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Abstract

This paper is concerned with the application and analysis of a recent result in the

literature on robust optimization to the control of linear discrete-time systems, which

are subject to unknown state disturbances and mixed constraints on the state and input.

By parameterizing the control input sequence as an affine function of the disturbance

sequence, it can be shown that a certain class of robust finite horizon control problems

can be solved in a computationally tractable fashion, provided the constraint and the

disturbance sets are polytopic. The main contribution of the paper, as the title suggests, is

to show that this parameterization includes the class of affine time-varying state feedback

control laws. The paper also shows how this parameterization can be used to efficiently

synthesize receding horizon and minimum-time control laws that are robustly invariant.

Two small numerical examples are also presented that highlight some of the strengths and

limitations of the proposed parameterization.

Keywords: Constrained control, robust optimization, optimal control, robust control,

receding horizon control, predictive control.

1 Introduction

The problem of finding a nonlinear state feedback control law, which guarantees that a set

of state and input constraints are satisfied for all time, despite the presence of a persistent

state disturbance, has been the subject of study for many authors [1–12]. However, the

problem is that the solutions offered to date are computationally expensive or intractable.
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As a consequence, many researchers have proposed compromise solutions, which, though not

able to guarantee the same level of performance, is computationally tractable [13–16].

Recently, a new parameterization for solving so-called robust optimization problems was pro-

posed in [17, 18]. The authors proposed that, instead of solving for a general, nonlinear

function that guarantees that the constraints in the optimization problem are met for all

values of the uncertainty, one could aim to find an affine function of the uncertainty. They

proceeded to show that, if the uncertainty set is a polyhedron and the constraints in the ro-

bust optimization problem are affine, then an affine function of the uncertainty can be found

by solving a single, computationally tractable LP. They also demonstrated, via an example,

how their results can be applied to an inventory control problem.

The same affine parameterization was later used in [19, Chap. 7] and [20] to approximate a

class of so-called feedback min-max finite horizon control problems [1, 7–10, 12]. It was also

shown in [19,20], via numerical examples, that this parameterization leads to an improvement

over schemes such as open-loop min-max model predictive control [10, Sect. 4.5] and those

proposed in [14–16], where a sequence of perturbations to a stabilizing control law is sought.

Within the context of synthesizing robust control laws for discrete-time LTI systems, which

are subject to unknown state disturbances and mixed constraints on the state and input, this

paper makes a contribution by presenting a number of new results regarding the geometric

and system-theoretic properties of the parameterization proposed by [17,18].

This paper is organized as follows: Section 2 briefly introduces the control problem that

will be considered in this paper and some standing assumptions are introduced. Section 3

proceeds to review the parameterization proposed in [17, 18] within the context of finding a

solution to a certain robust finite horizon control problem.

Section 4 contains the main contribution of this paper. Theorem 1 shows that the set of states

for which the parameterization in Section 3 is feasible, contains the set of states for which

one can find an affine time-varying state feedback control policy such that for all allowable

values of the disturbance, the constraints are satisfied over a finite horizon.

Further new results are given in Section 5. It is shown that, provided the target/terminal

constraint set is robustly invariant, one can guarantee certain geometric and system-theoretic

properties of a number of control policies based on the parameterization proposed in Section 3.

Theorem 2 shows that the size of the set of states for which a control policy can be defined,

increases with an increase in horizon length. Theorem 3 shows that one can design a receding

horizon control (RHC) law that is guaranteed to be robustly invariant. Theorem 4 shows that

one can synthesize a time-invariant minimum-time control law that is robustly invariant and

guarantees robust convergence to the target set.

Section 6 discusses the computational complexity of the parameterization reviewed in Sec-
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tion 3. Most of the points discussed in Section 6 can be found in [17–20] in one form or

another and this section is therefore mainly included for completeness. The key point to

note from Section 6 is that the complexity of finding solutions to the finite horizon control

problems discussed in Sections 3 and 5 is computationally tractable. In particular, it is shown

that, provided the disturbance is an affine map of a hypercube, one need only solve a Phase I

LP of size O(N2), where N is the length of the control horizon.

Section 7 contains two simple, but illustrative examples. The examples not only validate

some of the theoretical results presented in this paper, but also aim to highlight some of the

advantages and limitations of the parameterization discussed in Section 3, compared to other

approaches available in the literature.

The paper concludes in Section 8 and briefly discusses directions for further research.

