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Abstract

An algorithm for convex parametric QPs is studied. The algorithm explores the parameter
space by stepping a sufficiently small distance over the facets of each critical region and
thereby identifying the neighboring regions. Some conjectures concerning this algorithm
and the structure of the solution of a parametric QP are presented.
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1 Introduction

Algorithms for solving parametric quadratic programs [2,6] and parametric linear
programs [3] have been developed recently. The algorithms proposed in [2] and [3]
introduce artificial cuts in the parameter space in the search for the solution, while
in [6] an algorithm based on considering all faces of the constraint polyhedron is
presented. In [1] and [4] the authors propose a method for exploring the parameter
space, which is conceptually more efficient than in [2,3,6];by stepping a suffi-
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ciently small distance over the boundary of a so-called critical region1 and solving
an LP/QP for the resulting parameter, a new critical region is defined. This proce-
dure looks promising, but seems to implicitly rely on the assumption that the facets
of neighboring regions satisfy a certain property, namely that their intersection is a
facet of both regions. We will refer to this as the facet-to-facet property. It seems
intuitively correct thatif the facet-to-facet property holds, an algorithm based on
stepping over the facets will explore the whole parameter space; however, to the
best of our knowledge, a proof that the critical regions satisfy the facet-to-facet
property has not been presented in the literature.

In [7,8] the authors propose a method in which each facet of the critical region is
examined and depending on whether the facet ensures feasibility or optimality, the
active set in the neighboring is found by adding or removing aconstraint from the
current active set. This algorithm relies on the LICQ assumption and must, in some
cases, also step anǫ-distance over a facet to determine the active set in the adjacent
region.

The algorithms presented in [1,2,4,6] are applied to parametric QPs with a positive
definite Hessian. We will, in addition to the strictly convexproblem, consider the
more general formulation given in [8] where the Hessian is allowed to be positive
semidefinite, the objective function can be linear and/or include a bilinear term.
We state some conjectures that need to be proven before an algorithm based on
stepping over the facets will guarantee that the critical regions cover the part of the
parameter space that renders the optimization problem feasible.

2 Notation, definitions, problem setup and assumptions

If A is a matrix, thenAi denotes theith row of A andAI denotes the rows ofA
corresponding to the index setI.

Recall that the set of affine combinations of points in a setS ⊂ R
n is called the

affine hullof S. Thedimension of a setS ⊂ R
n is the dimension of the affine hull

of S, and is denoteddim(S); if dim(S) = n, thenS is said to be full-dimensional
(note that a set is full-dimensional if and only if its interior is non-empty). Apoly-
hedronis the intersection of a finite number of closed halfspaces.F is afaceof the
polyhedronP ⊂ R

n if there exists a hyperplane{z ∈ R
n | aT z = b}, wherea ∈

R
n, b ∈ R, such thatF = P ∩ {z ∈ R

n | aT z = b} andaT z ≤ b, ∀z ∈ P .
Given ans-dimensional polyhedronP ⊂ R

n, wheres ≤ n, the facetsof P are
the(s − 1)-dimensional faces ofP .

1 A critical region is the set of parameters for which some fixed set of constraints are
fulfilled with equality at all solutions of an optimization problem.
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Consider the following parametric quadratic program (QP):

J∗(θ) , min
x∈Rn

{

f(x, θ) ,
1

2
xT Hx + θT F T x + cT x | Ax ≤ b + Sθ

}

, (1)

whereθ ∈ R
s is a parameter of the optimization problem, and the vectorx ∈ R

n

is to be optimized for all values ofθ ∈ Θ, whereΘ ⊆ R
s is some polyhedral

set. Moreover,H = HT ∈ R
n×n, F ∈ R

n×s, A ∈ R
q×n, b ∈ R

q×1, S ∈ R
q×s

andc ∈ R
n×1. If, in additionH ≥ 0 or H > 0, then the parametric QP is convex or

strictly convex, respectively. IfH = 0, then we refer to (1) as a parametric linear
program (LP).

