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Abstract

In order to ensure robust feasibility and stability of model predictive control (MPC) schemes,
it is often necessary to optimise over feedback policies rather than open-loop trajectories. All
specific proposals to date have required the solution of nonlinear programs and/or the solution of a
large number of optimisation problems. In this paper we introduce a new stage cost and show that
the use of this cost allows one to formulate a robustly stable MPC problem that can be solved using
a single linear program. Furthermore, this is a multi-parametric linear program, which implies that
the receding horizon control (RHC) law is piecewise affine, and can be explicitly pre-computed, so
that the linear program does not have to be solved on-line. Two numerical examples are presented,;
one of these is taken from the literature, so that a direct comparison of solutions and computational
complexity with earlier proposals is possible.

Keywords: min-max problems, robust control, optimal control, predictive control, receding horizon
control, parametric programming, piecewise linear control

1 Introduction

This paperis concerned with the practical real-time implementability of robustly stable model predictive
control (MPC) when constraints are present on the inputs and the states. We assume that the plant
model is known, except for unknown but bounded state disturbances, and that the states of the system
are measurable.

We consider a discrete-time, linear, time-invariant plant

X1 = AX + Bug + wy, 1)

*Royal Academy of Engineering Post-doctoral Research Fellow.



wherex, € R" is the system statey, € R™ is the control input andy, € W is a persistent disturbance
that only takes on values in the polytoé c R". It is assumed that the disturbaneg can jump
between arbitrary values withW and that no stochastic description for it is postulated. Therefore, a
worst-case approach is taken in this paper. It is assumedAh&®) is stabilisable and that polytopgic
constraints on the state and input, that are either due to physical, safety or performance considerations,
are also given:

Xk €X, uelU, VkelN.

We assume thalV contains the origin and tha¢ ¢ R" andU c R™ contain the origin in their
interiors.

Since a persistent, unknown disturbance is present, it is impossible to drive the state to the origin.
Instead, itis only possible to drive the system to a bounded targétamitained insid&X. The goal is

to obtain a (time-invariant) nonlinear feedback control lawt « (x) such that the system is robustly
steered to the target set, while also satisfying the state and input constraints, and minimising some
worst case cost.

It is by now well-established that with polytopic disturbance bounds, a linear model and a convex cost,
in order to solve such min-max problems it is sufficient to consider only the disturbance realisations
that take on values at the verticesWf[31]. However, the number of extreme disturbance realisations
typically grows exponentially with the length of the prediction horizon used in MPC. Since the optimi-
sation in MPC is required to be performed on-line in real time, the practical feasibility of implementing
robust MPC formulated along these lines is questionable.

In this paper we introduce a new typestge cost

L(X,u) := Telp QX = Wlp + IR — KX)llp, )

whereQ € R™", Re R™™ K € R™"andT c R". We will show that, ifp = 1 or p = oo, the

use of this stage cost allows the robustly stable feedback min-max MPC problem to be solved using
asinglelinear program (LP). Furthermore, we will show that this LP is in fagtdti-parametricLP
(mp-LP), that allows the receding horizon control (RHC) law to be pre-computed off-line along the
lines developed by [6], and from which it follows that this law is in fact piecewise &ffifibese facts

make robust MPC/RHC, using the stage cost (2), a practical proposition.

Remark 1 A similar stage cost t(2) was independently proposed in [23] and briefly discussed within

the context of guaranteeing robust stability of a new type of MPC scheme. The stage cost proposed
in[23]is L(x, u) := (1/2)||x — Proj(x) |13+ (1/2)|lu— Kx||5, whereProj; (x) denotes the orthogonal
projection ofx onto T. The difference between this stage cost &2)ds minor, but the formulation

in (2) is perhaps more natural. More importantly, the MPC scheme proposed in [23] is fundamentally
different from the feedback min-max MPC scheme considered here and [23] only briefly discusses the
properties of their proposed stage cost. As such, this paper makes a contribution by analysing and
discussing the properties @2) in detail with regards to its use in feedback min-max MPC.

The paper is organised as follows. In Section 2 we review recent developments in robust MPC/RHC,
motivate the problem setup that was outlined above, and define it precisely. In Section 3 we review

1A polytope is defined to be a bounded polyhedron given by the intersection of a finite number of closed half-spaces. In
other words, the set#/, X andU are compact, convex sets that can be described by a finite number of linear inequalities.

2n this paper, MPC will be used to refer to the on-line computation of the solution to the feedback min-max optimal
control problemPy defined in the next section. RHC will be used to denote that the explicit expression for the solution to
the feedback min-max problefy is pre-computed off-line.



known requirements for MPC/RHC to be robustly stable, and show how the stage cost (2) satisfies
those requirements. We also point out some advantages of this cost, over a previously proposed cost.
In Section 4 we show in detail how the problem can be solved as a single LP, and exploit its multi-
parametric nature. Section 5 is devoted to numerical examples and Section 6 presents the conclusions.

2 Background and problem formulation

The problem of steering a constrained system subject to persistent disturbances to a target set, while
also minimising some worst case cost, was considered as early as the 1960s and [9, 10, 13, 15, 33]
contain some of the first, and perhaps also some of the most insightful, results. More recent attempts
at the control of constrained systems are based on set invariance [8, 16].

In [9, 15] set-based solutions to the robust time-optimal problem were presented, but the unsolved
problem was how to keep the state evolution inside the target set once it had been reached. The latter
problem was solved in [30] by requiring that the target set be robustly controlled invariant. Once inside
the target set the control input is determined by a pre-computed control law that ensures that the state
trajectory never leaves the target set. Furthermore, [30] continues by decomposing the state space into
simplices and computing an explicit affine expression for the control law in each simplex. All that is
required on-line is to determine in which simplex the current state lies and the control input is then
given by the pre-computed affine control law.

