄1 and
the first waypoint Ō1. In the current system the
aircraft travel between waypoints with constant
airspeed (i.e. speed relative to the air surrounding
the aircraft) dictated by altitude dependent speed



profiles which can be found in BADA.
The motion of the aircraft from the point of view
of ATC is determined by the aircraft dynamics
plus the action of the FMS that keeps the aircraft
in track with the flight plan.
In BADA the dynamics of aircraft is described
by Point Mass Model differential equations in the
form

α̇ = f(α, u,w)

where: α (position (x), heading (ψ), airspeed and
mass) are the states, u (bank angle and engine
thrust) are the control inputs and w (wind ve-
locity) is a disturbance. In general the wind ve-
locity can be modelled as a random field W (x, t)
with space time autocorrelation (i.e. W (x1, t1),
W (x2, t1) W (x1, t2), W (x2, t2) are correlated ran-
dom variables). This model of the aircraft dynam-
ics has been implemented and used for the simula-
tions in Section 5 - see (Glover and Lygeros, 2003)
for more details.
The FMS controls the motion of the aircraft, i.e. it
corrects errors with respect to the reference path
and executes turns. In order to describe the action
of FMS, assume that the aircraft is directed to
waypoint Ō1 with reference heading Ψ̄1 and let us
introduce l and d defined as
[

d
l

]

=

[

− sin(Ψ̄1) cos(Ψ̄1)
cos(Ψ̄1) sin(Ψ̄1)

] [

x[1] − Ō1[1]
x[2] − Ō1[2]

]

.

The moduli of l and d represents respectively the
distance between the projection of the aircraft
position on the nominal trajectory and the way-
point Ō1 and the distance of the aircraft position
from the nominal trajectory. We can assume that
the FMS receives as an input the error signals l,
d and ψ − Ψ̄1. Several control strategies can be
implemented in the FMS. A 3D FMS regulates
only the cross track error d by controlling the
heading through the bank angle. The airspeed is
fixed for level flight and is defined from look up ta-
bles depending on the altitude. In the simulation
example of Section 5 a 3D FMS is implemented. In
the case of 3.5D FMS the waypoints are stamped
with a time of arrival. The FMS regulates the
error with the expected time of arrival and adjusts
the engine thrust to eliminate this error. In the
case of a 4D FMS the error with respect to a
continuous 4D reference path (position + time)
is considered.
The aircraft trajectory is then defined by the
stochastic differential equation describing the con-
trol system aircraft + FMS. Let us remark that in
general the space time correlation of the wind field
makes it impossible to calculate exact quantities
such as, for example, the probability of conflict
in a multi aircraft system. The Conflict Detection
methods in the literature that are not simulation
based MC methods generally make the approx-
imation that the effect of the wind field can be
described as Brownian motion, see e.g. (Blom and

Bakker, 2002; Hu et al., 2003). In MC methods the
space time correlation of the wind field in principle
does not harm applicability.

3. AIR TRAFFIC CONTROL WITH
OPTIMISATION OF AN EXPECTED VALUE

CRITERION

The role of ATC is to monitor the traffic and
detect possible dangerous encounters in the fu-
ture. Indeed, flight plans are calculated before
take off and cannot take into account the actual
traffic configuration during the flight. The role of
ATC is to intervene by sending suitable maneuver
instructions in order to resolve predicted conflicts.
Let us consider a multiaircraft system. Without
loss of generality, we assume that ATC monitors
a future time horizon [0, T ] where t = 0 denotes
the present. We model ATC instructions to each
aircraft as a set of waypoints valid over the time
horizon [0, T ]. We denote this set of waypoints
for all the aircraft as Ω. We assume that Ω de-
termines the nominal paths in [0, T ]. If no ATC
intervention is required then Ω = Ω̄ where Ω̄
denotes the set of the waypoints of the original
flight plan in [0, T ]. Let us introduce also a sample
time ∆T (e.g. ∆T = 6 sec which is tipically the
time interval between two successive radar mea-
surements) and denote X the vector of the time
sequence of positions of all aircraft in [0, T ] at the
sampled instants. Vector X is a random variable
with probability density function X ∼ pΩ(x).
The probability density pΩ(x) is determined by
the SDE describing the aircraft + FMS closed
loop system and by the initial conditions (i.e. the
positions and headings at time 0). The subscript
Ω denotes that the distribution of X depends on
the instructions received from ATC.
The objective of ATC is to select Ω in such a way
that the aircraft trajectories will be conflict free
and efficient. A conflict is defined as the loss of a
minimum safe separation, say c̄ (a typical value
is c̄ = 5 nmi), between two aircraft. If we denote
xi(t) and xj(t) the positions of two different air-
craft then a conflict is defined as the event

∃t ∈ [0, T ] : ‖xi(t) − xj(t)‖ < c̄ .

