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Abstract

This paper addresses the design of a nonlinear time-invariant, dynet@deedback receding hori-
zon controller, which guarantees constraint satisfaction, robust stadmilityoffset-free control of con-
strained, linear time-invariant systems in the presence of time-varyipgists and unmeasured, persis-
tent, additive disturbances. First, this objective is obtained by designiyigeardc, linear time-invariant,
offset-free controller and an appropriate domain of attraction for thistigentroller is defined. The
linear (unconstrained) controller is then modified by adding a perturb&iom which is computed by
a robust receding horizon controller. It is shown that the domain ofctittraof the receding horizon
controller contains that of the linear controller and an efficient implementatieche receding horizon
controller is proposed. Proofs of robust constraint satisfactiomstaiiability and offset-free control are
given. The effectiveness of the proposed controller is illustrated agxample of a continuous stirred
tank reactor.

Keywords: Offset-free control, receding horizon control, set invariance,adyic state feedback
control, nonlinear control, constrained systems.

1 Introduction

The control of systems in the presence of constraints is poiitant task in many application fields because
constraints “always” arise from physical limitations angatity or safety reasons. Moreover, in practical
applications, disturbances are usually present and dfiey dre not measurable or predictable. For ex-
ample, in the chemical industries disturbances arise frisractions between different plant units, from
changes in the raw materials and in the operating condifgunsh as ambient temperature, humidity, etc.).

It is well-known that if an unmeasured, persistent distndegis stationary (e.g. if it is white), then offset-
free control is not possible, whereas if a disturbance isstationary (e.qg. if it is integrating or periodic),
offset-free control can be an achievable goal. In many alcapplications, especially in the process
industries, disturbances are often non-stationary. Itiquéar, they are often integrating and reach, after
some transient, a constant value. Hence, one basic olgemftian effective control algorithm is that it
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guarantees offset-free control whenever this is possitdle:eover, an effective control algorithm is also
applicable to cases in which the setpoints of the contraliethbles are allowed to be changed.

In the field of classical, linear (unconstrained) feedbamhtiol, the problem of offset-free control can be
considered mature [1, 2, 3, 4]. However, it is clear thatdimeontrollers have a limited range of application
because of the presence of constraints.

The design of control algorithms able to stabilize lineaanp$ subject to unknown, but bounded distur-
bances in the presence of input and state constraints hasttesubject of several works over the last
half century; a number of excellent surveys are availahlé[%] which discuss how the important goal of
guaranteeing closed-loop stability and constraint satt&in can be obtained. Existing control algorithms,
which address the problem of robust control of constrainyestiesns, are usually based on ideas from set
invariance [8, 9], reference governors [10, 11, 12, 13] cedéng horizon control [14, 15, 16, 17, 18, 19,
20, 21, 22]. Itis interesting to note that, despite the picatimportance of guaranteeing offset-free control
in the presence of integrating disturbances, none of thaiegireceding horizon control algorithms with
robust stabilityand robust constraint satisfaction guarantees are able tagtes offset-free control.

Compared to linear (unconstrained) control, the rigorauslys of designing controllers that guarantee
offset-free control has received very little attention e tonstrained control community, until relatively
recently [23, 24, 25, 26, 27]. Though the receding horizomtrab algorithms presented in [23, 24, 25, 26,
27] guarantee offset-free control and robust constraitisfaation around a neighborhood of the steady-
state, they do not guarantee robust constraint satisfaétioall initial states over which the receding
horizon controller is defined. Furthermore, with the eximepof [11, 16], none of the existing receding
horizon control algorithms that guarantee robust stgbditd robust constraint satisfaction, address the
problem of tracking arbitrary setpoints (rather than thgeaerated by a finite-dimensional exogenous
system).

In this paper, a novel receding horizon control algorithmdontrolling constrained linear systems subject
to unmeasured, bounded disturbances is presented. Thespobalgorithm is guaranteed to remove steady-
state offset in the controlled variables whenever the distoces reach an (unknown) constant value, and
the algorithm is guaranteed to satisfy input and state caings. None of the existing receding horizon
control algorithms are able to provide similar guarantédereover, in the algorithm proposed here, the
setpoints of the controlled variables are allowed to vabjtearily with time, provided they also converge
to some limit point.

This paper is organized as follows. In Section 2 the problefindion is given and in Section 3 the
design of a linear offset-free controller is presented glaith detailed discussions about its closed-loop
properties and its domain of attraction. As is well-knowme tlesign of an effective offset-free control
algorithm requires one to use an auxiliary system for egtirgahe non-stationary disturbances. This is
the approach adopted in this and the subsequent section.

In Section 4 a nonlinear controller is designed, using ideas model predictive control, in order to
enlarge the domain of attraction. The effect of the inclogibthe auxiliary system in the definition of the
receding horizon controller is carefully analyzed. Theextldomplexity calls for the derivation of results
that are analogous to existing results in the literaturectiust receding horizon control. Because of the
many new assumptions made in this paper, we believe thaetlhddof the proofs of the main results are
important. In the interest of rigor, nearly all of the detaif the proofs have therefore been included in the
Appendix.

The main characteristics of the receding horizon contiggdigihm proposed in this paper are illustrated in
Section 5 through an example of a continuous stirred tanktoeaFinally, the main contributions of this
paper are summarized in Section 6.

NOTATION: abgM) is the matrix of the absolute values of the correspondingpmrants of the matrix



M and|M]| is the determinant oM. L ® M is the Kronecker product df andM. Given column vectors
a andb, the column vectofa,b) := [a" b"]" anda < b denotes component-wise inequality between
andb. Given a sef, ./, is the set of infinite sequences(-) := {w(0),w(1),...} that take on values
inQ, ie. y:={w()|wk) eQ, vke N}. Where it is clear from the contexty(k) will denote the
actual value of the infinite sequena®(-) at timek, while cwy will be used to denote thprediction of
w(T + k) at a time instank steps into the future ifo(7) = wp = w is the value of the variable at current
time 7. Given a positive integeX, Iy is the identity matrix witiN rows andN columns 1y :=[1 1--- 1]T
andiN =[100--- 0]T are column vectors of lengtN. Given a positive scalar, B, denotes the norm-
ball of radiusr, i.e. B, := {xeR" | ||| <r}. If the setQ C X x Y, then the projection 0 onto X
is defined as Prgj(Q) := {xe X | Iy e Y such thaix,y) € Q}. Given a sefQ, the Cartesian product
ON:=0xQx---xQ.

N times

2 Problem Description and Preliminary Results

In this paper we consider a discrete-time linear time-ilawvdrplant:

X" = Ax+Bu+Ed, (1a)
z=Cyx, (1b)

in whichx € R" is the plant states™ is the plant successor stateg R™ is the control input (manipulated
variable),d € R" is a persistent, unmeasured disturbance 2adRP is the controlled variable, i.e. the
variable to be controlled to a given (time-varying) setpaginAffine inequality constraints are given on the
state and input, i.e.

xXeZ CcX, ue% CU, (2

whereX := R" is the state spac#), := R™ is the input space?” is a polyhedron (i.e. a closed and convex
set that can be described by a finite number of affine inequedibstraints) and” is a polytope (i.e. a
bounded polyhedron); the interior & x % contains the origih

Assumption 1 (General). A measurement of the plant state is available at each samgtkni,(A,B) is
stabilizable(A,C;) is detectable and

I-A —

rank[ c, 0

} =n-+p. 3)

Remarkl. Notice that the last condition implies that the dimensiothefcontrolled variable cannot exceed
the dimension of either the state or the input, pe< min{n,m}. This condition will be used to guarantee
the existence of an offset-free steady-state.