2 Problem setup

Consider the following discrete-time LTI system:

x+ = Ax+Bu+ w, (1)

where x ∈ R
n is the system state, x+ is the successor state, u ∈ R

m is the control input and

w ∈ R
n is the disturbance. The actual values of the state, input and disturbance at a time

instant k are denoted by x(k), u(k) and w(k), respectively; where it is clear from the context,

x, u and w will be used to denote the current value of the state, input and disturbance.

It is assumed that (A,B) is stabilizable and that at each sample instant a measurement of the

state is available. It is further assumed that the current and future values of the disturbance

are unknown and that the disturbance is persistent, but contained in a convex and compact

set W , which contains the origin.

Since the disturbance is persistent, it is not possible to drive the state of the system to the

origin. Instead, the aim will be to drive the state of the system to a target/terminal constraint

set Xf , given by

Xf := {x ∈ R
n | Y x ≤ z } , (2)

where the matrix Y ∈ R
r×n and the vector z ∈ R

r; r is the number of affine inequality

constraints that define Xf . It is assumed that Xf contains the origin in its interior.

The system is subject to mixed constraints on the state and input:

Y := {(x, u) ∈ R
n × R

m | Cx+Du ≤ b} , (3)

where the matrices C ∈ R
s×n, D ∈ R

s×m and the vector b ∈ R
s; s is the number of affine
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inequality constraints that define Y. It is assumed that Y contains the origin in its interior.

An additional design goal is to guarantee that the state and input of the closed-loop system

satisfy Y for all time and for all allowable disturbance sequences.

The final standing assumption is that a state feedback gain matrix K ∈ R
m×n is given, such

that A+BK is strictly stable (the eigenvalues of A+BK are strictly inside the unit disk).

Notation: A ⊗ B is the Kronecker product of matrices A and B and vec(A) denotes the

vector formed by stacking the columns of matrix A into one long vector. Given an integer n,

In is the n× n identity matrix and 1n is a column vector of n ones.

3 An affine parameterization of the control input sequence

Let N be a positive integer and the vectors v ∈ R
mN and w ∈ R

nN be defined as

v :=













v0

v1
...

vN−1













, w :=













w0

w1

...

wN−1













, (4)

where the vectors vi ∈ R
m and wi ∈ R

n for all i ∈ {0, . . . , N − 1}.

Let the set W := WN := W × · · · ×W .

We define the strictly block lower triangular matrix M := [Mi,j ] ∈ R
mN×nN , where the

matrices Mi,j ∈ R
m×n for all i ∈ {0, . . . , N − 1} and j ∈ {0, . . . , N − 1} and Mi,j := 0 for all

j ∈ {i, . . . , N − 1}. In other words,

M :=



















0 0 · · · · · · 0

M1,0 0 · · · · · · 0
...

...
. . .

...
...

MN−2,0 MN−2,1 · · · 0 0

MN−1,0 MN−1,1 · · · MN−1,N−2 0



















. (5)

This constraint on M is assumed throughout the rest of this paper.

The variable ψ is defined as the pair

ψ := (v,M). (6)

Using the same affine parameterization of the control input sequence proposed in [17,18], we

use the current value of the state x to define the set of admissible ψ, which will be used to
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define a number of different feedback policies, as:

ΨN (x) :=



















































ψ

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

v, w satisfies (4), M satisfies (5),

xi+1 = Axi +Bui + wi, x0 = x,

ui = vi +
i−1
∑

j=0

Mi,jwj ,

(xi, ui) ∈ Y, xN ∈ Xf ,

∀i ∈ {0, . . . , N − 1}, ∀w ∈ W



















































. (7)

Note that the predicted value of the input ui at a time instant i steps into the future, is an

affine function of the disturbance sequence {w0, . . . , wi−1}; because the state is measured at

each sample instant, the values in this disturbance sequence will be known at a time instant i

steps into the future. The strictly block lower triangular constraint on M in (5) can therefore

be seen to be a causality constraint on ui, which ensures that the input ui is not a function

of the (as yet unknown) disturbance sequence {wi, . . . , wN−1}.