In general, for any realization of the random vari-
able X one can define a criterion u(Ω, X) that
penalizes conflicting trajectories and measures the
efficiency of conflict-free trajectories. Efficiency
can be measured, for example, in terms of dis-
tances of the trajectories from desired paths. Once
a criterion has been chosen, a sensible choice of
Ω is then determined by the optimization of the
expected value criterion

U(Ω) =

∫

u(Ω, x)pΩ(x)dx . (1)



A Monte Carlo Markov Chain (MCMC) proce-
dure to find an approximate solution to this prob-
lem is described in the next section.

4. SIMULATION BASED OPTIMISATION

In this section we recall a simulation based proce-
dure to optimise expected value criteria. This pro-
cedure has been proposed in Bayesian statistics
literature. The original idea has been presented in
(Mueller, 1999). In (Mueller et al., 2002) results
on asymptotic convergence are derived.
Consider the problem of optimising the expected
value criterion (1) where Ω is the optimisation
parameter and pΩ(x) is a probability density func-
tion which depends on the optimisation parame-
ter. The procedure presented below addresses the
approximate optimisation of U(Ω) through exten-
sive use of simulations. Apart from the possibility
of evaluating u(Ω, X) no other particular assump-
tions are imposed on the optimisation criterion.
Here we consider maximisation of U(Ω), i.e. U(Ω)
is an expected utility. Obviously no modifications
of the procedure are required in the case of min-
imisation of an expected cost.
The optimisation procedure relies on the defini-
tion of an augmented stochastic model in which
also Ω is a random variable. The stochastic model
is formed by Ω and J independent replicas of X.
We denote h(ω, x1, x2, . . . , xJ ) the joint distribu-
tion of (Ω, X1, X2, X3, . . . , XJ ). It is straightfor-
ward to see that if

h(ω, x1, x2, . . . , xJ ) ∝
∏

j

u(ω, xj)pω(xj) (2)

then

Ω ∼ h(ω) ∝

[
∫

u(ω, x)pω(x)dx

]J

. (3)

This means that if we can extract from the aug-
mented model (Ω, X1, X2, X3, . . . , XJ ) then the
extracted Ω’s will cluster around the optimal
points of U(Ω) for a sufficient high J . These
extractions can be used to find an approximate
solution to the original optimisation problem.
Extractions from the augmented stochastic model,
with the desired joint probability density given by
(2), can be obtained through a MCMC scheme.
The algorithm is presented below. In the following
algorithm g(ω|ω̄) is an instrumental (or proposal)
distribution which is freely chosen by the user.
The only requirement is that g(ω|ω̄) covers the
support of h(ω).

MCMC algorithm (Metropolis-Hastings)

Initial state (ω̄, x̄j j = 1, . . . , J) and ūJ =
∏

j u(ω̄, x̄j)

1 Extract
Ω̃ ∼ g(ω|ω̄)

2 Extract

X̃j ∼ p
Ω̃
(x) j = 1 . . . J

and calculate

ŨJ =
∏

j

u(Ω̃, X̃j)

3 Extract the new state of the chain as

(Ω̄, ŪJ )=

{

(Ω̃, ŨJ )with probability ρ(ω̄, ūJ , Ω̃, ŨJ )

(ω̄, ūJ )with probability 1−ρ(ω̄, ūJ , Ω̃, ŨJ )

where

ρ(ω̄, ūJ , ω̃, ũJ ) = min

{

1,
ũJ

ūJ

g(ω̄|ω̃)

g(ω̃|ω̄)

}

4 Repeat steps 1 through 3

The algorithm is a formulation of the Metropolis-
Hasting algorithm for a desired distribution given
by h(ω, x1, x2, . . . , xJ ) with proposal distribution
given by

g(ω|ω̄)
∏

j

pω(xj) .