In general, solving a min-max problem subject to constraints and disturbances is computationally too
demanding for practical implementation. However, various attempts have been made at presenting
approximate solutions to this problem. Most of these solutions appear to have come from the field of
robust MPC [26, 29]. Usually, MPC schemes obtain on-line the solution to a finite-horizon approxima-
tion of the infinite-horizon problem. For a given state only the initial segment of the optimal sequence
is implemented; at the next time instant a new measurement is taken and a new finite-horizon min-max
problem is solved.

Due to the various assumptions and approximations made, it is difficult to compare different min-max
MPC schemes with one another. However, most robust MPC schemes can be classified into two
categories [29]: (ippen-loopmin-max MPC [1, 2, 11, 34], where a single control input sequence (or
sequence of perturbations to a given stabilising control law [21, 25]) is used to minimise the worst case
cost, and (iiYfeedbackmin-max MPC [4, 20, 24, 31], where the worst case cost is minimised over a
sequence of feedback control laws. In general, the open-loop formulation is too conservative and often
severely under-estimates the set of feasible trajectories. As such, the feedback MPC formulation was
proposed in [27] as an improvement over open-loop MPC.

In order to determine a suitable control law an optimal control probRym(defined below) with
horizonN is solved. Lew := {wg, w1, ..., wn_1} denote a disturbance sequence over the interval
0to N — 1. Effective control in the presence of the disturbance requires state feedback [29, §4.6], so
that the decision variable in the optimal control problem (for a given initial state) is a control policy
defined by

7= {u(0), pa(), ..., un-1()}, 3)
whereu(0) e Uanduk : X — U,k € {1,..., N — 1}; u(0) is a controlaction (since the current
state is known) and eagky(-) is a state feedback contriaiw. Let ¢ (K; X, 7, w) denote the solution

to (1) at timek when the state iz at time 0, the control is determined by poliey(u = ux(X) atevent
(X, k), i.e. statex, timek) and the disturbance sequencevis
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Given a target set (often also called terminal constrdint) X, for each initial statex € X, let [Ty (X)
denote the set ddldmissiblepolicies, i.e.

NGO = {m [u©) e U, u(pk; X, m,w)) € U, p(k; X, m,w) € X, ¢(N; X, m, W) €T,
vke{l...,N—1,vweW"} (4)
and let
Xn = {x € X|IIn(X) # @} (5)
denote the set of statesXnthat can be robustly steered (steered foma#t WN) to the target s€eT in
N steps.

In order to define an optimal control problem, a c@gt-) that is dependent on the poligyand current
statex, but not dependent on, is defined; the conventional choice is

N—-1
Vi (X, ) = max | ) L (X, ) + Fo) | (6)
weWN =0
wherexy = ¢(k; x, 7, w) if K € {0,..., N}, ux :== ux(op(;x,7,w)) if ke {1,...,N -1} and

Ug := u(0).

The target seT, stage cost (-) and terminal cosE (-) have to satisfy certain conditions in order to
ensure that the solution of the feedback min-max optimal control problem, when implemented in a

receding horizon fashion, is robustly stabilising. These conditions will be set out in the following
section.

The feedback min-max optimal control probld?y can now be defined as

Pn(X) : VO3 (x) = inf {Vi(x, ) |7 € TIn(X)} . 7

Let 2 (x) denote the solution t&y (x), i.e.
TR0 = {Ug(X), 131 X). ..., Y1 (1)} = arginf{Vy(x, 7) | € TIN(X)} (8)

where the notatiop?(-; x) shows the dependence of the optimal policy on the current state

It should be noted that the solution to probld®g is frequently not uniqgue — that is, there can be
a whole set of minimisers, from which one must be selected. Thus the time-invasntalued
MPC/RHC lawky : Xy — 2Y (2V is the set of all subsets &f) is defined by the first element of
d(x):

Ken (X) = Ud(X), VX € Xy. (9)

Typically, but not alwaysyd(x) is a singleton.

The feedback min-max probleRy defined in (7) is an infinite dimensional optimisation problem and
impossible to solve directly. Methods for solvily, using finite dimensional optimisation techniques
have been proposed in [4, 17, 31] and this paper can be seen as an immediate extension of [31].

In [4, 17] it is proposed that a combined dynamic- and parametric programming approach be used to
obtain an explicit expression for the RHC law. Provided the stage cost is piecewise affine (e.g. if a
1-norm oroo-norm is used), a piecewise affine expressioncfof-) can be computed off-line. All that

is required on-line is, given the current staf¢o look up the control input from the explicit expression.
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Stability is not proven for the stage and terminal costs proposed in [4] nor do the costs satisfy the
stability conditions given in [28, §3.3] and [29, §4.4]. However, robust stability can be guaranteed if
the stage cost
R if X\T)xU
Loy e JIQXIHIRUL T O w)y € (XAT) x U (10)
0 if (x,u)eT xU
proposed in [17, 28], is used. Though this choice of cost solves the stability problem, it should be
noted that (10) is not continuous (on the boundary of

The use of such a discontinuous stage cost is a major obstacle to implementation using standard
solvers for linear, quadratic, semi-definite or other smooth, convex nonlinear programming problems.
As such, (2) is proposed as an alternative that solves the problem of obtaining a continuous stage cost
that can be implemented using smooth, convex programming solvers, while still guaranteeing robust
stability of the closed-loop system.