Given any ψ ∈ ΨN (x(0)) and the stabilizing state feedback gain K ∈ R
m×n, one can now

define the following time-varying feedback policy:

u(k) =







vk +
∑k−1

j=0 Mi,jw(j) if k ∈ {0, . . . , N − 1}

Kx(k) if k ∈ {N,N + 1, . . .}
(8)

Clearly, (8) is a causal feedback policy that is dependent not only on the current state, but

also on past values of the state and input; since measurements of the state are available and

past inputs are known, w(j) in (8) is given by

w(j) = x(j + 1) −Ax(j) −Bu(j), ∀j ∈ {0, . . . , N − 1}. (9)

Before proceeding to analyze the properties of (8) and other feedback policies, let the set Xψ
N

denote the set of states for which there exists an admissible ψ:

Xψ
N := {x ∈ R

n | ΨN (x) 6= ∅} . (10)

4 How to match an affine time-varying feedback law

Let the variable θ be defined as the tuple

θ := (L0, g0, L1, g1, . . . , LN−1, gN−1) , (11)
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where the matrix Li ∈ R
m×n and vector gi ∈ R

m for all i ∈ {0, . . . , N − 1}.

Consider now the set of admissible θ:

ΘN (x) :=







































θ

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

θ satisfies (11), w satisfies (4),

xi+1 = Axi +Bui + wi, x0 = x,

ui = Lixi + gi,

(xi, ui) ∈ Y, xN ∈ Xf

∀i ∈ {0, . . . , N − 1}, ∀w ∈ W







































(12)

The set of states for which there exist an admissible θ is defined as:

Xθ
N := {x ∈ R

n | ΘN (x) 6= ∅} . (13)

Given a stabilizing state feedback gain K ∈ R
m×n and a θ ∈ Θ(x(0)), one can define the

following affine time-varying (ATV) state feedback policy:

u(k) =







Lkx(k) + gk if k ∈ {0, . . . , N − 1}

Kx(k) if k ∈ {N,N + 1, . . .}
(14)

The main result of this paper states that the set of initial states Xθ
N , for which an ATV

feedback policy of the form (14) can be defined, is contained inside Xψ
N , the set of initial

states for which a feedback policy of the form (8) can be defined:

Theorem 1 (Main result). Xψ
N contains Xθ

N .

Proof. Let x ∈ Xθ
N . One can easily verify that given a θ ∈ ΘN (x) and w ∈ W, it follows that

for all i ∈ {1, . . . , N},

xi = Six+
i−1
∑

j=1

Ti,j (Bgi−1−j + wi−1−j) +Bgi−1 + wi−1, (15)

where Si :=
∏i−1
j=0(A+BLj) and Ti,j :=

∏j
l=1(A+BLi−l), j = 1, . . . , i− 1.

Since ui = Lixi + gi for all i ∈ {0, . . . , N − 1}, it follows that

ui = LiSix+
i−1
∑

j=1

LiTi,j (Bgi−1−j + wi−1−j) + LiBgi−1 + Liwi−1 + gi. (16)
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It is easy to check that (16) is equal to

ui = vi +
i−1
∑

j=0

Mi,i−1−jwi−1−j , ∀i ∈ {0, . . . , N − 1} (17)

if v0 := L0x+ g0 and for all i ∈ {1, . . . , N − 1},

vi := LiSix+
i−1
∑

j=1

LiTi,jBgi−1−j + LiBgi−1 + gi (18)

and

Mi,i−1−j :=







Li if j = 0

LiTi,j if j ∈ {1, . . . , i− 1}
(19)

It follows from the definition of Θ(x) that for all i ∈ {0, . . . , N − 1} and w ∈ W, (xi, ui) ∈ Y

and xN ∈ Xf . Given the above definitions, if (v,M) is defined as in (4) and (5), then

(v,M) ∈ ΨN (x), hence x ∈ Xψ
N .

Theorem 1 is an interesting and surprising result. The proof of Theorem 1 implies that if, for a

given initial state x(0), one can find an ATV feedback policy of the form (14) such that for all

allowable disturbance sequences of length N , the state will be in Xf in exactly N steps while

satisfying the constraints Y over a horizon of length N , then one can find a ψ ∈ ΨN (x(0)) in

order to define a time-varying feedback policy of the form (8), which will result in exactly the

same control input sequence as the one that would result from implementing (14).

We conclude this section by pointing out that, at present, there does not exist an efficient

algorithm for finding a θ ∈ ΘN (x). However, as will be shown in Section 6, finding a ψ ∈

ΨN (x) is computationally tractable if W is a polytope (closed and bounded polyhedron) or

the affine map of a hypercube. As a consequence of Theorem 1, the results in Section 6 and

the lack of an efficient method for finding a θ ∈ ΘN (x), we will only consider feedback policies

that can be defined from the parameterization proposed in Section 3.