In fact, in this case, the acceptance probability for
the Metropolis-Hastings algorithm is (Robert and
Casella, 1999)

h(ω̃, x̃1, x̃2, . . . , x̃J )

h(ω̄, x̄1, x̄2, . . . , x̄J )

g(ω̄|ω̃)
∏

j pω(x̄j)

g(ω̃|ω̄)
∏

j pω(x̃j)
.

and by inserting (2) in the above expression one
obtains exactly ρ(ω̄, ūJ , ω̃, ũJ ). The distribution
of Ω̄ then converges to a stationary distribution
given by (3) (Robert and Casella, 1999).
Interestingly enough, in the case in which one
wants to consider a discrete version of the above
MCMC then only discretisation of UJ and Ω is
needed and not of X.
In the following section, we illustrates effective-
ness of this algorithm through a numerical simu-
lation example. Open research issues are pointed
out in the conclusions.

5. SIMULATION EXAMPLE

In this section we illustrate the conflict resolu-
tion algorithm in a two aircraft encounter. The
model used in simulation is the one presented
in (Glover and Lygeros, 2003) as anticipated in
Section 2. The reader is referred to (Glover and
Lygeros, 2003) also for a discussion on several
implementation issues.
The FMS executes turns following a smooth cir-
cular path from one reference path to the next.
In order to do so the aircraft will begin tracking
the next flight segment a certain distance before
it reaches the next waypoint.
The wind is modelled as the sum of two compo-
nents, nominal and stochastic. The nominal wind
represents forecast data available to air traffic
controllers. Here the nominal wind is assumed to



be zero and all wind is considered to be stochastic.
The stochastic wind component is modelled as
a random field W (x, t) : R

2 × R → R
2. In this

example we assume that the wind field is station-
ary and jointly Gaussian with correlation func-
tion E[W (x1, t1)W (x2, t2)

T ] = R(∆x,∆t), with
∆x = ‖x1 − x2‖, ∆t = |t1 − t2|. The behaviour of
the FMS and the statistic of the wind have been
tuned according of two sources of information:
experimental statistics of aircraft deviations from
their flight plans and a comparison of forecast
wind and real wind measured from aircraft. The
reader is referred to (Glover and Lygeros, 2003)
for relevant references.
Let us now describe the two aircraft encounter.
The initial configuration at time t = 0 is as fol-
lows, in the notation coordinates are expressed in
meters. Aircraft 1 has position x1

0 = [−110000 0],
heading ψ1

0 = 0 and next waypoint Ō1
1 =

[110000 0] with reference heading Ψ̄1
1 = 0◦. This

aircraft will not change its flight plan. Aircraft 2
has position x2

0 = [0 − 110000], heading ψ2
0 = 90◦

and next waypoint Ō2
1 = [0 − 100000] with ref-

erence heading Φ̄2
1 = 90◦. The second waypoint

02
2 = Ω must be chosen in [−100000 100000] ×

[−100000 100000] to prevent conflict with Aircraft
1. The third and fourth waypoints of Aircraft 2 are
then Ō2

3 = [100000 0] and Ō2
4 = [110000 0]. Notice

that the last waypoints of the two aircraft are
the same. Both aircraft fly at constant airspeed
v = 150 m/sec.
We assume that the requirement for conflict res-
olution is that Aircraft 2 arrives after Aircraft 1
with a time separation of 300 sec.
Let us denote T1 and T2 the times of arrival of
the two aircraft at the last waypoint [110000 0].
The following resolution criterion has then been
formulated

u(Ω, X,∆T ) =







ε if (conflict) ∨ (T1 > T2)

ε+ e−a|∆T−300| otherwise

where X contains the time sequence of positions
of the two aircraft, ∆T = T2 − T1, a = 0.01 and
ε = 0.00001. The event conflict is defined as the
loss of 5 nmi = 9260 m separation.
The MCMC algorithm of Section 4 has been em-
ployed in order to choose Ω that maximises the ex-
pected value criterion. The proposal distribution
g(ω|ω̄) has been chosen as a uniform distribution
g(ω|ω̄) = const with ω ∈ [−100000 100000] ×
[−100000 100000].
Three values of J have been considered: J =
1, 5, 10. Each time 4000 iterations of the MCMC
algorithm have been performed. The scatter plots
of accepted states are depicted in Fig. 2. For each
session the first ten samples have been discarded
in order to allow convergence of the Markov Chain
to the stationary distribution (“burn in” period).
The case J = 20 with 12000 iterations is also
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Fig. 2. Accepted states during MCMC simulation

displayed to illustrate the behaviour of the algo-
rithm for a great number of simulations. From
the figures it can be clearly seen that, for the
resolution criterion that has been chosen, there
exist two regions of nearly optimal solutions.
In the remainder of this section we illustrate two
resolution maneuvers which belong respectively to
the two different regions. For the two maneuvers,
conflict probability (Pc) and expected delay be-
tween arrivals (E[∆T ]) have been estimated with
Monte Carlo simulation by using 10000 trajectory
realizations. The first maneuver is determined by

Ω = [−60000 − 40000]

for which we estimated P̂c = 0 and Ê[∆T ] = 298
sec. The second maneuver is instead determined
by

Ω = [38000 60000]

and we obtained the estimates P̂c = 0.008 and
Ê[∆T ] = 304 sec. In Fig.s 3 and 4 trajectory
realizations for the two maneuvers are displayed.

