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Abstract

An algorithm for convex parametric QPs is studied. The algorithm exploeepdtameter
space by stepping a sufficiently small distance over the facets of eaclalorggion and
thereby identifying the neighboring regions. Some conjectures congetimim algorithm
and the structure of the solution of a parametric QP are presented.
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1 Introduction

Algorithms for solving parametric quadratic programs [&6d parametric linear
programs [3] have been developed recently. The algoritimosgsed in [2] and [3]
introduce artificial cuts in the parameter space in the $efarcthe solution, while
in [6] an algorithm based on considering all faces of the trair#t polyhedron is
presented. In [1] and [4] the authors propose a method fdoerpg the parameter
space, which is conceptually more efficient than in [2,3[8];stepping a suffi-
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ciently small distance over the boundary of a so-calledcalitegion' and solving

an LP/QP for the resulting parameter, a new critical regsoddfined. This proce-
dure looks promising, but seems to implicitly rely on theumsption that the facets

of neighboring regions satisfy a certain property, namied their intersection is a
facet of both regions. We will refer to this as the facetdodt property. It seems
intuitively correct thatf the facet-to-facet property holds, an algorithm based on
stepping over the facets will explore the whole parametacsphowever, to the
best of our knowledge, a proof that the critical regionsséatihe facet-to-facet
property has not been presented in the literature.

In [7,8] the authors propose a method in which each facetetthical region is
examined and depending on whether the facet ensures féggibbptimality, the
active set in the neighboring is found by adding or removimgastraint from the
current active set. This algorithm relies on the LICQ assuwn@nd must, in some
cases, also step ardistance over a facet to determine the active set in theadia
region.

The algorithms presented in [1,2,4,6] are applied to patac@Ps with a positive
definite Hessian. We will, in addition to the strictly convesoblem, consider the
more general formulation given in [8] where the Hessian lenad to be positive
semidefinite, the objective function can be linear and/chuide a bilinear term.
We state some conjectures that need to be proven before aritlaig based on
stepping over the facets will guarantee that the criticgiknes cover the part of the
parameter space that renders the optimization problenbfeas

2 Notation, definitions, problem setup and assumptions

If A is a matrix, thend,; denotes the™ row of A and A; denotes the rows aft
corresponding to the index sét

Recall that the set of affine combinations of points in a$et R” is called the
affine hullof S. Thedimension of a se$ C R is the dimension of the affine hull
of S, and is denotedim(.S); if dim(S) = n, thenS is said to be full-dimensional
(note that a set is full-dimensional if and only if its int@ris non-empty). Apoly-
hedronis the intersection of a finite number of closed halfspadess afaceof the
polyhedronP C R" if there exists a hyperplang: € R | a2 = b}, wherea €
R", b € R, such that = PN {z € R" | a’2 = b} anda’z < b, Vz € P.
Given ans-dimensional polyhedro® C R", wheres < n, thefacetsof P are
the (s — 1)-dimensional faces aP.

LA critical region is the set of parameters for which some fixed set of cainsirare
fulfilled with equality at all solutions of an optimization problem.



Consider the following parametric quadratic program (QP):

J*(0) = ;rel]g% {f(a:,Q) = ;xTHx +0TF e+l | Ar < b+ S@} . (D)
wheref) € R? is a parameter of the optimization problem, and the vecter R”

is to be optimized for all values df € ©, where® C R® is some polyhedral
set. MoreoverH = HT € R™", F € R, A € R, b € R, S € RI*s
andc € R™! If, in addition # > 0 or H > 0, then the parametric QP is convex or
strictly convex, respectively. I[if = 0, then we refer to (1) as a parametric linear
program (LP).

The set of parameters for which the minimum in (1) existsptietho*, is generally

a subset 0B. If ©* is a strict subset 0B, the set of parameters for which we seek
the solution is redefined, i.€ £ ©*. If ©* is lower-dimensional, problem (1) can
be re-parameterized [3] and one can consider a reduced emawectord such
that©* is full-dimensional. Consequently, in the sequel we will méke following
assumption:

Assumption 1 The set of admissible paramet&ss full-dimensional. We also as-
sume that for alb € ©, the set of feasible poinfs (9) = {x € R" | Az < b+ S0}
is non-empty and the minimum (i) exists.