5 Geometric and invariance properties

For this section, we introduce the following assumption:

A1: The set Xf is contained inside XK , which is given by

XK := {x ∈ R
n | (x,Kx) ∈ Y } = {x | (C +DK)x ≤ b} , (20)
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and Xf is robustly positively invariant [5, Def. 2.2] for the closed-loop system x+ = (A +

BK)x+ w, i.e.

(A+BK)x+ w ∈ Xf , ∀x ∈ Xf , ∀w ∈W. (21)

Remark 1. Under some additional, mild technical assumptions, it is easy to compute an

Xf that satisfies A1 if W is a polytope. For example, [21] gives results for computing the

maximal robustly positively invariant set in XK and [22] gives some new results that allow

one to compute a robustly positively invariant outer approximation to the minimal robustly

positively invariant set in XK . See also [4] for results on computing a robustly positively

invariant inner approximation to the maximal robustly positively invariant set in XK . For

results on computing an Xf of a given complexity, which satisfies A1, see [16].

The next result follows immediately from the above:

Proposition 1. Let A1 hold, the initial state x(0) ∈ Xψ
N and ψ ∈ ΨN (x(0)). For all allow-

able infinite disturbance sequences, the state of system (1), in closed-loop with the feedback

policy (8), enters Xf in N steps or less and is in Xf for all k ∈ {N,N + 1, . . .}. Further-

more, the constraints in (3) are satisfied for all time and for all allowable infinite disturbance

sequences.

5.1 On the size of X
ψ
N as N increases

The following result gives a sufficient condition under which one can guarantee that an increase

in the horizon length N does not result in a decrease in the size of Xψ
N :

Theorem 2 (Size of Xψ
N). If A1 holds, then the following set inclusion holds:

Xf ⊆ Xψ
1 ⊆ · · · ⊆ Xψ

N−1 ⊆ Xψ
N ⊆ Xψ

N+1 ⊆ · · · , (22)

where each Xψ
i is defined as in (10) with N = i.

Proof. The proof is by induction. Let x ∈ Xψ
N , (v,M) ∈ ΨN (x) and w ∈ W. It is easy to

verify that

xN = ANx+
N−1
∑

i=0



AiBvN−1−i +



Ai +
i−1
∑

j=0

AjBMN−1−j,N−1−i



wN−1−i



 . (23)

Let

vN := KANx+
N−1
∑

i=0

KAiBvN−1−i (24)
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and for all i ∈ {0, . . . , N − 1}, let

MN,N−1−i := KAi +
i−1
∑

j=0

KAjBMN−1−j,N−1−i. (25)

From these definitions, one can check that

uN := vN +
N−1
∑

j=0

MN,jwj = vN +
N−1
∑

i=0

MN,N−1−iwN−1−i = KxN . (26)

From the definition of ΨN (x), recall that xN ∈ Xf . Note also that that since Xf ⊆ XK ,

it follows that (xN , uN ) ∈ Y. Since Xf is robustly positively invariant for the closed-loop

system x+ = (A+BK)x+ w, it follows that

xN+1 = AxN +BuN + wN ∈ Xf , ∀wN ∈W. (27)

By putting all of the above together and letting the vector v ∈ R
m(N+1) be defined as

v :=

[

v

vN

]

(28)

and the matrix M ∈ R
m(N+1)×n(N+1) be defined as

M :=

[

M 0

0 0

]

+

[

0 0 · · · 0 0

MN,0 MN,1 · · · MN,N−1 0

]

, (29)

it follows from the definition of ΨN+1(x) that (v,M) ∈ ΨN+1(x), hence x ∈ Xψ
N+1. The proof

is completed by verifying, in a similar manner, that Xf ⊆ Xψ
1 ⊆ Xψ

2 .

5.2 Robust invariance of receding horizon control laws

We now consider what happens when ΨN (x) is used to design a time-invariant receding

horizon control law. Consider the set-valued receding horizon control (RHC) law κN : Xψ
N →

2R
m

(2R
m

is the set of all subsets of R
m), which is defined by considering only the first portion

of a v for which there exists an M such that (v,M) ∈ ΨN (x):

κN (x) := {u ∈ R
m | ∃(v,M) ∈ ΨN (x) s.t. u = [Im 0]v} . (30)

The following result implies that if the initial state is in Xψ
N , then all trajectories of (1) in

closed-loop with the RHC policy u ∈ κN (x) will remain in Xψ
N for all time and for all allowable
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disturbance sequences:

Theorem 3 (Robust invariance of RHC laws). If A1 holds, then the set Xψ
N is robustly

positively invariant for system (1) in closed-loop with the RHC law (30), i.e. if x ∈ Xψ
N , then

Ax+Bu+ w ∈ Xψ
N , ∀u ∈ κN (x), ∀w ∈W. (31)

Furthermore, the constraints (3) are satisfied for all time and for all allowable infinite distur-

bance sequences.