6. CONCLUSIONS

In this contribution we have presented a stochastic
framework for air traffic conflict resolution from
the point of view of ATC. Ongoing research is
focused on possible improvements of the resolu-
tion algorithm. The degrees of freedom in the
resolution procedure are the search distribution
and the resolution criterion itself. These elements
can be properly selected in order to increase the
efficiency of the procedure in terms of computa-
tional time. In the simulation example of Section
5 we have used a uniform search distribution.
This resulted in time spent to search over regions
with a low criterion value and therefore in a great
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Fig. 3. First resolution maneuver: trajectory realizations

(continuous) and reference path (dotted)
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Fig. 4. Second resolution maneuver: trajectory realiza-
tions (continuous) and reference path (dotted)

number of rejected samples. In general, the search
distribution could include clues on the expected /
desired resolution maneuver in order to increase
the efficiency of the search. Formulation of the
the conflict resolution procedure in the Sequential
Monte Carlo (Doucet et al., 2001) framework is
also under investigation.

REFERENCES

Blom, H.A.P. and G.J. Bakker (2002). Conflict
probability and incrossing probability in air
traffic management. In: IEEE Conference on
Decision and Control. Las Vegas, Nevada,
U.S.A.

Doucet, A., N de Freitas and N. Gordon (eds)
(2001). Sequential Monte Carlo Methods in
Practice. Springer-Verlag.

EUROCONTROL Experimental Centre (2002a).
Investigating air traffic controller conflict res-
olution strategies. Technical report. Available
from World Wide Web: www.eurocontrol.int/
eatm/gallery/content/public/library/ strate-
gies.pdf.

EUROCONTROL Experimental Centre (2002b).
User Manual for the Base of Aircraft Data
(BADA). Available from World Wide Web:
http://www.eurocontrol.fr/projects/bada/.

Glover, W. and J. Lygeros (2003). A multi-aircraft
model for conflict detection and resolution al-
gorithm validation. Technical Report WP1,
Deliverable D1.3. HYBRIDGE. Available
from World Wide Web: http://www.nlr.nl/
public/hosted-sites/hybridge/.

Hu, J., M. Prandini and S. Sastry (2003). Aircraft
conflict detection in presence of spatially cor-
related wind perturbations. In: AIAA Guid-
ance, Navigation and Control Conf.. Austin,
Texas, USA.

Irvine, R. (2001). A geometrical approach to con-
flict probability estimation. Technical report.
EUROCONTROL Experimental Centre. BP
15, 91222 Brétigny-sur-Orge, France.

Krystul, J. and H.A.P. Blom (2004). Monte carlo
simulation of rare events in hybrid systems.
Technical Report WP8, Deliverable D8.3.
HYBRIDGE. Available from World Wide
Web: http://www.nlr.nl/public/hosted-sites/
hybridge/.

Kuchar, J.K. and L.C. Yang (2000). A review
of conflict detection and resolution methods.
IEEE Transactions on Intelligent Transporta-
tion Systems 1(4), 179–189.

Mueller, P. (1999). Simulation based opti-
mal design. In: Bayesian Statistics 6. J.O.
Berger, J.M. Bernardo, A.P. Dawid and
A.F.M. Smith (eds.), Oxford University
Press. pp. 459–474.

Mueller, P., B. Sanso and M. De Iorio (2002).
Optimal bayesian design by inhomogeneous
markov chain simulation. Submitted.

Paielli, R.A. and H. Erzberger (1997). Con-
flict probability estimation for free flight.
Journal of Guidance, Control and Dynamics
20(3), 588–596.

Prandini, M., J. Hu, J. Lygeros and S. Sastry
(2000). A probabilistic approach to aircraft
conflict detection. IEEE Transactions on In-
telligent Transportation Systems.

Robert, C.P. and G. Casella (1999). Monte Carlo
Statistical Methods. Springer-Verlag.