Remark 2 This paper investigates the use @) in solving Py using the method proposed in [31].
Though not discussed here, itis possible to(@$e solvingPy using the methods described in [4, 17].

3 Requirements for robust stability

Itis well-known that, foran MPC/RHC law that assumes a finite horizon, an arbitrary choice of terminal
constraint, stage cost and terminal cost does not guarantee stability of the closed-loop system. In the
absence of state disturbances, conventional MPC/RHC schemes employ atermirékgost | Px||,

that is a control Lyapunov function inside, in order to guarantee robust stability of the origin for

the closed-loop system [28, 29]. However, if the interioMéfis non-empty and the disturbance is
persistent, then one can easily show that there does not exist a sofcallst control Lyapunov
function [28, 29] in a neighbourhood of the origin. Since it is no longer possible to drive the system
to the origin, but only to some set containing the origin, the conventional choice of stage and terminal
cost cannot guarantee stability or convergence [28, 83.3.2] and a new type of stage and terminal cost
is needed.

Before proceeding to set up conditions for robust stability some definitions, taken from [17], are in
order. Ifd(z, Z) :=infycz |z — y| for any setZ ¢ R" and| - || denotes any norm, then the Jeis
robustly stabldff, for all ¢ > 0, there exists & > 0 such thatl(xg, T) < & impliesd(x;, T) < ¢, for

alli > 0 and all admissible disturbance sequences. Th& getobustly asymptotically (finite-time)
attractivewith domain of attractionX iff for all X € X, d(xj, T) — 0 asi — oo (there exists a time

M such that; € T for alli > M) for all admissible disturbance sequences. TheTsistrobustly
asymptotically (finite-time) stabl&ith domain of attractionX iff it is robustly stable and robustly
asymptotically (finite-time) attractive with domain of attracti®n

Consider now the following assumptions, adapted from [17, 31, 32]:

Al: The terminal constraint s@t C X contains the origin in its interior. A linear, time-invariant
control lawK : R" — R™is given such that the terminal constraint §a$ disturbance invariant [19]
for the closed-loop system, i.A+ BK)x+w € T forall x € T and allw € W. In addition,
KxeUforallx eT.

A2: The terminal cosE (x) := 0 for all x € R".

A3: The stage codt(x,u) :=0if x € T andu = Kx.

Ada: L(.) is continuous oveK x U and there exists a> 0 such thatl_(x, u) > c(d (x, T)) for all
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X,u) € (X\T)xU.
Adb: L(-) is continuous ove(X \ T) x U and there exists @ > 0 such that(x, u) > c||x|| for all
X, u) e X\T)xU.

Al, A2, A3, Adaand A4db satisfy the assumptions on the stage cost, terminal costand terminal constraint
given in [28, 83.3] and [29, 84.4]. Hence, one can follow a standard procedure of using the optimal
value function as a candidate Lyapunov function [28, 29] and show that:

Theorem 1 If A1, A2, A3 and Ada (and A4b) hold, th€&s robustly asymptotically (finite-time) stable
for the closed-loop systery, 1 = Ax + Brn(Xk) + wi With a region of attractionXy.

In[29, 84.6.3]and [31]itis argued that one need only consider the set of extreme disturbance realisations
if the following assumption holds in addition to those given above:

A5: L(-) is convex ovelX x U.

Itis shown in [31] how, provided A1, A2, A3, Ada (and A4b) and A5 hold, one can associate a different
control input sequence with each extreme disturbance realisation and, esingadity constrainthat
prevents the optimiser from assuming knowledge of future disturbances, one can compute a control
inputu € kN (X) on-line using standard finite-dimensional convex programming solvers. However,
in[29, 84.6.3] and [31], an exact expression for the stage cost that allows one to implement the proposed
method is not given; only general conditions lof) as in A3, Ada and A4b are given.

Our main concern here is to point out that the stage cost (2) satisfies assumptions A3 and A4a (but
not A4b) if Q is non-singular. Using this stage cost in computiRg-) thus assures thatis robustly
asymptotically stable (but not necessarily finite-time stable) for the closed-loop system.

Furthermore, the stage cost (2) satisfies assumption A5 (for proof, see the Appendix). Its use thus
allows the robustly stable MPC problem to be solved as a finite-dimensional problem, as will be shown
in more detail in the next section.

Remark 3 We once again point out that the stage c@Hb), that was proposed in [17, 28], is not
continuous and hence not convex. As such, it does not satisfy assumption A5 and therefore cannot be
used with the approach proposed in [31].

Remark 4 The second term in the stage c@)follows the idea of pre-stabilising predictions in MPC,

that was introduced in [22] and developed further by those authors for use in robust MPC [21]. If

Q :=0andR := |, then the stage co$®) is similar to the one used in [21]. However, it is important

to note Ada and A4b are not satisfiedQfis singular (as is the case ® := 0). As such, it is not

yet clear how the assumptions in this paper need to be modified in order to use the method proposed
in [21] for proving convergence.

In order to justify this statement, an example for which the state of the closed-loop system does

not converge tol if Q := 0O and R := | in (2), follows. Let the system be given ky,, =
Xk + U + wi and letX ;= {x e R||Xx] <2}, U :={ueR|ju <15}, T := {x e R||X] < 0.5},
W ={weR|w <01}, K :=-01,Q:=0,R:=1 p=ocoandN := 2. If the initial state

Xo = 1 and the disturbance sequence is givenulgy:= 0.1 for all k € N, then the state sequence
satisfiesk 1 = Xk + xkn (%) + wyx = Lforall k € N.