A dynamicnonlinear time-invariant state feedback controller is¢albsigned and is to assume the follow-
ing structure:

o =a(x0,9)), (4a)

u=y(x0,s), (4b)

whereo € R! is the controller stateg™ is the controller successor state; R" x R' x RP — R! is the
controller state dynamics map apdRR" x R x RP — R™ s the controller output map.

Remarlk2. In this paper, botlw (-) andy(-) will be nonlinear.

INote that the results in this paper can easily be extendétktoase with mixed constraints on the state and input.



The plant dynamics (1a), together with the controller (djnfs a closed-loop system

{r=1(¢,sd), 5)
where the closed-loop system state is
X
£ ©
and the closed-loop dynamics are given by
. |Ax+By(x,0,9) E
f(&,s,d) = a(x.0,9) + 0 d. 7)

Let s(-) andd(-) denote an infinite setpoint sequence and an infinite dishedaequence, respectively.
Also, letp(k, &,s(-),d(-)) be the solution to (5) at timkewhen the augmented statefisat timek = 0, the
controller is defined by (4), the setpoint sequencg-isand the disturbance sequencé(s), i.e.

ok, &,8(),d()) = F(f(...(f(&,5(0),d(0)),8(1),d(1))...),8(k—1),d(k—1)). (8)

k times

By definition, (0, &,s(-),d(:)) = ¢.
We also define the following:

E(K) = (k,&,5(-),d(-)), (9a)
X(K) = [In 0} ok &,s(-),d(-)), (9b)
o(k):=[0 1] ekE,s().d()), (90)
u(k) == y(@(k,&,5(-),d(-)),s(Kk)), (9d)
2(k) == [C, 0] @(k.&,s(-),d(")). (%e)

Given a controller defined by (4), an infinite setpoint se@eet-) and an infinite disturbance sequence
d(-), the resulting closed-loop trajectories of the individuatiables are then denoted By-), x(-), o(+),
u(-) andz(-).

Assumption 2 (Setpoint). At each time instant, the current setpoint is known but ®itsgtpoint values
are unknown. The setpoint sequerste takes on values in a polytop# C RP containing the origin and
asymptotically reaches a steady-state valuesfle.c . for all k € N and there exists asc .7 such that
limg_oeS(k) =s.

In general, since the disturbance is persistent and unkitae/impossible to drive the controlled variable
to the asymptotic setpoist However, we consider the following restriction on the aibince:

Assumption 3 (Disturbance). At each time instant, current and future disturbances akeawin. The
disturbance sequenck-) takes on values in a polytogg C R" containing the origin and asymptotically
reaches an unknown steady-state value, dg) € 2 for all k € N and there exists d € 2 such that
limy_..d(k) =d.

Under the above assumptions we present a novel method fignifegsa dynamic, nonlinear, time-invariant
state feedback controller (4) that, for any allowable distimce and setpoint sequence (i.e. any infinite
disturbance and setpoint sequence that satisfy Assunspficaand 3), accomplishes the goal of driving
the controlled variable to any given allowable asymptoétpsint, while respecting the state and input
constraints, i.e.



limz(k)=s (10a)

and
xkye 2, uk ew (10b)

for all k € N.

2.1 Eliminating the Universal Quantifier from a Set of Affine Inequality Con-
straints

We present here the following well-known result [15, 8, 18, 20], which will be useful later on:
Proposition 1. Let the polyhedror®? be given by
2 :={veR' |Fv<g+Hwforallwe # }, (11)

where Fe R and H € R%S are matrices, g RY is a vector and# is a compact (i.e. closed and
bounded) subset @S, then

ﬂz{veRt

Fv<g+ minHW}, (12)
we¥/

where the minimization is performed row-wise, i.e. jfdénotes the i'th row of H, theminycy, Hw :=
[Minwey HiW - - mingey Hqw|T. Furthermore, if

Wo={weR®||Wlo<n}, (13)

then
Z={veR' |Fv<g-—nabgH)L}. (14)

2.2 Robust Stability of Discrete-time Systems with Perturhtions

Since we are interested in robust stability results, weerguhe following definitions and results for a
generic nonlinear, perturbed discrete-time system [29]:

It =F()+w, (15)

inwhichF : RY — R’ andF (0) = 0. Let®(k,,w(-)) denote the solution to (15) at tinkegiven the initial
state¢ and an infinite perturbation sequeneg).

Definition 1. The origin is a robustly asymptotically stable fixed poin{1) if the following two condi-
tions are satisfied:

1. (Robust stability For all € > 0, there exist & > 0 and au > 0 such that if the initial condition
{ € Bs and the perturbation sequeneg) satisfiesv(k) € B, for all k€ N, then®(k, {,w(-)) € B
forallke N;

2. (Robust convergengéor all initial conditions{ € Bs and perturbation sequences-) satisfying
w(k) € B, for all ke N and limc_... w(k) = 0, the solution of (15) satisfies lim. ®(k, {,w(-)) =0.

Definition 2. If w:= lim_..,w(k) is the limit point of the perturbation sequenag-), then a vecto

satisfying{ = F({) +w is a robustly asymptotically stable fixed point of (15) if thegin is a robustly
asymptotically stable fixed point of the systeyi = G(x) + w, in which x :={—{, w:=w—w and
G(x) ==F({+x)—F().



Note that Definition 1 is used in [29] when proving the follogitheorer?:

Theorem 1. [29, Th. 3] Let F: R — R’ be a Lipschitz continuous function in a neighborhood of ttgio
with F(0) = 0. If the origin is an exponentially stable fixed point of theparturbed systenj+ = F({),
then it is a robustly asymptotically stable fixed point of pleeturbed systerd™ = F({) +w.

Corollary 1. If all the eigenvalues of the matri®/ are strictly inside the unit disk, then the origin is a
robustly asymptotically stable fixed point of the perturh&tisystem? * = 2/ +w.

3 Linear Controller Design

3.1 The Augmented System

In order to address the problem we make use of the followingiaty system to define the controller state
dynamics:

% = Ax+Bu+ (d+x—X), (16a)
dt =d+x—%. (16b)

Remark3. The system (16) corresponds to using a dead-beat obsentbeftollowing system:
77 (A ][R 8],
d| —|o 1][d] "|o]™

in which it is clear thatl € R" is an integrated (step) disturbance acting on the stat®&™. The role ofd

is essential in removing steady-state offset in the presehan unknown persistent disturbance [25, 26]
and will be clarified later. As will be seen later, the dimemsi ofd andd need not be the same in order to
guarantee offset-free control. It is also important to point that the disturbanag does not integrate the
tracking error, i.e. the difference between the setpeard the controlled variabte

By combining the plant dynamics (1) and the auxiliary sys{é@), we obtain the following augmented
system:

§t = /& + But&d, (17a)
z2=CE, (17b)

in which

X A 0 O B E
&= [)‘(], o = [IJFA —I I], B = [B], &= [0
d [ 0 0

We also define the controller statec R', with | := 2n, to be the states of the auxiliary system (16), i.e.

, ¢€=[C, 0 0. (17c)

o= L)}] . (18)

2[29, Def. 2] contains a typographical error, hence the neagby the proof of [29, Th. 3] is inconsistent with [29, Def.. 2]
However, the proof of [29, Th. 3] is correct and consisterthulie definition of stability given in this paper. The autherould like
to thank Prof. James Rawlings for confirming this.