Definition 1 (Active set) Let = be a feasible point of (1) for a giveh We define
the active constraints as the constraints that fulfiilz — b, — S;0 = 0, and the
inactive constraints as those that fulfillz — b; — S;0 < 0. The active sef(x, 0)
is the set of indices of the active constraints, that is,

Az, 0) = {ic{1,...,q} | Aiw — b; — S;0 = 0}.
Moreover, let\/(z, §) denote the set of inactive constraints, that is,
N(z,0) 2 {1,...,¢}\A(z,0).
Definition 2 (Solution set) The set of solutions to (1) for a givérs defined as
X*O) 2 {z eR"| Av < b+ SO, f(x,0) = J(0)}.

Definition 3 (Optimal active set) Letd be given, then the optimal active s&t(4)
is the set of constraints that are active for ale X*(#), that is

A0) 2 (i i€ Ax,0), Ve e X*(0)} = () Alx,0).

zeX*(0)
Let AV*(6) = {1,...,q}\A*(9).

Definition 4 (Critical region) Given an optimal active set*, the critical region® 4-
is the set of parameters for which the optimal active set resnanchanged, that



Ou 2 {0 €0 | A% (h) = A"} )

Definition 5 (LICQ) For an active set4, we say that the linear independence
constraint qualification (LICQ) holds if the set of active stnint gradients are
linearly independent, i.ed 4 has full row rank.

3 An algorithm for exploring the parameter space

We will consider the performance of a conceptual algorittaedal on stepping a
small distance over all facets of a critical region and idgimg the optimal active
set in all (or some) of the neighboring regions. In [1,4] thigorithm is utilized
to solve parametric QPs with a positive definite Hessian. fbloal point of this
document is to establish the properties (1) must fulfill idesrto ensure that the al-
gorithm is well behaved. Before the algorithm is presenteeifallowing properties
for the parametric QP (1) should be noted [2,3,7]:

Critical regions are convex and their closures are polyhedra

© is convex and polyhedral.

The optimal active set is unique for dllc ©.

Since the optimal active set is unique, critical regionswdmtersect. However,
though the intersection of any two full-dimensional calicegions is empty, the
intersection of their closures may be non-empty.

e Since the set of admissible paramet®rs assumed to be full-dimensional and
the number of optimal active sets is finite, there exists aefinumber of full-
dimensional critical regions such that the union of theisdres is equal t6.

In the light of the properties above the goal of the algoritonsidered here is to
identify only the full-dimensional critical regions. Simgve are only identifying the
full-dimensional regions, we will, in conformity with [1+8-8], only work with
the closureof each critical region instead of the region itself. In tlegsel, we
will therefore abbreviatelosure of the/a full-dimensional critical regidao critical
region

The procedure for exploring the parameter space is giverigordhm 1. The out-
put of Algorithm 1 is a collectiorR of closures of full-dimensional critical regions
for (1). From this point on, we will lefX denote the number of sets andR
refer to thek™" set inR.

Consider now the question: Under which assumptions on thelgorodata of (1)
will Algorithm 1 guarantee thay’_, R, = ©? For this purpose, we introduce the
following definition:



Algorithm 1 Exploring the parameter space.
Input: A parameteé in the interior of a critical region.
Output: Set of critical region®&.
1: Identify A*(0).
2: Construct the irredundant representation of the critiggibrecl(© 4+5)) = {6 |
3: Add cl(© 4-(9)) to the setR of discovered regions.
for each facet in the description ol(© 4-)) do
5. Letf, = 6 + €C;, whered is such that’;d = d; andC;6 < d;, for all j # i,
ande > 0 is a sufficiently small scalar such that the resulting patame
point ¢, is in the interior of a neighboring, critical regiof 4«4, in the
sense thatl(© 4-(g)) N cl(O 4+(gy)) # 0.
6: If 8y is not in a previously discovered critical region, make aursive call
to Algorithm 1 with#, as the new parameter.
7: end for

»

| R <}—

R4 A
Rs

Fig. 1. lllustration of Algorithm 1 failing to identify all the critical regions if theckt-to—
facet property does not hold. The shaded region is unexplored.