Remark 5 It is interesting to observe that A3, Ada and A4b are satisfidelig singular orR := 0
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in (2). As such, the use of the second term is not necessary in guaranteeing robust 4tttislsgcond
term only affects the performance of the closed-loop system.

Consider now the “dual-mode” control law

F(X) — KN(X) If X € XN\T (11)
K x ifxeT

whereky () is defined in (9). By definition, probleBy satisfies assumption A2. Tf, K andL (-) are
chosen such that assumptions Al, A3 and A4 are satisfied Ithems a robustly stabilising control
law, by Theorem 1.

For methods of computing a terminal constrdirthat satisfies Al, see [16, 18, 19, 30, 31]. However,
some further observations regardiigandT are in order.

The choice oK in (2) is arbitrary, but typically it is chosen such that- BK has all its eigenvalues
inside the unit disk and the control law is optimal via some norm. Another factor that needs to be taken
into consideration is how the choice Kf affects the size of that one can use. This problem is not

yet fully understood, but some proposals have been put forward for computing a sequence of linear
control laws and an associated sequence of disturbance invariant sets of increasing size [12].

The exact choice of disturbance invaridnis perhaps also arbitrary, but as discussed in detail in [23,
30, 31], a sensible choice faris theminimal disturbance invariant set [18, 19]

Opin =Y _(A+BK)'W (12)
i=0

for the systermx,.1 = (A + BK)Xxx + wg that is contained inside

Xk 1= {x € X |Kx € U}. (13)

K
min?

The problem, however, with settinig= ©". | is that the region of attractioky can be quite small.

One way of enlargingXy is to setT equal to themaximaldisturbance invariant s@X [18, 19] for
the systenxy,1 = (A + BK)xk + wy that is contained insid&X, i.e.

OF = {xge Xk IVk e N, Vux € W : X1 = (A+ BK)x¢ + wy € X }. (14)

This has the benefit tht the state enters in finite time, then one can guarantee that the state of the
systemxyy 1 = Axc + BI'(Xk) + wy will robustly converge to the minimal disturbance invariant set
oK. (this is a consequence of the properties of state trajectorigs pt= (A+ B K)Xk + wy that start
inside ©X [18, §3]). Recall, however, that with the stage cost (2) one cannot guarantee that the state
of the system will enteT in finite time.

A compromise that results in a small€g, but still guarantees convergence to the minimal disturbance
invariant setX, , is to sefl equal to any subset of the interior @f that is a disturbance invariant set

for the systenx 1 = (A+ BK)xx + wk. SinceT is robustly asymptotically stable, this guarantees
that the state of the systexq, 1 = Axc + Bren(Xk) + wy will enter (QOKO in finite time. As soon as the

3In conventional MPC with a quadratic cost and no disturbance [26,R%, often chosen to be positive definite in
order to guaranteeniquenes®f the solution of the optimal control problem. In contrast, uniqueness of the solution is not
guaranteed iR is positive definite angh = 1 or p = oo in (2).



state enter®X , one can switch to the control law= K x, thereby guaranteeing robust convergence
of the state of the systemx,1; = (A + BK)xx + wi to (9,*§m. More precisely, if the “dual-mode”
control law

kn(x) if x € Xn\OK
K x if x e 0K

V(X)) = (15)

then the following result follows:

Theorem 2 If Al, A2, A3 and Ada hold, the eigenvalues/ft BK have magnitude less thah
andT C int@X, then the minimal disturbance invariant <@f.  is robustly asymptotically stable for
the closed-loop systemy, 1 = AX« + By (Xk) + wg with a region of attractionXy. If, in addition,
On*ﬁin C intT, thenT is robustly finite-time stable for the closed-loop system = Axx + By (Xx) + wi
with a region of attractionXy.

Proof: This is a consequence of the above discussion and the facithatB K)“x — 0 ask — oo.
Hence, for largd, the state trajectories of the system are determined almost entirely by the disturbance
sequence an@ X, is a limit set for the trajectories o1 = (A+ BK)x« + wi [18, §3]. See also [19]

for details regarding the properties of the maximal and minimal disturbance invariant sets. [
Remark 6 Note that Theorem 2 does not require that A4b hold.

Remark 7 The new stage co$R) can be interpreted in a similar fashion to the stage doé&t, u) :=
1QxIl, + [IRullp that is typically used in conventional MPC schemes without disturbances. In the
new stage cod2), deviations of the state trajectory fromas well as deviations from some “ideal”
control lawu = Kx are penalised instead of penalising deviations from the origin. The minimal
disturbance invariant sed,, can be thought of as the “origin” of the system.Tif= O, , then one

can interpret(2) as penalising deviations from the “origin”. Similarly, I > OF;,, then one can
think of the terminal constraint as containing the “origin” (though the stage cost does not penalise
deviations from the “origin” anymore).