3.2 Target Calculation and Unconstrained Offset-free Conbller Design

When a non-zero persistent disturbance affects a systenfofathe current setpoirg is different from

the origin), the origin of the state and input needs to betesthifn order to cancel the effect of such a
disturbance on the controlled variable [2, 30]. To this ateach sample instant we use the estimate of the
future disturbance and compute the steady-state te&xgétsuch that one can drive the controlled variable
to the current setpoint. When the dimension of the input isktgLthe dimension of the controlled variable
(m= p) these targets are uniquely defined by:

I-A —B][x] [d* l—1 0

Lo" o)l -l] -l o deelie @)
Notice that this corresponds to finding the p@iri) such thaC,x = sandx= Ax+Bu+d*, i.e. the state
and input that cancel the effect of the disturbance. If gadf there are extra degrees of freedam>(p)

these targets are non-unique. However, one can addressaseh [30] by solving the following equality-
constrained quadratic program (i.e. least-squares prgbie whichR € R™™M s a positive definite matrix:

(% (£,9.0 (£,9) = ar(grgin%tf R, (208)

subject to

F o _OHQ[:) o Io}f *m s. (20b)

For a given augmented stafeand a given setpoird, one can think ofX* (¢,s),u* (&,s)) as the new
‘origin’ around which the system should be regulated. Sw\for (X* (£,s),u* (,s)) is trivial:

Lemma 1 (Target calculation). If Assumption 1 holds, the minimizer of the equality-caistd quadratic
program(20)is linear with respect to the augmented st&tand the setpoint s, and is given by

)?(E,S) _ Mz —M13 T3 Mg
L?(E’S)] a {nzs —Mo3 H23}5+[n24} S, (21a)

wherelz € R™" Moz € R™M M4 € R™P and M4 € R™P are the relevant block matrix components

of
-1

Mia Mz Mig Mg 0 0 —I+AT -Cf
=) T
Mo1 Moo Moz Moa - 0 R B 0 . (21b)
Ma1 Mz Maz M3 I-A -B 0 0
Mar Maz TMaz Mg G 0 0 0
Note that the square matrix i{21b)has m+ 2n+ p columns.
Proof. See Appendix A. O

We now consider what would happen if one were to choose a gatrix¥ such thatA+ BK is strictly
stable and let the control input in the augmented systen) i@ given by

u=u(&,s) +K(x—x*(&,s)). (22)

Before proceeding, we need the following result:



Lemma 2 (Stability). Suppose that Assumption 1 holds andsR™" is such that A+ BK is strictly
stable. If7 and % are given by(17c), ' € R™" is any constant matrix and

Ho=[K+T - 1], (23)
then
Ay =+ BH (24)
is strictly stable.
Proof. See Appendix B. O
By defining
IM:=MNy3—KMiz, .Z:=TM—KlM1a, (25)

and substituting (21a) into (22) it follows that

U= Mo3zx—MozX+ |-|23(j+ Moss+ K(X* M1ax+M13X— |_|13dA* |-|14S) (26a)
= (K+Mx—MR+Td+.2s (26b)
=HE&+Ls. (26¢)

After substituting (26) into (17a), one can write an expi@s$or the augmented system (17a) under the
linear controlu= ¢¢é + ¥sas

Et=dyé+Ed+ Fs, (27)
where
BZ
F = |BZ]| . (28)
0

Let ¢(k,&,s(-),d(-)) be the solution of the closed-loop system (27) at tkngiven the staté€ at time
k =0, the setpoint sequensg) and the disturbance sequertie).

As a consequence of the above results, we introduce theviatijsstanding assumption:
Assumption 4 (Stabilizing gain). The matrixk € R™" is chosen such th#+ BK is strictly stable, 7’
is given by (23) with™ given by (25),.«7» := &/ + % and.Z is given by (25).

The following result states that if the control is given by 7 & + .£s, then the value of the controlled
variable for (27) is guaranteed to converge to the asyngssetpoint, given any allowable infinite setpoint
and disturbance sequence:

Lemma 3 (Offset-free control). If Assumptions 1-4 hold, then the solution of the closeg-kysten{27)
satisfies

forall & ¢ R3".

Proof. See Appendix C. O



3.3 The Maximal Constraint-admissible Robustly Positively hvariant Set

We now consider the problem of computing the maximal coirgtadmissible robustly positively invariant
set in the space of the augmented sfate- (x,%X,d).
Let theconstraint-admissible sé& be defined as all augmented states for which the constrairtteglant

state and plant input are satisfied, for any choice of setga@in”, if the control is given byy= ¢ & + ¥s:
Z={EcR¥ |xe 2 and ¥ &+ Lsec % forallse 7} . (30)

Remark4. Note that, sinceZ” and% are polyhedra given by affine inequalitiésjs easily computed by
applying Proposition 1 to the above definition.

The maximal constraint-admissible robustly positively ineat setd,, for the closed-loop system (27) is
defined as all initial states & for which the evolution of the system remains3ror all allowable infinite
setpoint and disturbance sequences, i.e.

Ow ={& €= |Pk&,s(),d(-) e=foralls(-) € #Z, alld(-) € #y andallke N}.  (31)

Since (27) is linear and time-invariant aRds given by a finite number of affine inequality constraints,
is easily computed by solving a finite number of LPs [28].

Assumption 5 (Maximal invariant set). The setd,, as defined in (31) is non-empty, contains the origin
in its interior and is finitely determined (i.e7. can be described by a finite number of affine inequality
constraints).

Remarkb. Except for a few pathological cases, Assumption 5 is metjf is strictly stable, 2" is bounded,
(y,[In 0]) is observable an@ and. are sufficiently small [28]; however, observability @ , I 0])
and boundedness o are not guaranteed under the assumptions in this paper.it®dsig, in all test
cases we have found that Assumption 5 holds. If Assumption\Bolated, then it is easy to compute
an approximation t&s in finite time, e.g. by intersecting or .2~ with a sufficiently large bounded
polyhedron. The reader is referred to [8, 28] for alterraativethods of computing an approximatiorztg

in finite time if O, is not finitely determined.

The following result states that, provided the augmentatkss ind, at timek = 0, then the evolution of
the augmented system under the linear contrel. 7 € + Z’sis such that offset-free control is guaranteed
and the state and input constraints are satisfied for alvalite setpoint and disturbance sequences:

Theorem 2 (Linear controller). Suppose that Assumptions 1-5 hold. The solution of thed:losp
system(27) satisfieq29) and

[ln O] y(k&,s(-),d(-) € 2 and o P(k &, s(-),d(-) +Zs(k) € % (32)

for all € € 0., and all ke N. Furthermore, if§ := (I — o) Y(&d + .75 is in the interior 0f 0, thené
is the robustly asymptotically stable fixed point(8%).

Proof. See Appendix D. O

Because of the assumptions in Theorem 2, it is importantti@ctly initialize the controller state(0) :=

(X(0),d(0)) such that (0) := (x(0),0(0)) € 0. A sensible way of choosing the initial controller state is
to compute the minimizer of the following quadratic progragiven the initial plant statg(0):

(%(0),d(0)) := argmin{ (x—X)T(x—R) +d"d | £ € O andx=x(0) } . (33)
(d)



We can now also defin¥y, the set of plant states for which there exists a controli@essuch that the
augmented state is if1,, as

Xo:={x€R" | 3o € R such tha€ € 0., } . (34)

Clearly, (33) is feasible if and only K(0) € Xo.

Remark6. For analysis purposes, one might want to compXgeexplicitly. Note that since/, is a
polyhedron, the se{ is easily computed as the projection [31, 32)af onto the plant state spag i.e.

Xo = Projy (O) . (35)

4 Receding Horizon Controller Design

The setXy is the set of initial plant states for which the controllediable will be ultimately driven to
the asymptotic setpoirstby the linear control = 7§ + .Z’s. This section presents an efficient approach
for computing a nonlinear controller, which enlarges theo$énitial plant states for which the controlled
variable can ultimately be driven to the asymptotic setpoirhis will be achieved by using ideas from
model predictive control of constrained systems [33, 6, 7].