Definition 6 (Facet-to-facet) Let P = {P, | i € Z} be a finite collection of full-
dimensional polyhedra if®*, whereint(P;) Nint(P;) = (@ for all (z,7), i # j. We
say that thefacet-to-faceproperty holds if F{; ; £ PN P; is a facet of bothp,

and P; for all (s — 1)-dimensional intersections; j), i # j.

It is clear that the facet-to-facet property is directlyated to the full-dimensional
critical regions for (1). If the closures of the full-dimeosal critical regions do
not satisfy the facet-to-facet property, then Algorithm aynfiail to identify all the

critical regions, as illustrated in Figure 1.

Figure 2 illustrates that additional assumptions must béenan the collection of
full-dimensional critical regions in order to ensure thdgdithm 1 is well be-
haved. This is because Definition 6 allows for any two membgr3 to only have
intersections of dimension strictly less than 1. Before we introduce a definition

in order to ensure the correctness of Algorithm 1, recall thg £ (N, E) is a
graph, whereV denotes the nodes artidenotes the edges, the graph is said to be
connectedf there is a path from any nod¥; to any other nodev;.
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Fig. 2. The collectioiR = {Ry | k = 1,...,4} satisfies the facet-to-facet property, but
Algorithm 1 fails to identifyR3 and R4. Note that the situation depicted in this figure
cannot happen for (1) siné is non-convex in this example.

Definiton7 Let P = {F; | i € Z} be a finite collection of full-dimensional
polyhedra inR?®, whereint(P;) N int(P;) = @ for all (,5), i # j. We define the
graphg(P) as

G(P) = (P, E(P)),

where a pair(P;, P;) € P x Pisin E(P) ifand only ifdim(P, N P;) = s — 1.
The next result follows immediately from the above defimso

Propostion 1 Let P be the set of closures of the full-dimensional critical cats
of (1). If the facet-to-facet property holds fét and G(P) is a connected graph,
then Algorithm 1 will guarantee thati_, R;, = ©.

4  Strictly convex parametric QP

If H > 0in (1), then the problem can be reformulated such that onlyaacatic
term remains in the objective function [2]. Without loss @ngrality we use the
following formulation for strictly convex parametric QPs:

T(6) 2 min {f@) 2 %xTH:U | Az < b+ 59} | @3)
The KKT conditions for (3) are:
Hx+ A" XA =0, XeRY, (4a)
Ar —b— 560 <0, (4c)
N>0, ie{l....q} (4d)

where) are the Lagrangian multipliers. Given an optimal active4eand assum-



ing that LICQ holds, the KKT conditions can be manipulatediitam [2]

¥ = —H_IAZ*)\A*, (5a)
AA* = —(AA*H_IAﬁ*)_IU)A* + SA*H)a (5b)

and the closure of the critical region becomes
cl(O4:) ={0 € O | Apx™(0) < bars + Sa+0, Aax(0) > 0} . (6)

Conjecture 1 Let H > 0in (3). If LICQ holds forA 4 for all optimal active sets
that define full-dimensional critical regions for (3), théigorithm 1 guarantees
that Uy, Ry, = ©.

4.1 Non-unique Lagrangian multipliers

If LICQ is violated for A 4~ then one cannot definey- by (5b). In [2] this is solved

simply by selecting a subset of the active constraints suatthe resulting system
of equalities has full rank. The region is then characteriasing (5a) and (5b)
on the reduced system. The resulting region is not a critegibn in the sense of
Definition 4; that is© 4~ is partitioned into subregions.

Consider the question: Will Algorithm 1 guarantee thgt , R, = O for (3) if
regions are constructed by using a reduced active set weehEQ is violated?