The set of parameters for which the minimum in (1) exists, denotedΘ∗, is generally
a subset ofΘ. If Θ∗ is a strict subset ofΘ, the set of parameters for which we seek
the solution is redefined, i.e.Θ , Θ∗. If Θ∗ is lower-dimensional, problem (1) can
be re-parameterized [3] and one can consider a reduced parameter vectorθ̄ such
thatΘ̄∗ is full-dimensional. Consequently, in the sequel we will make the following
assumption:

Assumption 1 The set of admissible parametersΘ is full-dimensional. We also as-
sume that for allθ ∈ Θ, the set of feasible pointsX(θ) , {x ∈ R

n | Ax ≤ b + Sθ}
is non-empty and the minimum in(1) exists.

Definition 1 (Active set) Let x be a feasible point of (1) for a givenθ. We define
the active constraints as the constraints that fulfillAix − bi − Siθ = 0, and the
inactive constraints as those that fulfillAix − bi − Siθ < 0. The active setA(x, θ)
is the set of indices of the active constraints, that is,

A(x, θ) , {i ∈ {1, . . . , q} | Aix − bi − Siθ = 0} .

Moreover, letN (x, θ) denote the set of inactive constraints, that is,

N (x, θ) , {1, . . . , q}\A(x, θ).

Definition 2 (Solution set) The set of solutions to (1) for a givenθ is defined as

X∗(θ) , {x ∈ R
n | Ax ≤ b + Sθ, f(x, θ) = J∗(θ)} .

Definition 3 (Optimal active set) Letθ be given, then the optimal active setA∗(θ)
is the set of constraints that are active for allx ∈ X∗(θ), that is

A∗(θ) , {i | i ∈ A(x, θ), ∀x ∈ X∗(θ)} =
⋂

x∈X∗(θ)

A(x, θ).

LetN ∗(θ) , {1, . . . , q}\A∗(θ).

Definition 4 (Critical region) Given an optimal active setA∗, the critical regionΘA∗

is the set of parameters for which the optimal active set remains unchanged, that
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is,

ΘA∗ , {θ ∈ Θ | A∗(θ) = A∗}. (2)

Definition 5 (LICQ) For an active setA, we say that the linear independence
constraint qualification (LICQ) holds if the set of active constraint gradients are
linearly independent, i.e.AA has full row rank.

3 An algorithm for exploring the parameter space

We will consider the performance of a conceptual algorithm based on stepping a
small distance over all facets of a critical region and identifying the optimal active
set in all (or some) of the neighboring regions. In [1,4] thisalgorithm is utilized
to solve parametric QPs with a positive definite Hessian. Thefocal point of this
document is to establish the properties (1) must fulfill in order to ensure that the al-
gorithm is well behaved. Before the algorithm is presented, the following properties
for the parametric QP (1) should be noted [2,3,7]:

• Critical regions are convex and their closures are polyhedral.
• Θ is convex and polyhedral.
• The optimal active set is unique for allθ ∈ Θ.
• Since the optimal active set is unique, critical regions cannot intersect. However,

though the intersection of any two full-dimensional critical regions is empty, the
intersection of their closures may be non-empty.

• Since the set of admissible parametersΘ is assumed to be full-dimensional and
the number of optimal active sets is finite, there exists a finite number of full-
dimensional critical regions such that the union of their closures is equal toΘ.

In the light of the properties above the goal of the algorithmconsidered here is to
identify only the full-dimensional critical regions. Since we are only identifying the
full-dimensional regions, we will, in conformity with [1–4,6–8], only work with
the closureof each critical region instead of the region itself. In the sequel, we
will therefore abbreviateclosure of the/a full-dimensional critical regionto critical
region.

The procedure for exploring the parameter space is given in Algorithm 1. The out-
put of Algorithm 1 is a collectionR of closures of full-dimensional critical regions
for (1). From this point on, we will letK denote the number of sets inR andRk

refer to thekth set inR.

Consider now the question: Under which assumptions on the problem data of (1)
will Algorithm 1 guarantee that

⋃K
k=1 Rk = Θ? For this purpose, we introduce the

following definition:
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Algorithm 1 Exploring the parameter space.
Input: A parameterθ in the interior of a critical region.
Output: Set of critical regionsR.