4.1 Definition and Properties of the Receding Horizon Contréer

We follow the same approach as in [14, 17, 16, 19, 20] of “pabifizing” the plant by letting the linear
control in (26) be modified with a perturbation term as folélow

u=%¢&+.2s+v, (36)

wherev € RMis the perturbation term. The solution to the finite horizptimal control problem (FHOCP),
defined below, is a finite sequence of input perturbationisgharantees robust constraint satisfaction over
the horizon and optimizes some cost function. Under therobimt (36), the augmented state dynamics
in (17a) become

EY =y &+ B+ Ed+ Fs. (37)

Before proceeding, let the horizon lengthbe a positive integer and the block vectarg R™N, s €
RPN-1) d e R™N be defined as

Vo S1 do
V1 ) dy
V= o], si= |, d:i= . . (38)
VN-1 SN-1 an-1

Remark7. In the sequel, note thatand all related terms are present onliif> 1.

Let

k-1 k-2
&= Xk &, v,s,5d) =K E+ /1Tt Eogf;g(@vk,l,i +Ed1-i) + Eowggf&,l,i (39)
i= i=

denote the solution to (37) for dlle {1,...,N}, given the current augmented stdtea finite sequence
of control perturbations, the current setpoirgy :=s, a finite sequence of future setpoistand a finite
sequence of disturbancdsThe corresponding predicted plant state and input ardasigndefined as

Xk:: [In O]X(k7favas7svd)7 Vke{l’7N}7 (40a)
ug = x(k &,v,s,8d)+ L5+ Wk, vke {0,...,N—1}. (40b)

10



Given the above definitions, we now define the set of admisailplut perturbationgy (€, s) as the set of
input perturbations of lengtN such that for all allowable future setpoint sequences dftlehl — 1 and
disturbance sequences of lengiththe input constraint® are satisfied over the horizén=0,...,N—1,

the state constraint®” are satisfied over the horizén=1,...,N — 1 and the augmented state at the end
of the horizon is in¥,, (hence the predicted plant state at the end of the horizdeasra.2), i.e.

IN(E,S) = {v e R™N

o=¢ s0=sxxe 2, k=1...,N-1 &\ € O, 41)
we, k=0,...N—1forallse N tandallde 2N [

Remark8. Note that¥\(&,s) is defined by arinfinite number of constraints. Obtaining an equivalent
expression fory (€, s) in terms of &finite number of affine inequality constraints is straightforward a
method that allows one to do this efficiently is describedenti®n 4.2.

In order to compute the receding horizon controller, we rteatkfine an associated finite horizon optimal
control problem (FHOCP). We choose to defihg &, s), the FHOCP to be solved for a givénands, as

]P)N(Eas) . Vlilk(EaS) = VEI-/I,]\ji(rg.S)VN(E’SV)’ (42)

where the cost to be minimized is defined as
VN(E,S,V) = (XN 7)2*(678))TP()’ZN 7)?*(675))

N-1
+ ;(zk—?(é,s>>TQ<ik—%*(f7s>>+(ﬁk—l?(é,s»TR(ak—mas)% (43)
k=

with the matrice® € R™", Re R™MandP € R™" positive definite, and the vectaxg€ R" anduy € R™
defined as

Ko =X (44a)
Sir1 = A+ Bl + (x— X+ d) vke {0,...,N—-1}, (44b)
b= 0°(£,9) + K (% — X (£,9)) + W vke {0,...,.N—1}. (44c)

The minimizer ofPn (€, ) is similarly defined:

V(E,S) = (V(E,9),. Vi1 (€,9)) = argminViu(€,sv). (45)
VE'VN(E,S)

We assume here that the minimizer of (42) exists; this assamjs justified in Section 4.2.

Remark9. The cost functiorVy(:) can be regarded as the “nominal cost” in which the setpoidttha
plant disturbance remain constant over the horiXom\so note from (44b) that the disturbance affecting

the plant, i.eEd, is assumed to be equal to its last deadbeat estifrat&+d).

As is standard in receding horizon control [33, 6, 7], forgegistate and a given setpoirg we only keep
the first element(&,s) of the solution to the FHOCP. Using this receding horizomgigle, we define
our controller in (4) by substituting

u= &+ Ls+Vi(&,9) (46)

into the equation for the augmented system (17a) and comgpanivith the expression for the closed-loop
dynamics (7). In other words, the controller state dynamiap in (4a) is given by

ae9:= 1A T e+ [P e+ [BY s+ 5] wies (47a)
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and the controller output map in (4b) is

y(&,s) =&+ Ls+vp(€,s). (47b)

Itis important to be able to determine all the plant statesvftich one can guarantee that problBm(&, s)
has a solution. The set of plant sta¥@$for which one can initialize the controller state such tiet $et
of admissible input perturbation& (£, s) is non-empty for alk € . (and hencéy (&, s) has a solution),
is given by

XN = {xe 2 |30 € R*"such that/(¢,s) # D forallse .7 }. (48)

As will be shown belowXy, is the set of plant states ifi” for which the controlled variable will ultimately
be driven to the setpoistby the controller (4), it andy are given by (47).

We can now give our first main result;

Theorem 3 (Domain of RHC law). Suppose that Assumptions 1-5 hold.dfis<defined in(34) and each
XY, ie{1,...,N}, is defined as itf48) with N = i, then all the sets i{ Xy, Xy, ..., X{} contain the origin
in their interior and satisfy

Xo CX{ C - X1 SXN- (49)

Proof. See Appendix E. O

Theorem 3 is very important because it shows that, underttnesassumptions, an increase in the horizon
length does not decrease the size of the set of initial plates for which the controlled variable can be
driven to the setpoint.

Assumption 6. The matrice®) andR are chosen to be positive definite, the maRis the positive definite
solution of the following discrete algebraic Riccati eqoat

P=Q+ATPA—ATPB(R+B'PB)!BTPA, (50a)
and the matrixX is the corresponding gain:
K = —(R+B"PB) 1B"PA. (50b)
¢ is given by (23) withl™ given by (25),7» := o + B¢ and.Z is given by (25).
Remarkl0. Itis clear that the matriX defined in (50b) is such th&t+ BK is strictly stable.
Before giving our second main result, we need the following:

Lemma 4 (FHOCP equivalence).Suppose that Assumptions 1 and 6 hold andNétJbe defined as:

N-1
J = TW . 51
N(V) k;)\/k Kk (51)

If the (positive definite) matrix V¢ R™ ™M is given by

W :=R+B'PB, (52)
then the cost function\(+) satisfies
W(E.5v) = (V) + (x=X'(£.9))TP(x—X'(£.9)) (53)
and
v*(&,s) := argminW(&,s,v) = argmindy(v). (54)
vei(€,9) VeI (&,s)

12



Proof. See Appendix F. O

Lemma 5 (Robust feasibility and perturbation sequence) Suppose that Assumptions 1-3 and 5-6 hold.
If the controller(4) is defined by(47) and (& (0),s(0)) is non-empty, theny (& (K),s(K)) is non-empty
for allk € N and

lim v5(& (k). s(k)) = 0. (55)

Proof. See Appendix G. O

We can now state our second main result:

Theorem 4 (Offset-free control, robust constraint satisfation and stability of RHC law). Suppose
that Assumptions 1-3 and 5-6 hold and that the contrddgris defined by(47). One can choose the
initial controller statec(0) such thatPy(&(0),s(0)) has a solution and the evolution of the closed-loop
system(5) satisfies(10) for all k € N if and only if the initial plant state (0) € Xy. Furthermore, if
&=l —@(%f)_l(éa’d_nL Z9) isin the interior of 0., thené is the robustly asymptotically stable fixed point
of (5).