4  Solution via linear programming

Following the same approach as in [31], W&t := {w{, ..., w§,_;} denote an admissible disturbance
sequence over the finite horizén= 0, ..., N — 1 and let¢ e .£ index these realisatiofis Also let

ut := {uf, ..., u§_,} denote a control sequence associated with/itedisturbance realisation and
letx® := {x{, ..., X} represent the sequence of solutions of the model equation

Xpo1 = A+ Bug+wg, fedL (16)
with x§ = x, wherex denotes the current state.
4.1 Causality constraint
As a first step towards an implementable solution we follow [31] in replacing proBleiny the fol-

lowing equivalent problem, in which the optimisation over feedback policies is achieved by optimising
over control sequences, but with tbausality constrain{17e) enforced:

4This is a slight abuse of notation, because the set of possible realisations is uncountable.
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Problem 1 (Infinite Dimensional Feedback Min-Max) Given the current statg, if
Us = {ug | k=0,....,N—1 ¢eL}

find a solution to the problem
N-1
u® (x) := (arg m|n) max |: ) + Z L (£, ug } , (17a)
k=0

where the optimisation is subject (b6), x; = x for all ¢ € £ and

xxeX, k=1...,N-1 WedL (17b)
upeU, k=0,....N—-1 WedsL (17¢)
Xy eT, VledL (17d)
t=xZ=ul=u2 k=0,....,N—1 Vi,breL. (17e)

As explained in more detail in [26, 29, 31], this problem is equivalent to the feedback min-max problem
Py due to two facts: (i) differentcontrol input sequence is associated with each disturbance sequence,
thereby overcoming the problem of open-loop MPC that associas@sgke control input sequence

with all disturbance sequences; (ii) tbausality constrainf{17e) associates each predicted state at
time j with a single control input, thereby reducing the degrees of freedom and making the control
law independent of the control and disturbance sequence taken to reach that state.

Let thefinite subsett, C £ index those disturbance sequeneéghat take on values at the vertices
of the polytopeW N and consider the followinginite dimensional optimisation problem:

Problem 2 (Finite Dimensional Feedback Min-Max) Given the current statg, if
u:={utu? ..., uv}

whereV is the cardinality of.L,, then find a solution to the problem
N-1
u®(x) := (arg m|n) max |: + Z L xk, Ug } (18a)
k=0

where the optimisation is subject (b6), x; = x for all ¢ € £, and

xieX, k=1....N—-1  WVledL, (18b)
upeU, k=0,....N—-1  WVledL, (18c)
Xy eT, Ve e L, (18d)
=x2=ul=u? k=0,...,N—1 Vi, ledL,. (18e)

Atfirst sight, it might not be clear how the the causality constraint (18e) translates into linear constraints.
However, note that for ak € {0, ..., N — 2}, if xg* = x¢2, wi* = w{? anduj* = u? forall j €

{, ...,k thenx}Zl = xfz forall j e {1, ..., k+1} and hence one needs to eéil = u?, inorder to

satisfy the causality constraint. Therefore, as discussed in[26, 31], the causality constraint (18e) can be

replaced by associating the same control input with each node of the resulting extreme disturbance/state
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trajectory tree. This observation reduces the original number of control inputs that need to be computed
from NoN to 1+ v +...+vN-1, wherev is the number of vertices a¥. A similar observation holds
for the number of constraints and slack variables that need to be considered.

For example, ifv = 2 andN = 2, then there ar& = vN = 4 extreme disturbance sequences
and if £, has been defined such tha} = w3 andwj = wg, then (21e) can be substituted with

ui = u3 = ud = ug, ul = u? andu? = uf.

The question one can now ask is under what conditions the first elemafpofis equal to the first
element ou?,(x). As noted in [29, 84.6.3], if the system is lineXr, U, W andT are polytopes and
F(-) andL(-) are convex functions, then using similar convexity arguments as in [31, Thm. 2], it can
be shown that the first elementwf(x) is equal to the first element of, (x) and hence also equal to

KN (X)

The next result follows:

Theorem 3 (Robustly Stable Feedback Min-Max MPC)If the stage cost is given [§g), Q is non-
singular, F(x) := 0 and T satisfies A1, thery(x) is equal to the first element of(x) and T is
robustly asymptotically stable for the closed-loop system = Axc + Brxn(Xk) + wg with a region
of attraction Xy.

4.2 Setting up as an LP problem

In [31] it was suggested that the solution to Problem 2 should be computed on-line using standard
convex, nonlinear programming solvers. We will now describe how this problem can be solved using
linear programming if stage cost (2) is used. This will involve setting up a linear program that is
equivalent to Problem 2.

Let the total cost(x, u‘, w*) for the current stat& and a sequence of control inputs associated
with a given disturbance realisatiovf be defined &5

N-1
J(x, ut, wh) = Z L (x¢, up) -

k=0
As in [31], the optimisation (18) can be written as

min maxJ(x, u‘, w), (19)
ueC(x) LeLy

which is equivalent to the convex program

Tin{y|ueC(x),J(x, u, wh) <y, vee L,}, (20)
sV

whereC (x) is a polytope implicitly defined by the constraints in (18).

If one uses the stage cost (2) with= 1 then the value of miny L(X, u) can be computed by solving
the linear program

minL(x,u) = min
ueU uy,a,py

SUsing standard causality arguments, it should be clear that this substitution results in an equivalent problem in the sense
that the optimal cost and the first element of the optimal input sequence remains unchanged.
6Recall thatF (x) := 0.
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subject to
—a<QX—-Yy)<a, —-B<RU—-Kx)<B, uelU, yeT, Ta+1B8<y,

wherea € R", 8 € R™ and the unit vectot :=[1, 1, ..., 1] has appropriate length.