1: IdentifyA∗(θ).
2: Construct the irredundant representation of the critical regioncl(ΘA∗(θ)) = {θ |

Ciθ ≤ di, i = 1, . . . ,m}.
3: Add cl(ΘA∗(θ)) to the setR of discovered regions.
4: for each faceti in the description ofcl(ΘA∗(θ)) do
5: Let θ0 = θ̂ + ǫCi, whereθ̂ is such thatCiθ̂ = di andCj θ̂ < dj, for all j 6= i,

and ǫ > 0 is a sufficiently small scalar such that the resulting parameter
point θ0 is in the interior of a neighboring, critical regionΘA∗(θ0) in the
sense thatcl(ΘA∗(θ)) ∩ cl(ΘA∗(θ0)) 6= ∅.

6: If θ0 is not in a previously discovered critical region, make a recursive call
to Algorithm 1 withθ0 as the new parameter.

7: end for

Fig. 1. Illustration of Algorithm 1 failing to identify all the critical regions if the facet-to–
facet property does not hold. The shaded region is unexplored.

Definition 6 (Facet-to-facet) Let P , {Pi | i ∈ I} be a finite collection of full-
dimensional polyhedra inRs, whereint(Pi) ∩ int(Pj) = ∅ for all (i, j), i 6= j. We
say that thefacet-to-facetproperty holds if F(i,j) , Pi ∩ Pj is a facet of bothPi

andPj for all (s − 1)-dimensional intersectionsF(i,j), i 6= j.

It is clear that the facet-to-facet property is directly related to the full-dimensional
critical regions for (1). If the closures of the full-dimensional critical regions do
not satisfy the facet-to-facet property, then Algorithm 1 may fail to identify all the
critical regions, as illustrated in Figure 1.

Figure 2 illustrates that additional assumptions must be made on the collection of
full-dimensional critical regions in order to ensure that Algorithm 1 is well be-
haved. This is because Definition 6 allows for any two membersof P to only have
intersections of dimension strictly less thans− 1. Before we introduce a definition
in order to ensure the correctness of Algorithm 1, recall that if G , (N,E) is a
graph, whereN denotes the nodes andE denotes the edges, the graph is said to be
connectedif there is a path from any nodeNi to any other nodeNj.
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Fig. 2. The collectionR = {Rk | k = 1, . . . , 4} satisfies the facet-to-facet property, but
Algorithm 1 fails to identifyR3 andR4. Note that the situation depicted in this figure
cannot happen for (1) sinceΘ is non-convex in this example.

Definition 7 Let P , {Pi | i ∈ I} be a finite collection of full-dimensional
polyhedra inR

s, whereint(Pi) ∩ int(Pj) = ∅ for all (i, j), i 6= j. We define the
graphG(P ) as

G(P ) , (P,E(P )),

where a pair(Pi, Pj) ∈ P × P is in E(P ) if and only ifdim(Pi ∩ Pj) = s − 1.

The next result follows immediately from the above definitions:

Propostion 1 Let P be the set of closures of the full-dimensional critical regions
of (1). If the facet-to-facet property holds forP andG(P ) is a connected graph,
then Algorithm 1 will guarantee that

⋃K
k=1 Rk = Θ.

4 Strictly convex parametric QP

If H > 0 in (1), then the problem can be reformulated such that only a quadratic
term remains in the objective function [2]. Without loss of generality we use the
following formulation for strictly convex parametric QPs:

J∗(θ) , min
x∈Rn

{

f(x) ,
1

2
xT Hx | Ax ≤ b + Sθ

}

. (3)

The KKT conditions for (3) are:

Hx + AT λ = 0, λ ∈ R
q, (4a)

λi (Aix − bi − Siθ) = 0, i ∈ {1, . . . , q}, (4b)
Ax − b − Sθ ≤ 0, (4c)

λi ≥ 0, i ∈ {1, . . . , q} (4d)

whereλ are the Lagrangian multipliers. Given an optimal active setA∗ and assum-
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ing that LICQ holds, the KKT conditions can be manipulated to obtain [2]

x∗ = −H−1AT
A∗λA∗ , (5a)

λA∗ = −(AA∗H−1AT
A∗)−1(bA∗ + SA∗θ), (5b)

and the closure of the critical region becomes

cl(ΘA∗) = {θ ∈ Θ | AN ∗x∗(θ) ≤ bN ∗ + SN ∗θ, λA∗(θ) ≥ 0} . (6)

Conjecture 1 Let H > 0 in (3). If LICQ holds forAA∗ for all optimal active sets
that define full-dimensional critical regions for (3), thenAlgorithm 1 guarantees
that

⋃K
k=1 Rk = Θ.