Proof. See Appendix H. O

As in Section 3.3, we need to initialize the controller staigectly such thaPy(£(0),s(0)) has a solution.
A sensible method for simultaneously obtaining an optimailal controller state and input perturbation
sequence is to solve the following optimization problenvegithe initial plant stat&(0) and the initial
setpoints(0):

((0),d(0),v*(£(0),5(0))) :=
argmin{Ju(v) +-A (&) (R—x) +d"d) [ve %(&.9). x=x(0). s=5(0) } . (56)
()”(,&,v)

whereA is a strictly positive scalar.

4.2 Efficient Implementation of the Receding Horizon Controler

Since 2", # and 0, are polyhedral sets with non-empty interiors, they arergie a finite number of
affine inequality constraints. As a consequence, it is eag¥ptain an equivalent expression for the set of
admissible input perturbatiorig (¢, s) as

H(E, ) = {v e R™N \ Fv<b+GYd+Gs+HEE +Hsforallse #Ntand alld ¢ 2N } . 57

where the matricef € R>*™N, G4 € RN GS ¢ RI*PN-1) HE ¢ RA*3N HS ¢ RI*P and the vector
b € RY depend on the augmented system dynamics (37) and are givgpandix I.

By using the results of Proposition 1 one can compute an alantexpression fo¥y (&, s) in terms of a
finite number of affine inequality constraints:

“//N(E,s):{ve]RmN ‘Fv§c+H‘5£+HSs}, (58)
where
c:=b+ min G+ min Gs. (59)
degN se/N-1

Remarkll SinceZ and.# (and hencezN and.#N-1) are polyhedra and can therefore be described by
a finite number of affine inequality constraintszan be computed efficiently by solving_Ps.
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Remarkl2. If 2 and.s are given only by upper and lower bounds on the componerdsofis, respec-
tively, then it is not necessary to solve LPs in order to commpuchecking the signs of the components of
GY andGS is sufficient. For example, if the disturbance and the setparie assumed to take on values in
the hypercubes

2 ={deR" |[d|o<B}, Si={seRP[[slo<n},

then it follows from Proposition 1 that
c=b—pBabgG")Ln —nabgG%)Lpn_1).

Remark13. From Appendix | it is clear that the number of constraigis (58) is not dependent on the
description for” and 2, but only dependent oN and the number of constraints that desctibe 7 and
OUw. Note also that| increases only linearly with the horizon lengdth

Given all of the above, it is now clear that the minimizeP@(¢ , s) exists if and only if/y(&,s) # 0. The
minimizer of Py (&, S) is the solution to the following finite-dimensional, sthjctonvex quadratic program
(QP):
v*(f,s):argmin{JN(v) ‘Fv§c+HEE+HSs}. (60)
\%

Clearly, (56) is also a finite-dimensional, strictly conv@R.

There are essentially two ways in which one can compg/&, s) (and hence the control input) for a given
¢ ands:

e As is standard in conventional model predictive control, [837], given the current value fdrand
s, one can computg; (&, s) on-line by solving the QP defined in (60) using standard Qess|[34].

e The QP in (60) is a so-callegarametricQP, since the constraints (and hence the solution) of the
QP in (60) are dependent on tharameterst ands. This observation allows one to compute the
explicit expression fowj(-) off-line using recent results presented in [35]. The resut[35] can
be used to show thaf(-) is a piecewise affine function ¢€,s) and is defined over a polyhedral
partition, i.e. the domain of(-) is the union of a finite number of polyhedra awjl-) is affine in
each polyhedron. Computing the valuevjfé,s) on-line amounts to looking up the polyhedron in
which (&,s) is contained and substitutin{g, s) into the associated affine function.

Remark14. For analysis purposes, one might want to compute an exphgitession foixy. Since one
can obtain a polyhedral expression f4((&,s), it is possible to compute a polyhedral expression{pr
by using standard projection algorithms [32, 36], i.e.

XN = %mPron{(E,s) e R x RP ‘ Fv < c+H¢E +HSsfor aIISEY} (61a)

= 2" NProjy {(E,s) e R¥ x RP

Fvgc+Hff+minHSs}, (61b)
s

where the last step clearly follows from Proposition 1.

5 Illlustrative example

As an example, we consider a jacketed continuous stirrdd reaxctor (CSTR) studied by Henson and
Seborg [37] in which an irreversible liquid-phase reactimturs. A detailed nonlinear model has two
states (reactant concentration and reactor temperatme)jnput (cooling liquid temperature) and two
disturbances (feed temperature and feed reactant coatienjt This CSTR shows three steady states,
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State 2
o

State 1

Figure 1: Domain of attractiorX) for different fixed horizons

two of which are open-loop unstable, and for quality andtgafeasons the middle conversion open-loop
unstable steady-state is chosen as a nominal operatingraetgsing a sampling time @ = 0.1 min and
introducing deviation variables (from the corresponditeady state) a linearized model is as follows:

xt *_ 0.7776 —0.0045 [x* fo.ooo4u —0.0002 00893 [d!
x|~ |26.6185 18555 | |x? 0.2907 0.1390 12267| |d?

2=[0 [,

in which x! andx? represent the reactant concentration and the reactor tatape, respectivelyy repre-
sents the coolant temperatudé;andd? represent the feed temperature and the feed reactant ¢oatiem
respectively. Notice from the structure ©f that the controlled variable is the reactor temperature, fo
which offset-free control to the setpoisits required. Also notice that the system matfias one stable
and one unstable eigenvalue. The following constraintherptant states and input and on the admissible
disturbances and setpoint are considered:

~05] _[x!] _[o5 —27 _[d] _[2
< < —15<u< < < —-1<s<1.

We present in Figure 1 the domain of attraction (k&) of four receding horizon controllers using different

fixed horizons (specified in the figure) and the same penaltyicea: Q = I, andR = 0.2. Notice thatXy

is the domain of attraction of the linear controller. As exteel from Theorem 3 we have that an increase
in the fixed horizon length results in a larger feasible regiad also that the domain of attraction of the

linear controller is included in that of the receding horizmntrollers.

We present in Figure 2 the domain of attraction of four resgdiorizon controllers using the same fixed
horizon,N = 10, and different stabilizing gain matrices. These gainseveemputed as the optimal LQR

15
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Figure 2: Domain of attraction,) for different stabilizing gain

Table 1: Disturbances and setpoint

t (min) | [0,4) 4,8) 8,12) [12,16)  [16,24)  [20,24]
d 201" [2-04" [-2-01" [-201" [204" [-204"
s 0 0 1 1 -1 -1

gain withQ = |, and differentR (specified in the figure) as penalty matrices. It is intengsto notice that
when the input penalty matrik used to compute the stabilizing gain is reduced, i.e. a mggeesasive
controller is chosen, the corresponding domain of atwad larger. However, it is important to remark
that this result is not general and depends on the systermptaes and on the fixed horizon. To clarify this
point, we present in Figure 3 the domain of attraction of theesponding receding horizon controllers
using a fixed horizon ofl = 2.

We present in Figure 4 the closed-loop simulation resutistfolled variable and input) obtained with four
receding horizon controllers using the same fixed horidbg; 10, different penalty matrice$)= I, for
all controllers andR specified in the figure), and the scalar used in (56) Avas1000.