Proof. The method of proof very closely parallels that of Theorem 2 and the same definitions

are assumed. However, rather than showing that an appended version of (v,M) is admissible,

one proceeds by showing that a “shifted” version of (v,M) is admissible at the next time

instant. For this purpose, we introduce the following variables:

ṽ :=













v1 +M1,0w
...

vN−1 +MN−1,0w

vN +MN,0w













(32)

and

M̃ :=



















0 0 · · · · · · 0

M2,1 0 · · · · · · 0
...

...
. . .

...
...

MN−1,1 MN−1,2 · · · 0 0

MN,1 MN,2 · · · MN,N−1 0



















. (33)

Using similar arguments as in proving Theorem 2, but taking care with notation, one can

now show that if x ∈ Xψ
N , u ∈ κN (x) and w ∈ W , then (ṽ, M̃) ∈ ΨN (Ax + Bu + w), hence

Ax+Bu+ w ∈ Xψ
N .

Remark 2. In this paper, we will not consider the important problem of how to synthesize an

RHC law such that the closed-loop system is robustly stable and robust convergence to Xf

is guaranteed. However, we will mention here that it is possible to extend the results in [15]

to efficiently compute an RHC law such that the closed-loop system is input-to-state stable

(ISS).

5.3 Robust invariance and robust convergence of minimum-time control

We conclude this section by showing how the parameterization in Section 3 can be used to

define a robust minimum-time control law.
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Given a maximum horizon length Nmax and the set N := {1, . . . , Nmax}, let

N∗(x) := min
N

{N ∈ N | ΨN (x) 6= ∅} . (34)

Consider the following time-invariant set-valued control law κ : X → 2R
m

, where X :=

Xf ∪
(

∪N∈NX
ψ
N

)

and κN∗(x)(x) is given by (30):

κ(x) :=







κN∗(x)(x) if x /∈ Xf

Kx if x ∈ Xf

(35)

We can now state the last result of this section:

Theorem 4 (Minimum-time control). If A1 holds, then the set X = Xψ
Nmax

is robustly

positively invariant for system (1) in closed-loop with the minimum-time control law (35),

i.e. if x ∈ X , then

Ax+Bu+ w ∈ Xψ
N , ∀u ∈ κ(x), ∀w ∈W. (36)

Furthermore, the constraints (3) are satisfied for all time and for all allowable disturbance

sequences. The state of the closed-loop system enters Xf in N steps or less and, once inside,

remains inside for all time and for all allowable disturbance sequences.

Proof. The proof closely parallels that of Theorems 2 and 3. However, this time one has to

show that a “truncated” version of (v,M) is feasible at the next time instant. Let N ∈ N ,

x ∈ Xψ
N and (v,M) ∈ ΨN (x). By considering the same definitions as in Theorems 2 and 3,

it is possible to show that if v := [Im(N−1) 0]ṽ and M := [Im(N−1) 0]M̃, then (v,M) ∈

ΨN−1(Ax+Bu+ w) for all u ∈ κ(x) and all w ∈W .

Theorem 4 should be contrasted with Proposition 1. Whereas (8) is a time-varying feedback

policy that is also dependent on current and past values of the state and input, (35) is a time-

invariant feedback policy that is dependent only on the current state. Note also that (8)

does not guarantee that the state of the system will enter Xf in less than N steps if this is

possible, whereas (35) guarantees that the state of the system will be in Xf in less than N

steps if this is possible.

Remark 3. Note that the control law defined above is not optimal in the sense of [2, 3, 6, 11],

since Xψ
N is not, in general, equal to the set of states for which an arbitrary, nonlinear, time-

varying state feedback control policy exists such that for all allowable disturbance sequences

of length N , the constraints (3) are satisfied over a horizon of length N and the state is in

Xf in exactly N steps.
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6 Finding an admissible ψ ifW is the affine map of a hypercube

6.1 The set ΨN(x) is convex

It is straightforward to find matrices F ∈ R
q×mN , G ∈ R

q×nN , H ∈ R
q×n and a vector c ∈ R

q,

where q := sN + r (for completeness, the matrices and vectors are given in the Appendix),

such that one can rewrite ΨN (x) in (7) as

ΨN (x) =

{

ψ

∣

∣

∣

∣

∣

M satisfies (5),

Fv + (FM +G)w ≤ c+Hx, ∀w ∈ W

}

. (37)

It is well-known [1,3, 4, 15–21] that one can eliminate the quantifier in (37) by noting that

ΨN (x) =







ψ

∣

∣

∣

∣

∣

∣

M satisfies (5),

Fv + max
w∈W

(FM +G)w ≤ c+Hx







, (38)

where the maximization in maxw∈W(FM +G)w is row-wise.