4.1 Non-unique Lagrangian multipliers

If LICQ is violated forAA∗ then one cannot defineλA∗ by (5b). In [2] this is solved
simply by selecting a subset of the active constraints such that the resulting system
of equalities has full rank. The region is then characterized using (5a) and (5b)
on the reduced system. The resulting region is not a criticalregion in the sense of
Definition 4; that is,ΘA∗ is partitioned into subregions.

Consider the question: Will Algorithm 1 guarantee that
⋃K

k=1 Rk = Θ for (3) if
regions are constructed by using a reduced active set whenever LICQ is violated?

Example 1 Consider the following problem [8]:

J∗(θ) , min
x∈R3

{

1

2
xT x | x ∈ X(θ), θ ∈ Θ

}

,

X(θ) ,







































x ∈ R
3

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

x1 −x3 ≤ −1 +θ1

−x1 −x3 ≤ −1 −θ1

x2 −x3 ≤ −1 −θ2

−x2 −x3 ≤ −1 +θ2







































, Θ ,











θ ∈ R
2

∣

∣

∣

∣

∣

∣

∣

−1 ≤ θ1 ≤ 1

−1 ≤ θ2 ≤ 1











.

Let θ0 =
[

−0.5 −0.2

]T

, which results inA∗(θ0) = {1, 2, 3, 4} and LICQ is vio-

lated forAA∗. If the method in [2] is used, one may chooseA = {1, 3, 4} as the
reduced active set, and the resulting region is depicted in Figure 3(a). We iterate
Algorithm 1 for the closureR1 of the first critical region. Note that the order in
which the facets are stepped over differs slightly from Algorithm 1, however, the
concept is the same.
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(a) First region.
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(b) LICQ holds forAA∗ .
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(c) LICQ violated forAA∗ .
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(d) Termination with
⋃5

k=1 Rk 6= Θ.

Fig. 3. Execution of Algorithm 1 for Example 1.

(1) Facetf1: Crossing this facet at the point indicated in Figure 3(b) yieldsA∗ =
{1, 3} and the regionR2.

(2) Facetf2: Crossing this facet at the point indicated in Figure 3(b) yieldsA∗ =
{1, 4} and the regionR3.

(3) Facetf3: Crossing this facet at the point indicated in Figure 3(c) yieldsA∗ =
{1, 2, 3, 4}. A valid choice for a reduced active set isA = {1, 2, 4} and re-
gionR4 is constructed. Note thatR1 andR4 have mutually intersecting inte-
riors.

Since there are no facets to step over forR2 andR3, R4 is considered.

(1) Facetf4: Crossing this facet at the point indicated in Figure 3(d) yieldsA∗ =
{2, 4} and the regionR5.

(2) Facetf5: Crossing this facet at the point indicated in Figure 3(d) yields a point
in R1, hence no new region is constructed.

The algorithm terminates with
⋃5

k=1 Rk 6= Θ since there are no more facets to
explore.

It is clear that Algorithm 1 may fail to guarantee
⋃K

k=1 Rk = Θ if a reduced set
of active constraints is used to define the regions. By definingregions as in Defi-
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Fig. 4. Full-dimensional critical regions for Example 2.

nition 4, neighboring regions cannot have mutually intersecting interiors. Thus, we
state the following conjecture:

Conjecture 2 Let H > 0 in (3). If critical regions are defined as in Definition 4,
then Algorithm 1 will guarantee that

⋃K
k=1 Rk = Θ for (3).

5 Convex parametric QP

Consider (1) and letH = HT ≥ 0. Note thatH ≥ 0 includes the case whereH =
0. An example will illustrate that the facet-to-facet property may not hold for this
problem class.