The initial plant state ig(0) = [—0.258 EﬂT, the disturbances and the setpoint vary during the sinmnati
time as reported in Table 1. For the receding horizon cdetrdlased orQ = I, andR = 0.2 the plant
state sequence(-), is also reported in Figure 1. Notice that the state sequeficénitially starts at the
boundary of the domain of attractio), and enters the domain of attraction of the linear controlgr

in finite time. As expected from Theorem 4 the proposed cdiatmasymptotically drive the controlled
variable to the asymptotic setpoint despite the presenpersfstent unmeasured disturbances. Also, when
the setpoint is changed the controllers drive the contloigriable to the new setpoint. Moreover, it is
interesting to notice that the choice of penalty matricesahdirect impact on the closed-loop performance.
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Figure 3: Domain of attractiorXy) for different stabilizing gain

That is, when a lower input penal®is chosen, the disturbance is rejected (and the setpoietihed)
more quickly and a larger control input is used.

We finally present in Figure 5 a comparison of the proposeédiag horizon controller with a “standard”
(i.e. non offset-free) robust receding horizon controll&s an example we chose the approach in [17],
which is similar to the one proposed in this paper, in the aénat a pre-stabilizing gain matrix is used and
the plant state prediction at the end of the horizon in retgtiiito be in the maximal disturbance invariant set
Uw. Both controllers are based on the same stabilizing gainixriat which is the optimal LQR gain with
Q=1 andR=0.2. The fixed horizon used for both controllerdNs= 10 and the perturbation penalty for
the “standard” controller is chosen\as= R+ BT PBwith P the solution to the corresponding steady-state
Riccati equation. The initial plant statex) = [—0.258 EiT and the disturbance varies as specified in
Table 1. In this comparison the setpoint is the origin sifeerhethod in [17] does not apply to setpoints
different from the origin (an extension of [17] to the setgdracking problem has been proposed in [16];
however, the controller proposed in [16] still does not gméee offset-free control). As expected, the goal
of offset-free control is achieved by the proposed methodreds the controller of [17] leaves a significant
and undesired steady-state offset.

6 Conclusions

This paper has shown how one can design a nonlinear timeamtadynamic state feedback controller
that guarantees robust constraint satisfaction, robasilisy and offset-free control in the presence of
time-varying setpoints and persistent, non-stationafgijitave disturbances on the state. The design of the
controller was split into two parts:
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Figure 4: Closed-loop comparison of different receding4wr controllers: controlled variable (left) and
input (right)
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Figure 5: Closed-loop comparison of offset-free and stethdabust receding horizon controllers: con-
trolled variable (left) and input (right).

e The design of a dynamic, linear, time-invariant controllér deadbeat observer is used to estimate

the disturbance, the new steady state is given as a lineatidarof the current plant and observer
states and of the current setpoint, and the controller admegulate the plant state and input to the
new target steady state. In order to estimate the regiortrafctibn of the linear controller, it was
proposed that the maximal constraint-admissible robyst$jtively invariant set,, associated with
the linear controller be computed.

The design of a dynamic, nonlinear, time-invariant recgdinrizon controller In order to increase
the region of attraction of the linear controller, a robestading horizon controller, which computes
perturbations to the linear control law, was proposed. Huoeding horizon controller includes the
state and input constraints explicitly in its computatiasswell as the effect of the unknown per-
sistent disturbance, thereby guaranteeing robust camssatisfaction. It was proposed that the set
U be included as a terminal constraint in the prediction fwriand it was shown that the specific
formulation of the proposed receding horizon controllepiaves on the linear controller in terms of
the domain of attraction.

The robust receding horizon controller presented in thjepaan be implemented in an efficient manner
and is computationally tractable. The incorporation oféffect of the disturbance and of future unknown
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setpoints has very little effect on the computational caxipy since the number of decision variables and
constraints increases only linearly with an increase irhtivézon length.

The paper also demonstrated the effectiveness of usings$iis in this paper in designing a controller for
guaranteeing offset-free control of a continuous stiregtktreactor with respect to existing non offset-free
algorithms. The simulation results were shown to be in agesd with the theory.

We conclude this paper with some recommendations on hovethdts in this paper may be extended:

e The choice of auxiliary system has an impact on the regiottigction and closed-loop performance
of the system. A more detailed investigation into this tamald be undertaken.

e The constraints on the state and input were not includeddnatget calculation in Section 3.2. If
the constraints are included in the target calculatiom the optimal steady-state target is no longer
a linear function of the augmented state and setpoint. [@/ehis complicates the receding horizon
controller design. However, the inclusion of constraimghe target calculation will enlarge the
domain of attraction and increase the size of the distuamd setpoints that can be handled by
the controller. An extension of this paper, which includesstraints in the target calculation, could
combine the results in [26] with those in [16].

e Clearly, the rank condition in (3) is not always satisfiedhl assumption is violated, then one might
have to relax the requirement that offset-free control bdesed on all controlled variables. One
possible approach to resolving this problem is to priceitize controlled variables when performing
the target calculation. The framework proposed in [38] maysbeful in this context.

e Rather than optimizing over perturbations to a pre-stahiyj control law, one could consider opti-
mizing over arbitrary, nonlinear feedback policies [15, 87, 22]. This will enlarge the region of
attraction of the receding horizon controller at the exparfsan increase in computational complex-

ity.

e The important problem of guaranteeing robust stabilityfgrenance, constraint satisfaction and
offset-free control when output feedback (rather thanestaedback) is used, remains to be ad-
dressed.
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Appendix

A Proof of Lemma 1

The statement follows immediately from the Lagrangian/K&dnditions for (20) [34, Sect. 16.1]. It is
important to verify that the matrix to be inverted in (21bhin-singular.

In order to see why this is the case, Eebe a matrix of dimensioin+ m) x (m— p) (if the system is
square, i.em= p, the proof of hon-singularity is trivial) whose columns areorthonormal basis for the
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! (_:A _OB} . Consider any vectore R™ P with v+ 0, and let
Z

7= N —7v.

u*

null space of{

Notice that since the columns @fare independent, 0.

We now show by contradiction that # 0. Suppose that* = 0. We can write

[T [5] e

From Assumption 1 we have theA C,) is detectable. Hence, from the Hautus Lemma [39, Sect. 7.1] i
follows that the matri><{I CZA} has full column rank. But this implies that = 0 which is in contradiction

with the fact thatz # 0. Hence, it must ba* # 0.

Therefore, since = Zv, we can write:

* T * _
oz ) Qa5 [0 Y[] - o

where the last inequality comes from the fact tRas positive definite and that* # 0. This implies that
the reduced Hessian defined as

00
T el
P
is positive definite, and we can apply the results in [34, Leni®.1] to deduce that
0 0 —I+A" —C]
0 R B 0
I-A -B 0 0
C; 0 0 0

is non-singular and the target calculation (20) has a unigimémizer.

B Proof of Lemma 2

From the definitions, it follows that

A+BK+Bl —Br Br
Ay = +BH = |In+A+BK+BI —I,—Br I,+Br| . (62)
In —In In
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The eigenvalues off + B.7" are the roots ofo/ + B.%# — Als,| = 0. Note that

A+BK+BIN—Al, —BI BIr
|\ + BAH —Mgn| = | In+A+BK+BI —In—Bl —Al, I, +Bl
In *In In*/\ln
A+BK+BIr—-Al, —Br BIr
= Alp —Aly Alp | (subtract rows 1 and 3 from 2)
In 7II"I In*)\ln
A+BK—-Al, —-BI Bl
= 0 —Aln Alp | (add column 2 to column 1)
0 —In  Ih=Aly
A+BK—Al, O Br
= 0 0 Alp | (add column 3 to column 2)
0 Al Ia=Alg
A+BK—Al, O Br
=(-1)"- 0 —Aln  Ih—Aln| (exchange rows 2 and 3)
0 0 Aln

=(=1)"- |A+BK—=Alp|-|[Aly| - |Aln| (determinant of block triangular matrix)
= (=" |A+BK—=Alp[-A™- A"
= (=)™ A2 A+ BK—Aly|.