Proposition 2. ΨN (x) is a convex set.

Proof. Since the pointwise supremum over an infinite set of convex functions is convex, each

row of maxw∈W(FM + G)w is convex in M. It follows that all the inequalites in (38) are

convex, hence ΨN (x) is convex.

If W is a polytope (closed and bounded polyhedron) given by a finite set of affine inequalities,

then it is easy to check whether a given ψ is in ΨN (x) by solving the q LPs that define

maxw∈W(FM+G)w and checking the constraints in (38). By writing down the dual of each

of the LPs defining maxw∈W(FM+G)w, one can find a pair ψ ∈ ΨN (x) in a computationally

tractable way by solving Phase I of a single LP. The reader is referred to [17, Thm. 3.2]

and [18, Thm 4.2] for details as to how this can be done.

6.2 Eliminating the quantifier in (37) if W is the affine map of a hypercube

In this paper we will not consider the general case when W is an arbitrary polytope. Instead,

we will consider the special case when W is known to be the affine map of a hypercube. This is

because, in many practical applications, W is nearly always assumed to be the affine map of a

hypercube (for example, when upper and lower bounds on the components of the disturbance

are known and the disturbance acts on the state in an affine manner). This observation leads

to a significant reduction in computational effort, compared to the case of treating W as an

arbitrary polytope.
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To see why this is the case, note that if W is the affine translation of a hypercube, i.e. if

W := {Ed+ f | ‖d‖∞ ≤ η} (39)

where the matrix E ∈ R
n×l, the vectors f ∈ R

n, d ∈ R
l and η is a positive scalar, then

W := {Jd + g | ‖d‖∞ ≤ η} , (40)

where the matrix J := IN ⊗ E, the vectors g := 1N ⊗ f , d ∈ R
t and the integer t := lN . It

follows that

max
w∈W

(FM +G)w = max
d

{(FM +G)(Jd + g) | ‖d‖∞ ≤ η} (41a)

= max
d

{(FMJ +GJ)d + (FM +G)g | ‖d‖∞ ≤ η} (41b)

= max
d

{(FMJ +GJ)d | ‖d‖∞ ≤ η} + (FM +G)g (41c)

= ηabs(FMJ +GJ)1t + (FM +G)g, (41d)

where the components of the matrix abs(FMJ + GJ) are the absolute values of the corre-

sponding components of the matrix FMJ +GJ . Hence,

ΨN (x) =

{

ψ

∣

∣

∣

∣

∣

M satisfies (5),

Fv + ηabs(FMJ +GJ)1t + (FM +G)g ≤ c+Hx

}

. (42)

Remark 4. Note that abs(FMJ +GJ)1t is a vector formed from the 1-norms of the rows of

FMJ +GJ . In going from (41c) to (41d) we have used the well-known fact that

max
d

{

aTd | ‖d‖∞ ≤ η
}

= η‖a‖1 (43)

for any vector a ∈ R
t (see, for example, [15, Prop. 2] or [19, Thm. 3.1]).

If ΨN (x) is given as in (42), then it is easy to check whether a given pair ψ is in ΨN (x) by

computing abs(FMJ +GJ)1t and checking whether the constraints in (42) are satisfied.
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6.3 A computationally tractable method for finding an admissible ψ if W

is the affine map of a hypercube

We can now make an important observation, which allows one to find a ψ ∈ ΨN (x). It follows

immediately from (42) that

ΨN (x) =















ψ

∣

∣

∣

∣

∣

∣

∣

∣

M satisfies (5), ∃Λ ∈ R
q×t such that

Fv + ηΛ1t + (FM +G)g ≤ c+Hx,

abs(FMJ +GJ) ≤ Λ















(44a)

=















ψ

∣

∣

∣

∣

∣

∣

∣

∣

M satisfies (5), ∃Λ ∈ R
q×t such that

Fv + ηΛ1t + (FM +G)g ≤ c+Hx,

−Λ ≤ FMJ +GJ ≤ Λ















, (44b)

where the matrix and vector inequalities are component-wise.