Example 1 Consider the following problem [8]:

J*(G)émin{%xTa: |z X(0), 0 e @},

z€R3

IA

-1 +6,
-1 -6,

ry —I3

IA

—T] —x3 -1<6, <

XO)2{reR? ,@é{ee]&?

| AN
—_
—_———

i) —I3S—1—92 —1§02<1

—Xy —XT3 S —1 —1—92

T
Let 0y = {_0.5 _0_2] , which results ind*(6,) = {1,2,3,4} and LICQ is vio-

lated for A 4-. If the method in [2] is used, one may choade= {1, 3,4} as the
reduced active set, and the resulting region is depictedgaré 3(a). We iterate
Algorithm 1 for the closureR, of the first critical region. Note that the order in
which the facets are stepped over differs slightly from Aitjon 1, however, the
concept is the same.
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Fig. 3. Execution of Algorithm 1 for Example 1.

(1) Facetf;: Crossing this facet at the point indicated in Figure 3(b)dged* =
{1,3} and the regiorR..

(2) Facetf,: Crossing this facet at the point indicated in Figure 3(b)dged* =
{1,4} and the regiorR;.

(3) Facetfs: Crossing this facet at the point indicated in Figure 3(c)dged* =
{1,2,3,4}. A valid choice for a reduced active setis = {1,2,4} and re-
gion R, is constructed. Note th&; andR, have mutually intersecting inte-
riors.

Since there are no facets to step over®randR s, R4 is considered.

(1) Facetf,: Crossing this facet at the point indicated in Figure 3(d)dged* =
{2,4} and the regiorR ;.

(2) Facetfs: Crossing this facet at the point indicated in Figure 3(d)dge point
in R, hence no new region is constructed.

The algorithm terminates with);_, R, # © since there are no more facets to
explore.

It is clear that Algorithm 1 may fail to guarantdgf",f:1 Ri = O if a reduced set
of active constraints is used to define the regions. By defireggpns as in Defi-
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Fig. 4. Full-dimensional critical regions for Example 2.

nition 4, neighboring regions cannot have mutually intetieg interiors. Thus, we
state the following conjecture:

Conjecture 2 Let H > 0 in (3). If critical regions are defined as in Definition 4,
then Algorithm 1 will guarantee thag?_, R, = © for (3).

5 Convex parametric QP

Consider (1) and let/l = H* > 0. Note thatd > 0 includes the case whei¢ =
0. An example will illustrate that the facet-to-facet pragemay not hold for this
problem class.

Example 2

J*(0) énrel%% {0221 + 0129 |z € X(0),0 €O},

T —x2§ 0
—x] —Xy < 0 0 <6, <2
X@0)2{zerr| 1 77 02 !geR =
—Ty < —1 -0, —2<6, <

i) S 5

The unique solution for this problem is depicted in Figurend the active sets and
optimizers are given in Table 1.

The solution to the problem for some fixed parameter vecta@slapicted in Fig-
ures 5(a)-5(d). It is clear that by stepping over the diabtaeet of R, two re-
gions can be defined, depending on the valud.oReaders that are unfamiliar
with the normal cone optimality condition are referred te #ppendix. It should



Table 1
Active sets and optimizers for Example (2).

R Ra Rs
A(0) {1,4y | {12} {1,3}
z7(0) =5]x7(0) =0|x7(0) =02+ 1
x5(0) =5|x5(0) =0|x5(0) =602+ 1

Normal cone \
6 6 —_—
Constraint 4 Constraint 4
4 Feasible space 4 Feasible space /
- -V, f(x)
2| Constraint 2 Constraint 1 X,2
= Constraint 2 Constraint 1
0 Constraint 3 0 -
<\ -V, f(x) Constraint 3
2 f 2
Normal cone
-4 4l . . . . . .
6 4 2 0x 2 4 6 5 4 2 0 x, 2 4 6
Normal cone .
6 .
Constraint 4 — |\ 6 Constraint 4
4 Feasible space 4 Feasible space
%2 X, 2
Constraint 2 Constraint 1 Constraint 2 Constraint 1
0 0 ’
- N
Constraint 3 Constraint 3 V4 T v fx)
X
2 2 /
Normal cone
4 L 4
6 4 2 0 X, 2 4 6 6 4 2 0 X 2 4 6
(c) h =1.5,00 =16 (d) 0, =150, =—-14

Fig. 5. lllustration of Example 2.