The above procedure is fairly standard and has been used in converting standard and open-loop min-
max MPC problems with 1-norm ansb-norm costs to linear programs [1, 2, 3, 4, 11, 26, 34]. We
now use it to set up a linear program equivalent to (20). Let

N-1
I, uf,wh) = n;;nz 1Q0% — Yl + IR(ug — KX I,
k=0

andy’, u, n® andy, i, n be defined similarly ta* andu. It now follows that (20) is equivalent to

min y (21a)
uy,u.n,y
subject to
X1 = AX + BU + wy, x5=x, k=0,...,N—1, Vie£,  (21b)
X €X, k=1,...,N—-1, Ve € £, (21c)
Xy eT, Ve e L, (21d)
xlfl = xlfz = uﬁl = uﬁz k=0,...,N—1, Ve, by € L, (21e)
— ik < Q0% — Vi) < M yeT, k=0,....,.N—1, ViesL,  (21f)
—nt < RUE — KxO) < nt, uleU, k=0,...,N—1, Ve e £, (219)
N-1
D Y+ Ung <, Vie £,  (21h)
k=0

Remark 8 Note that it is also possible to convert the feedback min-max MPC problem to a linear
program if p = oo is chosen in the stage co&). This is achieved in a similar fashion as above by
noting that ifminycy L(X, U) := Minyet [Q(X — Y)|loc + IIR(U — KX) ||, then

minL(X,u) = min y
ueuU uy.a,B.y

subject to
—lo < Qx—-y) <le, —-1B<RU-Kx)=<1B8, ueU, yeT, a+B=vy,

wherex € R, 8 € R and the unit vectofl has appropriate length.

It is interesting to observe that the use of tkenorm results in less variables and constraints than in
the case of th&-norm. The former choice of norm is therefore probably preferred if computational
speed is an issue. However, the latter norm might be preferred if a control action is sought that is
closer to having used the quadratic norm, as in conventional MPC.
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4.3 Explicit solution of the RHC law via parametric programming

The development in the previous section allows the on-line solution of the robust MPC problem,
providing that the available computing resources and the required update interval are such that the LP
can be solved quickly enough. If this is not possible, an alternative is to pre-compute the solution, to
store this solution in a database, and to read out the appropriate part of the solution (which can be done
relatively quickly) as required.

By substituting (21b) into the rest of the constraints it is possible to show, as in [3, 4, 6], that (21) can
be written in the form

mgin{c’0|F0 < g+ Gx}, (22)

where6 is the decision variable and consists of the non-redundant componetisyofu, n, y);

the vectorsc, g and matrices=, G are of appropriate dimensions and do not depend.ofhe key
observation here is that the constraints are dependent on the currertiattite affine manner shown.
This means that the feedback min-max problem falls into the classibifparametricinear programs
(mp-LPs) [14], where each componentxofepresents a parameter that will affect the solution. This
class of problems can be solveti-line for all allowable values ok and results in @iecewise affine
expression for the solution in termsx{7, 14].

The polyhedronXg := {x € R" |30 : F6 < g+ Gx} is the set of states for which a solution to (22)
exists. Given a polytope of statéé C X and using the algorithm described in [7], one can compute
the explicit solution of the feedback min-max control law foralle X. The resulting feedback
min-max RHC law is then of the following piecewise affine form:

kn(X) = Kix +h;, VX € CR;,

where eaclK; € R™" andh; € R™ are associated with a so-calledtical region CR;. The critical
regionsC R; are polytopes with mutually disjoint interiors such tbat= | J; CR;. All that is required
on-line is to determine in which critical region the current state lies and then compute the control action
using only matrix multiplication and addition, as in [3, 4, 6, 30].

Remark 9 The solution to the control law presented here is of the same piecewise affine structure as
the one given in [4]. However, the derivation in [4] is based on dynamic programming and requires the
solution of2N multi-parametricmixed-integetinear programs (mp-MILPs) (by exploiting the convex,
piecewise affine nature of the optimal cost, this has since been improved to $¢Inipg-Ps [5]). The
scheme presented in this paper requires the solution of a single mp-LP instead, though this is perhaps
of more significance for the on-line computation of the MPC solution than for off-line pre-computation
of the RHC law.

Finally, as mentioned earlier, robust stability is not guaranteed for the stage cost used in [4]. However,
robust stability is guaranteed using the new stage ¢@sproposed in this paper.

5 Examples

The following two examples were implemented in Matlab 6.0 using the LP solver provided with Matlab
Optimization Toolbox 2.1. The mp-LP solver was implemented using the algorithm described in [7].
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51 Casen=1

The first example is taken from [4, 31]. The system is given by
Xk+1 = Xk + Uk + wy,
with
X=xeR|-12<x<2}, T:=XeR|-1<x<1}, Wi ={weR|-1<w<1},U:=R.
For an initial comparison, the same stage and terminal cost as in [4] were used, i.e.
L(x,u) :=|Qx|+|RuU, FX):=0, Y xe R",ue R™

with Q =1 andR = 10. WithN = 2 andX := {x € R|-1.2 < x < 2}, by solving a single mp-LP
as described in this paper, the robust RHC kaw-) was found to be

kn(X) = —xif —1.2<x <2, (23)

which is the same as [4, Eqn. 24].

The computation ofy (-) took 1.1s on a Pentium Ill. This is a considerable improvement to the 55 s
it took in [4] to solve 4 mp-MILPs on a similarly-specified computer (though it is reported in [5] that
the same problem took 1.27s to solve using 2 mp-LPs).

When the new stage cost (2) was used, i.e.
L, u) = ryrliplQ(x — Y|+ [RU = Kx)|

with K := —1 (as proposed in [31, 8F]), the robust control lay(-) was computed in 1.2s on a
Pentium Ill and found to be the same as in (23).

5.2 Casen=2
For the second example, the system is given by
X1 = |:1 0'8} Xk + |:0] Uk + wk,
0 07 1
with

X :={x € R?|[X]lc <10}, W:={w € R?||w[l < 0.1} ,U:={ue R|-3<u=<3}.