Remark 5. Note that ΨN (x) is the projection of the polyhedron

CN (x) :=















(ψ,Λ)

∣

∣

∣

∣

∣

∣

∣

∣

M satisfies (5),

Fv + ηΛ1t + (FM +G)g ≤ c+Hx,

−Λ ≤ FMJ +GJ ≤ Λ















(45)

onto a subspace, hence ΨN (x) is also a polyhedron.

The key point to note here is the following: if the number of constraints in (3) is s = O(m+n)

and l = O(m + n) in (39) (this is nearly always the case in practice), then the dimension of

CN (x) is bounded by O((m+n)2N2 + r(m+n)N) and the number of constraints that define

CN (x) in (45) is also bounded by O((m+n)2N2 +r(m+n)N). This implies that the problem

of finding a pair (v,M) ∈ ΨN (x) is computationally tractable.

For example, finding a ψ ∈ ΨN (x) is easily done by solving the following Phase I LP, in which

γ is a scalar:

(ψ∗(x),Λ∗(x), γ∗(x)) := arg inf
(ψ,Λ,γ)

γ (46a)

subject to (5) and

Fv + ηΛ1t + (FM +G)g ≤ c+Hx+ 1qγ, (46b)

−Λ ≤ FMJ +GJ ≤ Λ. (46c)

Clearly, ΨN (x) is non-empty and ψ∗(x) ∈ ΨN (x) if and only if γ∗(x) ≤ 0.

Remark 6. It is easy to find an initial feasible point to (46) by choosing any M that satis-

fies (5), followed by choosing a Λ sufficiently large enough to satisfy (46c) and finally, choosing
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any v and a sufficiently large γ such that (46b) is satisfied. Once initialized with a feasible

point, the LP solver can proceed with minimizing the cost until γ ≤ 0.

The following observations allow one to efficiently translate (46) into a form suitable to be

passed to a standard LP solver.

6.3.1 Getting (46) into a standard LP form

By applying the identities vec(A+B) = vec(A) + vec(B) and vec(ABC) = (CT ⊗A)vec(B),

where A, B and C are matrices of compatible dimensions, note that (46b) is equivalent to

Fv + η(1Tt ⊗ Iq)vec(Λ) + (gT ⊗ F )vec(M) +Gg ≤ c+Hx+ 1qγ (47a)

and that (46c) is equivalent to

−vec(Λ) ≤ (JT ⊗ F )vec(M) + vec(GJ) ≤ vec(Λ). (47b)

The decision variable in the Phase I LP (46) now becomes the vector [vT vec(M)T vec(Λ)T γ]T .

6.3.2 Reducing the number of decision variables and constraints

By exploiting the structure and sparsity present in (46), one can reduce the number of decision

variables and constraints in (46) in at least two ways:

• Due to the strictly block lower triangular constraint (5) on M, the most immediately

obvious reduction in decision variables can be achieved by removing all corresponding

components of vec(M) that are zero, as well as removing the corresponding columns of

gT ⊗ F and JT ⊗ F in (47).

• A second reduction in decision variables and constraints can be achieved by exploiting

the structure and sparsity of FMJ +GJ . On inspection of the Appendix and recalling

that J is block diagonal, it can be shown that many of the components of FMJ +

GJ are zero for any choice of M that satisfies (5), hence many of the components of

abs(FMJ +GJ) are always zero. This implies that a large number of the components

of Λ are redundant. By determining which components of FMJ + GJ are zero for all

possible choices of M that satisfy (5), one can remove the corresponding components of

vec(Λ), the corresponding columns of 1Tt ⊗Iq in (47a) and the corresponding constraints

in (47b).
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7 Numerical examples

In the following two examples, let XN denote the set of states for which an arbitrary, nonlin-

ear, time-varying state-feedback control policy exists such that for all allowable disturbance

sequences of length N , the constraints (3) are satisfied over a horizon of length N and the

state of the system is in Xf in exactly N steps. In other words, XN is the region of attraction

of the robust controllers defined in [1–3,6–8,11,12].

Also, let Xv

N denote the set of states for which a sequence of length N of perturbations to a

stabilizing control law K exists such that for all allowable disturbance sequences of length N ,

the constraints (3) are satisfied over a horizon of length N and the state of the system is in

Xf in exactly N steps. In other words, Xv

N is the region of attraction of the robust controllers

defined in [14–16].