be noted that the violation of the facet-to-facet propedn @ust as easily occur
if H # 0. Adding an additional variable; to the problem and modifying the cost
to %x% + 0921 + 0125 yields the same collection of full-dimensional criticagjiens.
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The violation of the facet-to-facet property seems to berssequence of the bi-
linear term in the objective function in combination withrameters on the right
hand side of the constraints. In Example 2 the solution cesangth the param-
eter in a discontinuous fashion due to the presence of theehil term, and as a
result the facet-to-facet property is violated. In the alogseof a bilinear term, the
point-to-set mapX*(-) is continuous and the authors have not been able to find
an example for which the facet-to-facet property is vialat®n the other hand,

if S =0, butF # 0, then the solution may change in a discontinuous fashian, bu
then we are minimizing over a fixed polyhedron and it seemsomable that the
facet-to-facet property holds. We therefore state thewilg conjecture:

Conjecture 3 Let H > 0 in (1). If critical regions are defined as in Definition 4,
then Algorithm 1 will guarantee the}gnf:1 R, = ©Ofor(1)ifeitherF =0orS = 0.

6 Conclusions

We presented some conjectures that need to be proven befakyarithm for
parametric QPs based on stepping over each facet of a trégian will guarantee
that the whole parameter space is explored. An example shtivae one needs to
ensure that critical regions are uniquely defined for eactirpater vector. A simple
example also illustrated that the facet-to-facet propedss not hold for a special
class of parametric QPs. Current research is devoted toryélve conjectures.

References

[1] M. Baotic. An efficient algorithm for multi-parametric quadratic programming.
Technical Report AUT02-05, ETHiRich, Institut tir Automatik, Physikstrasse 3, CH-
8092, Switzerland, 2002.

[2] A. Bemporad, M. Morari, V. Dua, and E. N. Pistikopoulos. The explioear quadratic
regulator for constrained systenfutomatica 38(1):3—-20, 2002.

[3] F. Borrelli, A. Bemporad, and M. Morari. A geometric algorithm for mulérpmetric
linear programming.Journal of Optimization Theory and Applicatigrikl8(3):515—
540, 2003.

[4] P. Grieder, F. Borrelli, F. Torrisi, and M. Morari. Computation of tlemstrained infinite
time linear quadratic regulatoAutomatica 40:701—-708, 2004.

[5] J. Nocedal and S. J. Wrightlumerical OptimizationSpringer, New York, USA, 1999.

[6] M. M. Seron, G. C. Goodwin, and J. A. De DanGeometry of model predictive control
for constrained linear systems. Technical Report EE0031, DeparohEtgctrical and

11



Computer Engineering, The University of Newcastle, Callaghan, NSV8,28@stralia,
September 2000.

[7] P. Tandel, T. A. Johansen, and A. Bemporad. An algorithm for maltametric
quadratic programming and explicit MPC solutioAsitomatica 39(3):489-497, 2003.

[8] P. Tandel, T. A. Johansen, and A. Bemporad. Further results dti-pawametric
quadratic programming. IRroc. 42nd IEEE Conf. on Decision and Conirplges
3173-3178, Hawaii, 2003.

A Normal cone optimality condition

Consider the following problem

min f(x) such thatr € Q. (A1)

T

where

Q={zeR"|gi(x)=0,1€&; g;(z) <0, j €T}, (A.2)
where& andZ are finite index setsf, g; andg; are smooth, real-valued functions
on a subset oR".

The following are taken from [5]:

Definition 8 (Tangent Vector) A vectorw € R"™ is tangent tof) at « if for all
vector sequencegr; } with z; — z andx; € , and all positive scalar sequences
t; | 0, there is a sequenae; — w such thate; + t,w; € € for all 4.

Definition 9 (Tangent Cone) The tangent con&j,(x) is the collection of all tan-
gent vectors t6? at x.

Definition 10 (Normal Cone) The normal cone t at z, N,(z), is the orthogo-
nal complement of the tangent cone, that is

No(z) = {v | vTw <0, Yw e TQ(QZ)} (A.3)

Theorem 1 (First order necessary optimality condition) If z* is a local mini-
mizer off in 2, then
—V.f(z*) € No(x¥). (A.4)
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