GivenK := —[1 1], the target set was chosen to be the maximal disturbance invarighf semtained
inside Xk := {x € X |Kx € U} for the closed-loop systemy,;1 = (A+ BK)xx + wy, i.e.
3 1 1 3
T:=0X=1xeR?*-|28|<| 0 05|x<]| 28
2.75 0.5 015 2.75

The stage cost was chosen to be

Lx,u) = fynelp QX = Yoo + IIRMU = KX)o

13



Figure 1: The critical regions that define the explicit expressior fdr) for the second example

with Q = | andR = 0.1. The control horizon was set % = 2 andX := Xy was computed using
the software developed in [16].

The LP that solves the feedback min-max MPC problem has 190 inequalities and 39 decision variables.
The computation of the explicit expression for the RHC lay(-) was completed in under 4 minufes

on an AMD Athlon processor. The critical regions that define the explicit solution of the associated
mp-LP are shown in Figure 1 (in order to save space, the expressions for the associated critical regions
are not listed). Though 71 separate critical regions were computed, it was found that only 7 distinct
affine control laws were defined over different part@f (critical regions with the same affine control

law are plotted with the same shade in Figure 1). Post-processing might therefore reduce the number of
regions that need to be stored on-line. The 7 affine control laws that, together with the critical regions
shown in Figure 1, definey (-) are:

Kg?(x) =[0 0]x£3,

') =[0 —0.7]x £ 5.5,

’(x) =[-1 —15]x£28,
k() =[-1 —1]x

Finally, Figure 2 shows part of the response of the closed-loop system= Axc + BT (Xx) + wg

to a random, persistent disturbance satisfying € W for all k € N, starting from initial state

Xo = [10 —10]/. As can be seen, the presence of the persistent disturbance prevents the state of the
system from converging to the origin. Note that in this example the state @nitefmite time, despite

the fact that only robust asymptotic convergence to the targdt sets guaranteed. Recall also that

I'(-) andT have been defined such that if the state ertarsfinite time, then the state of the system is

Since by far most of the computational effort actually goes into removing redundant inequalities from the newly computed
critical regions and the partitioning of the state space, itis expected that this time can be reduced by a few orders of magnitude
using state-of-the-art LP solvers, rather than using Matlab’s Optimization Toolbox.
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Figure 2: Closed-loop response of the second example to a random, persistent disturbance

guaranteed to remain insidefor all future admissible disturbance sequences. Furthermore, using the
arguments presented in Section 3, it follows that if the state enteréinite time, then the control law

['(-) is such that the state of the closed-loop system will robustly converge to the minimal disturbance
invariant se®,. Finally, if the state enter®X,, in finite time, then the trajectory of the closed-loop

systemxy, 1 = Ax + BT (Xg) + wg is guaranteed to remain insim:r';m.

6 Conclusions

Robust MPC requires optimisation over feedback policies, rather than the more traditional optimisation
over open-loop sequences, if excessive conservativeness, and hence infeasibility and/or instability, is
to be avoided. But this is difficult to implement with reasonable computational effort, and hence its
practicality has been questionable, particularly if on-line optimisation in real time is envisaged.

In this paper we have introduced a new stage cost, that allows one to compute the solution of the full
robust MPC problem —that s, optimisation over feedback policies with guaranteed robust convergence
to the target set in the face of persistent disturbances — using only one linear program. This is in
contrast with previous proposals that have required the solution of nonlinear programs and/or the
solution of a large number of optimisation problems.

A detailed comparison of the competing proposals is not straightforward, however, because the dimen-
sions of the optimisations involved vary in complicated ways. It is therefore not yet possible to say
conclusively which scheme will be more efficient for on-line implementation, or which one would be
preferred for off-line pre-computation. The answers may well depend on problem-specific details.
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Appendix: Proof that (2) is convex

We need to prove that
L(AX1 + [1 = A%z, Aug + [1 — AJuz) < AL(Xq, Ug) + [1 — AIL (X, Up) (24)

for all » € [0, 1]. Note that the proof relies on the convexity bfand that it is easy to demonstrate
thatL (., .) is not convex ifT is not convex.

Proof:

L(AXy + [1—AlXp, AUp + [1 — AJup) =
Teip QA1+ [1 = A% — Wlp + IR(AUL + [1 — AJup — K{AXy 4+ [1 = A]X2D ]l (25)

Let
yi = argmin|Q(xi — Ylp
yeT

and consider the first term on the right hand-side of (25), notingithat- [1 — A]y, € T sinceT is
convex:

ryneip IQAXs + [1— A% — Ylp < IQ(AX1 +[1— AlX2 — Ays — [1— AlY2) I p
<AMQX1— yDllp+[1—21QMX — Y2)llp (26)

(Minkowski’s inequality).
Now consider the second term on the right hand-side of (25):

IR + [1 = AJuz — K{Axy + [1 = 212D lp = [AR(U1 — KX1) +[1 = A]R(Uz — KX2) [ p
< AMIRU1 — Kxp)llp + [1 = AlIR(U2 — KX) [l (27)

Adding together (26) and (27) proves (24).

References

[1] J.C. Allwright, On min-max model-based predictive control, in: D. Clarke (E&ldvances in
Model-Based Predictive ContragDxford University Press, 1994,

[2] J.C. Allwrightand G.C. Papavasiliou, On linear programming and robust model-predictive control
using impulse-responseSystems & Control Letters8 (1992) 159-164.

16



[3] A.Bemporad, F. Borrelli and M. Morari, The explicit solution of constrained LP-based receding
horizon control,Proceedings of the 39th IEEE Conference on Decision and Corxadney,
Australia (2000).

[4] A. Bemporad, F. Borrelli and M. Morari, Robust model predictive control: Piecewise linear
explicit solution,Proceedings of the European Control Confergrieerto, Portugal (2001).