This implies that 2 of the eigenvalues o/ + %7 are at the origin and the rest are equal to the eigenvalues
of A+ BK. Hence, ifA+ BK has all its eigenvalues strictly inside the unit disk, thiea ¢igenvalues of
o + B are strictly inside the unit disk.

C Proof of Lemma 3

Since link_.. (k) = §and lim_.. d(k) = d we have from (26)—(27) and from the results of Lemma 2 that
£ 1= lim (K, &.8(),d() = p & +Ed+ FS5= o o+ Bl + &4, (63)

in whichu, = 7 ¢, +.Zs. Leté, be partitioned as follows:

in which each block is a column vector of lengthWe can rewrite (63) explicitly as follows:

Xeo = AXeo + Blho + Ed (64a)
Ko = AXeo + Bllo + (Xeo — Koo + Uo) (64b)

From (64c) we immediately obtain that = X., which, combined with (64b), leads to
Xoo = A¥eo & Blo + (Xoo — Koo + Cho ) . (65)

Let (X, U ) denote the solution to the target calculation problem (20}He augmented staég, and the
setpoints. From (20b) we can write:

Koo = Aeo + Blloo + (Xoo — Reo + o), (66)
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which, subtracted from (65), leads to:
Xoo — Xeo = A(Xeo — Xeo) + B(Ueo — Ueo) = (A+ BK) (Xeo — Xoo) (67)
where the last step comes from (22). It is important to ndtie¢ (67) and Assumption 4 implies that

Xoo = Xeo - (68)

In order to see this, note that (67) can be rewritter{las- A — BK)(X» — X») = 0, which is certainly
satisfied if either (68) holds or ¥, — X € null(I,— A—BK). Itis also clear that (68) is the unique solution
if (In—A—BK) is full rank. Suppose thatl, — A— BK) is not full rank and letx* € R" be such that
x* # 0 and(l, — A— BK)x* = 0. We would have* = (A+ BK)x*, that isx* is an eigenvector ofA+ BK)
associated with the eigenvalaé = 1, which is in contradiction with Assumption 4 because ajbeivalues
of (A+ BK) are strictly inside the unit circle. Henc, — A— BK) is full rank and (68) holds. Finally,
from (68) and from (20b) we obtain:

S=CXeo = CoXeo = C'bco
= lim C(k.E.5(),d()).

D Proof of Theorem 2

Robust constraint satisfaction follows immediately frdma fact thatv,, is robustly positively invariant for
the closed-loop system (27) and the fact thatis constraint-admissible.

Note now that, since7, is strictly stable(l — o7, )~ exists and hencéis well-defined and unique. Note
also from the proof of Lemma 3 thdt= &w := limy_ Y(k,&,S(-),d(-)). Furthermore, i€ € int(0x),
then there exists a non-empty ball, centered ardunghhich is contained i0..

Robust asymptotic stability follows from Corollary 1 by defig

(=8-& w=&d—d) +F(s—9J.

Hence, we can write the closed-loop system dynamics in tefthe “shifted” variables ag* = o7, +w.
The proof is completed by noting that lim. w(k) = 0.

E Proof of Theorem 3

Though a result, similar to the one stated here, appears veeb&nown [17, Sect. 4.2], we have been
unable to find a detailed proof in the literature. Classioaust “open-loop” receding horizon control [7,
Sect. 4.5] is well-known to exhibit “infeasibility” probtes if the plant is open-loop unstable and no pre-
stabilizing policy is used in the predictions [22]. Howeers a remarkable fact that one can remove this
problem by optimizing over a sequence of perturbations taeespabilizing control law. To show that this
is indeed still true for the control algorithm proposed irsthaper, we present a detailed proof.

It follows trivially from Assumption 5 thag contains the origin in its interior. The rest of the proofyis b
induction.

Let the plant state € X, wherei € {1,...,N — 1}, the controller stater be such that/{(¢,s) is non-
empty andv; := (vo,...,vi—1) € ¥%(&,s) be an admissible perturbation sequence of lengtilso let
S-1:=(S1,...,5-1) € 1 andd; ;= (do,...,di_1) € ' be a setpoint and a disturbance admissible
sequences of lengih- 1 andi, respectively.
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From the definition of%(&,s), it follows thatx (i,&,vi,s,5_1,d) € O foralls_; € ' landalld; € Z'.
Recall that?,, is disturbance invariant and constraint-admissible ferdlosed-loop system (27), hengg

is disturbance invariant and constraint-admissible fetey (37) under the infinite perturbation sequence
{v(K) }r_o:=10,0,...}.

It follows that if x(i,&,vj,s,S5-1,di) € O for all 5_1 € -1 and alld; € 2', then the solutiony (i +
1,&,(vi,0),s,5,di,1) € O foralls € .7 and alld; ;1 € 2'+1.

This implies that ifv; € #(¢&,s), then(vi,0) € #1(&,s). Hence, if#(¢&,s) is non-empty, thert{;1(&,s)

is non-empty. It follows from the definition of that if x € X, thenx € X, ;, hencexX C X", ,.

Using similar arguments as above, the result is completatbbiging thatXy C Xy'.

F Proof of Lemma 4

A similar result, for robust receding horizon controllehatt do not provide offset-free control, is well-
known [17, Rem. 3]. However, since different assumptiores raade in this paper, a detailed proof is
included. As will be seen, the proof is slightly involved.

From (20b) we can write

?(575) = A)?(E,S) +BJ*(E7S) + (X_)2+ )7
which, subtracted from (44b), leads to:

)h(‘k-‘rl*)?(évs):A()zki)z*(é7s))+8(ﬁkia*(fas))7 Vk€{0717aN71} (69)
Let
wi=%—X(&,s), vk e {0,...,N},
ok =0—U*(&,s), vke{0,...,N—1}.

Notice that it immediately follows from (44c) thak = Kwg + vk. Hence, (69) can be rewritten as
Wicr1 = AW + Bpx = (A+ BK)wi + Bw = AWy + B\,

whereAx := A+ BK.
We will now proceed to show that (a similar relation for theeafN = « is given in [17, Rem. 3]):

N-1 N-1
Wn(&,5,V) = W Pwy + ;WEQM+pJRpk:WEva0+ ;VI(RJrBTPB)Vk:WSPWo+JN(V).
e &

As a first step, note that

N—-1
W(&,5V) = wiPwy + %wIQw+(Kwk+vk>TR(Kwk+vk>
k=

= (AkWN_1+Bw_1)"TP(Axwn_1 +Bwy_1)

+ W1 QW1+ (KW 1 +Vi-1) TR(KW_1 +VN_1)
N-2

+ 5w Qe+ (Kwi+ Vi) TR(K W+ Vi)
o

—w_1(Q+KTRK+ALPA Wy -1+ Vi _1(R+BTPB w1

N-2
+ 201 (KTR+ALPBIVN -1+ 5 W Quic+ (Kwic+ Vi) TR(KWic+ Vi)
k=0
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From Assumption 6P is the solution of the Riccati equation, hence we can writie(aimple algebraic
manipulations) that
P=Q+KTRK+ALPA.

Moreover, notice that
KTR+A{PB= —ATPB(R+B'PB) 'R+ (A—B(R+B'PB)!B"PA)TPB
= —ATPB(R+B'PB) 'R+ ATPB—ATPB(R+B"PB)B"PB
=A"PB[Im— (R+B'PB)}(R+B'PB)]
=0.