Example 2

J∗(θ) , min
x∈R2

{θ2x1 + θ1x2 | x ∈ X(θ), θ ∈ Θ} ,

X(θ) ,







































x ∈ R
2

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

x1 −x2 ≤ 0

−x1 −x2 ≤ 0

−x2 ≤ −1 − θ2

x2 ≤ 5







































, Θ ,











θ ∈ R
2

∣

∣

∣

∣

∣

∣

∣

0 ≤ θ1 ≤ 2

−2 ≤ θ2 ≤ 0











.

The unique solution for this problem is depicted in Figure 4 and the active sets and
optimizers are given in Table 1.

The solution to the problem for some fixed parameter vectors are depicted in Fig-
ures 5(a)–5(d). It is clear that by stepping over the diagonal facet ofR1, two re-
gions can be defined, depending on the value ofθ̂. Readers that are unfamiliar
with the normal cone optimality condition are referred to the appendix. It should
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Table 1
Active sets and optimizers for Example (2).

R1 R2 R3

A∗(θ) {1, 4} {1, 2} {1, 3}

x∗(θ)
x∗

1(θ) = 5

x∗
2(θ) = 5

x∗
1(θ) = 0

x∗
2(θ) = 0

x∗
1(θ) = θ2 + 1

x∗
2(θ) = θ2 + 1

(a) θ1 = 0.5, θ2 = −0.4 (b) θ1 = 0.5, θ2 = −0.6

(c) θ1 = 1.5, θ2 = −1.6 (d) θ1 = 1.5, θ2 = −1.4

Fig. 5. Illustration of Example 2.

be noted that the violation of the facet-to-facet property can just as easily occur
if H 6= 0. Adding an additional variablex3 to the problem and modifying the cost
to 1

2
x2

3 +θ2x1 +θ1x2 yields the same collection of full-dimensional critical regions.
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The violation of the facet-to-facet property seems to be a consequence of the bi-
linear term in the objective function in combination with parameters on the right
hand side of the constraints. In Example 2 the solution changes with the param-
eter in a discontinuous fashion due to the presence of the bilinear term, and as a
result the facet-to-facet property is violated. In the absence of a bilinear term, the
point-to-set mapX∗(·) is continuous and the authors have not been able to find
an example for which the facet-to-facet property is violated. On the other hand,
if S = 0, butF 6= 0, then the solution may change in a discontinuous fashion, but
then we are minimizing over a fixed polyhedron and it seems reasonable that the
facet-to-facet property holds. We therefore state the following conjecture:

Conjecture 3 Let H ≥ 0 in (1). If critical regions are defined as in Definition 4,
then Algorithm 1 will guarantee that

⋃K
k=1 Rk = Θ for (1) if eitherF = 0 or S = 0.

6 Conclusions

We presented some conjectures that need to be proven before an algorithm for
parametric QPs based on stepping over each facet of a critical region will guarantee
that the whole parameter space is explored. An example showed that one needs to
ensure that critical regions are uniquely defined for each parameter vector. A simple
example also illustrated that the facet-to-facet propertydoes not hold for a special
class of parametric QPs. Current research is devoted to proving the conjectures.
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A Normal cone optimality condition

Consider the following problem

min
x

f(x) such thatx ∈ Ω. (A.1)

where
Ω = {x ∈ R

n | gi(x) = 0, i ∈ E ; gj(x) ≤ 0, j ∈ I}, (A.2)

whereE andI are finite index sets,f , gi andgj are smooth, real-valued functions
on a subset ofRn.

The following are taken from [5]:

Definition 8 (Tangent Vector) A vectorw ∈ R
n is tangent toΩ at x if for all

vector sequences{xi} with xi → x andxi ∈ Ω, and all positive scalar sequences
ti ↓ 0, there is a sequencewi → w such thatxi + tiwi ∈ Ω for all i.

Definition 9 (Tangent Cone) The tangent coneTΩ(x) is the collection of all tan-
gent vectors toΩ at x.

Definition 10 (Normal Cone) The normal cone toΩ at x, NΩ(x), is the orthogo-
nal complement of the tangent cone, that is

NΩ(x) =
{

v | vT w ≤ 0, ∀w ∈ TΩ(x)
}

. (A.3)

Theorem 1 (First order necessary optimality condition) If x∗ is a local mini-
mizer off in Ω, then

−∇xf(x∗) ∈ NΩ(x∗). (A.4)
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