[5] A.Bemporad, F. Borrelliand M. Morari, Robust constrained optimal control and its state-feedback
piecewise-affine solution, Preprint, 2001.

[6] A. Bemporad, M. Morari, V. Dua, E.N. Pistikopoulos, The explicit linear quadratic regulator for
constrained systemAutomatica38:1(2002) 3—20.

[7] F. Borrelli, A. Bemporad and M. Morari, A geometric algorithm for multi-parametric linear
programming, Submitted tdournal of Optimization Theory and Applicatio(¥001). Technical
report available fronittp://www.dii.unisi.it/ ~bemporad/ .

[8] F. Blanchini, Set invariance in contrahutomatica35 (1999) 1747-1767.

[9] D.P. Bertsekas and I.B. Rhodes, On the minimax reachability of target sets and target tubes,
Automatica7 (1971) 233-247.

[10] D.P. Bertsekas and |.B. Rhodes, Sufficiently informative functions and the minimax feedback
control of uncertain dynamic systeniEEE Transactions on Automatic ContralC-18 (1973)
117-124.

[11] P.J. Campo and M. Morari, Robust model predictive conBodceedings of the American Control
ConferenceGreen Valley AZ, USA (1987) 1021-1026.

[12] M. Cannon, V. Deshmukh and B. Kouvaritakis, Nonlinear model predictive control with polytopic
invariant setsProceedings of the 15th IFAC World Congress on Automatic Cqridaicelona,
Spain (2002).

[13] M.C. Delfour and S.K. Mitter, Reachability of perturbed systems and min sup prob&iss|
Journal of Control47:4 (1969) 521-533.

[14] T. Gal, Postoptimal Analyses, Parametric Programming, and Related Topius Edition, de
Gruyter, 1995.

[15] J.D. Glover and F.C. Schweppe, Control of linear dynamic systems with set constrained distur-
bances|EEE Transactions on Automatic ContrAC-16:5 (1971), 411-423.

[16] E.C.KerriganRobust Constraint Satisfaction: Invariant Sets and Predictive CarRitdD Thesis,
University of Cambridge, UK, 2000. Thesis and associated Matlab Invariant Set Toolbox available
for download ahttp://www-control.eng.cam.ac.uk/eck21/

[17] E.C. Kerrigan and D.Q. Mayne, Optimal control of constrained, piecewise affine systems with
bounded disturbanceBroceedings of the 41st IEEE Conference on Decision and Comhiagl
Vegas NV, USA (2002).

[18] I. Kolmanovsky and E.G. Gilbert, Maximal output admissible sets for discrete-time systems with
disturbance input2roceedings of the American Control Confere(t895) 1995-2000.

17



[19] I. Kolmanovsky and E.G. Gilbert, Theory and computation of disturbance invariant sets for
discrete-time linear system#jathematical Problems in Engineering: Theory, Methods and
Applications4 (1998) 317-367.

[20] M.V.Kothare, V. Balakrishnan and M. Morari, Robust constrained model predictive control using
linear matrix inequalitiesAutomatica32:10(1996), 1361-79.

[21] B.Kouvaritakis, J.A. Rossiter and J. Schuurmans, Efficient robust predictive coB&®, Trans-
actions on Automatic Contrel5:8 (2000) 1545-1549.

[22] B. Kouvaritakis and J.A. Rossiter, Stable generalized predictive cotiE®lProceedings, Part D
139(1992) 349-362.

[23] W.Langson, I. Chryssochoos and D. Mayne, Robust model predictive control using tubes, Tech-
nical Report EEE/C&P/DQM/11/2001, Imperial College, London, UK (2001). Submitted to
Automatica.

[24] J.H.Leeand Z. Yu, Worst-case formulations of model predictive control for systems with bounded
parametersAutomatica33:5 (1997) 763—-781.

[25] Y.I. Lee and B. Kouvaritakis, A linear programming approach to constrained robust predictive
control, IEEE Transactions on Automatic Contréb:9 (2000) 1765-1770.

[26] J.M. Maciejowski,Predictive Control with Constrainifrentice Hall, UK, 2001.

[27] D.Q. Mayne, Nonlinear model predictive control: An assessment. In: J.C. Kantor, C.E. Garcia
and B. Carnahan (edg5)fth International Conference on Chemical Process Control (CPC V)
CACHE, AIChE, Tahoe City CA, USA, 1996.

[28] D.Q. Mayne, Control of constrained dynamic systeigtopean Journal of Controf (2001)
87-99.

[29] D.Q.Mayne, J.B. Rawlings, C.V. Rao and P.O.M. Scokaert, Constrained model predictive control:
Stability and optimalityAutomatica36 (2000) 789-814.

[30] D.Q. Mayne and W.R. Schroeder, Robust time-optimal control of constrained linear systems,
Automatica33:12(1997) 2103-2118.

[31] P.O.M. Scokaert and D.Q. Mayne, Min-max feedback model predictive colieE Transac-
tions on Automatic Controd3:8 (1998) 1136-1142.

[32] P.O.M. Scokaert, D.Q. Mayne and J.B. Rawlings, Suboptimal model predictive control (Feasi-
bility implies stability), [IEEE Transactions on Automatic Contré4:3 (1999) 648-654.

[33] H.S. Witsenhausen, A minimax control problem for sampled linear sysi&Rg, Transactions
on Automatic Contrgll13:1 (1968) 5-21.

[34] Z.Q. ZhengRobust Control of Systems Subject to Constraidtdd Thesis, California Institute
of Technology, Pasadena CA, USA, 1995.

18