Thus, we can write:

N-2
WN(E,8V) =V 1(R+BTPB)VN-1+W_1PWh-1+ 5 Wi Qi+ (Kwk+ Vi) TR(KWk + Vi) -
o

In a similar way we can show that

N-2
W PWN_1+ Z) Wi QW+ (Kwi 4 Vi) TR(KW + Vi) = Viy_o(R+BTPB)WN_2 +W{_oPWy_2+
k=

N-3
> Wi Quik+ (Kw+ i) TR(KWi + Vi)
k=0

obtaining that

W(E,5v) =V 1(R+BTPB)w_1+ Vv »(R+BTPB)wN_2+W, ,Pwy_2
N-3
+ XOWIQ\M( + (KWk+Vk)TR(KWk+Vk) .
k=

By repeating these calculations to replace all terms intine we finally obtain
N-1

W (&,sV) = zovg(m BT PB) Vi + W Pwo = I (V) +Wg Pw.
k=

The fact that (54) holds, trivially comes from the obsemwatthatVy(&,s,v) andJy(v) differ from each
other by a term, independent of the decision variables. (x —X*(&,5))TP(x—X*(&,9)).

G Proof of Lemma5

The proof for the first part is similar to the proof of [17, Le#). However, since different assumptions are
made in this paper, a detailed proof is included.

Assumeq (€ ,s) is non-empty and let* (&, s) := (Vg(&,9),...,Vi_1(£,9)) be the associated minimizer of
problemPy(&,s). Consider also the candidate perturbation sequence fautpmented staté™ and the
setpoints™ at the next time instant, i.e.

V(&,s) = (vi(£,s),...,WN_1(£,9),0) .

Using similar arguments as in the proof of Theorem 3, giverstt of possible augmented stat¢§, s, 7)
at the next time instant, it follows that & € f(&,s, 2), then¥(&,s) is an admissible input perturbation
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sequence for ab™ € .7, i.e. ¥(,s) € ¥\ (f(€,s,d),s") for all s" € .7 and alld € 2. This proves that
if n(£(0),s(0)) is non-empty, ther¥y (€ (k),s(k)) is non-empty for alk € {1,2,...} and all allowable
setpoint and disturbance sequences.

Note that the second part of the proof, except for the lastifess, is similar to the proof of [17, Thm. 8].
Once again, since different assumptions are made in thisrpajletailed proof is included.

If we let J§,(€,s) := In(V*(&,9)), then itis clear that
R(E,9) =I(V'(£,9) = W(U(E,9) = I(V(E,s")) =R (ET,sT)

forall &t € f(&,52) and allst € .. This implies that, for all allowable setpoint and disturbe se-
quences, the sequenéd (& (k),s(k))}r_, is a non-negative, non-increasing sequence. Hence, the se-
guence converges to some non-negative value, which impiéts

lim I (& (k). s(k) = In(§ (k+1),s(k+1)) = 0.
However, we can write (recalling the is positive definite)

0 < V(& (k), (k) TW 5 (£ (K), (k) = % (€ (k). s(k)) = In(7(& (k). 5(K)))

which implies that

lim v (€ (K), (k) TWB(€ (K), S(K)) = 0.

k—co

SinceW is positive definite, it follows that

lim v (& (K), 5(K)) = 0.

k— o0

H Proof of Theorem 4

Sufficiency. Suppose thax(0) € Xy, then it immediately follows from (48) that for any initiaépoint
s(0) € . one can choose a controller staté0) such that/ (& (0),s(0)) # 0 and hencéy(£(0),s(0))
has a solution. This implies from Lemma 5 we have tfiat (k)) = 0 for allk € N and also that

Veo 1= lim v(k) := lim v5(& (), (k) = 0. (70)

The fact that (10a) holds can now be shown exactly as in thef pfd_emma 3, since from (37) and (70)
it follows that
lim (k. &,5(),d(-)) = g &+ Beo + &d+.75
= Ay b+ EAd+ TS
= A &+ BUe+ED
= 6007

inwhich U, = J# & + LS4 Voo = H & + .£S.
The fact that (10b) holds follows trivially from Lemma 5 arrtdefinition of 7y (-).

NecessityThis is obvious becausex{0) ¢ Xy, then we either have tha{0) ¢ 2" or that there exists an
s(0) € .7 such that for alo(0) € R?", #(&(0),s(0)) = 0 and hence the control input is undefined at time
0.
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Finally, robust asymptotic stability can be shown in a samfashion as in the proof of Theorem 2. This is
because it is easy to show that, for &y 0., the optimal perturbatiow;(¢,s) = 0 for alls€ .. Hence,
we can write the closed-loop system dynamics in a neighloatiodé, in terms of the “shifted” variables,
as{t =yl +W.

Note that the condition tha§ € int(0) is fundamental to the proof; we do not yet have a method for
relaxing this assumption. § is on the boundary of., then it is possible that the optimal perturbation
Vy(€,9) is non-zero in a neighborhood éf a non-zeroy;(&,s) may “destabilize” the system for a subset
of initial states in a neighborhood é&f(though robust convergence §as, of course, still guaranteed).

| Computation of Matrices in Section 4.2

Let the polyhedraZ’, 7 and 0. be defined by

2 ={xeR" | Sx<by}, (71)
% ={ueR™|Su<by}, (72)
O ={E R | SE <b;}, (73)

whereS € R®*", §, € RW*M S, € R% X3 b € R%, by, € R%, bs € R% and let the matrice®, € RS,
Tu € RW*31 gnd T € R%*P be defined as

=[S 0, T=S%, Ts:=S.2. (74)

Given the above, it follows from (41) that

éo—é,sO—s,TxEkax,k—1,...,N—1,ngN§bgand} 75)

IN(E,s) =<veR™
N(&.9) { Tulk+ TeSc+ SV < by, k=0,....N—1forallsc N1 de gN

Let
q:=(N-1)ax+Nou+0s (76)
and the matricek € R>*™N M e RA*(N+1)3n Mg e RAX(N-1)P Mg e RI%P be given by
0 0 0
L:= , Mg:i= , Mgi= |~ , 778
[lN ® SJ] ® [IN_1®TS] ® [1N ®Tj (77a)
0 Ino1®Tx O 0 0
Mi=[0 0 S|+| o o. (77b)
0 0 0 IN®Ty O

If we let the block vectorg € RY andx € R3"(N+1) pe defined as

In—1®by S0
b:= bg , Xi=] |, (78)
IN® bu EN

then it is easy to verify from (75) that

I, 9) ={veR™ | & =&, Lv+Mx+Ms+Ms<bforallse N1, de N} .  (79)
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If we now let the block matrice8 € R3(N+1)x3n B ¢ RINMN+LxmN E o R3INN+1)xIN oo R3n(N+1)xp
andFg € R3(N+1)xp(N-1) he defined as

I 0 0 ... 0O 0 0 0
Ay B 0 ... 0 & 0 ... 0
A= |2 , B=| In# B o 0l E=| Ix€ & .. 0| (80a)
' N.—l N:—2 A : N:—l N:—2 :
0 0 0
F 0 0
Fs= Ay F . Fs= F ... 0 . (80D)
then it follows that

Finally, by substituting (81) into (79) it follows that
IN(E,S) = {v e R™N ‘ Fv<b+Gid+G+HSE +HSsforallse N1, de N } . (82
where

F:=L+MB, GY:=—-ME, G%:=—-MFs—Ms, H¢:=—-MA, HS:=_—MFs— M. (83)
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