It is easy to show that, in general, Xv

N ⊆ Xθ
N ⊆ Xψ

N ⊆ XN .

7.1 An example illustrating the benefits of the affine parameterization used

in this paper

Consider the open-loop unstable, discrete-time LTI system

x+ = 1.5x+ 3u+ w (48)

and let Y := {(x, u) ∈ R × R | |u| ≤ 1}, Xf := {x ∈ R | |x| ≤ 1} and the disturbance set

W := {w ∈ R | |w| ≤ 0.1}. For the purpose of computing Xv

N , let K := −0.8 and note

that A + BK = −0.9, Xf is robustly positively invariant for the closed-loop system x+ =

(A+BK)x+ w and Xf ⊆ XK .

Figure 1 is a plot of the size of XN , Xψ
N and Xv

N for increasing values of N . As expected,

since Xf is robustly positively invariant for the closed-loop system x+ = (A+BK)x+w, an

increase in N results in an increase in the size of all of the sets. Observe also that XN = Xψ
N

for all values of N , but that Xv

N is a strict subset of XN and Xψ
N for all values of N > 1.

The observation that XN = Xψ
N for this example, though an interesting demonstration of the

benefits of the parameterization used in this paper, is not very revealing as to its limitations.

We therefore turn to an example with n = 2 and m = 1.

7.2 An example illustrating the limitations of the affine parameterization

used in this paper

Though it is easy to find examples for which XN = Xψ
N and Xψ

N is a strict superset of Xv

N ,

it is just as easy to find examples for which XN is a strict superset of Xψ
N .
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Figure 1: Plot of xmax versus N , where each XN = {x | |x| ≤ xmax }, X
ψ
N = {x | |x| ≤ xmax }

and Xv

N = {x | |x| ≤ xmax }

Consider the open-loop unstable, discrete-time LTI system

x+ =

[

2 1

0 1

]

x+

[

0

1

]

u+ w (49)

and let Y :=
{

(x, u) ∈ R
2 × R | |u| ≤ 1

}

, Xf :=
{

x ∈ R
2 | ‖x‖∞ ≤ 1

}

and the disturbance

set W :=
{

w ∈ R
2 | ‖w‖ ≤ 0.1

}

. Note that Xf is not robustly controlled invariant [5,

Def. 2.3] for (49).

By solving a Phase I LP, one can check that X2 is non-empty, but that Xψ
2 and Xv

2 are empty.

This example therefore demonstrates that, in general, Xψ
N may be a strict subset of 6= XN

and that Xψ
N may even be empty when XN is not. However, recall from Theorem 2 that if

A1 holds, then one can always guarantee that Xψ
N is non-empty.

8 Conclusions

Though the affine parameterization defined in Section 3 was shown to be useful for efficiently

implementing control laws with guaranteed system-theoretic properties such as robust invari-
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ance and robust convergence to a target set, there are still a number of issues that need to

be addressed.

It was proven in Section 4 that the set of states for which the parameterization in Section 3

is feasible, contains the set of states for which an affine time-varying policy exists. It still

remains to be determined whether the inclusion in Theorem 1 is strict or whether it is satisfied

with equality in general.

Section 5 showed how to construct receding horizon and minimum-time control laws with

guaranteed robust invariance. In the case of minimum-time control, robust convergence to

the target set can be guaranteed. However, the results in this section on the invariance of

receding horizon control still need to be extended in order to guarantee robust convergence

and stability of the target set, as well as guaranteeing offset-free control if the disturbance

tends to a non-zero limit.

Finally, the results in Section 6 on the computational tractability could be extended to exploit

any additional structure inherent in the robust finite horizon control problem, beyond the

obvious simplifications mentioned in Section 6.3. It would also be interesting to see whether

the class of uncertainties that can be addressed can be extended to include, for example,

state- and input-dependent disturbances or parametric uncertainty in A and B.
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Appendix: Matrices used in Section 6

Let the matrices A ∈ R
n(N+1)×n and A ∈ R

n(N+1)×nN be defined as

A :=



















In

A

A2

...

AN



















, A :=



















0 0 · · · 0

In 0 · · · 0

A In · · · 0
...

...
. . .

...

AN−1 AN−2 · · · In



















. (50)

We also define the matrices B ∈ R
n(N+1)×mN , C ∈ R

q×n(N+1) and D ∈ R
q×mN as

B := A(IN ⊗B), C :=

[

IN ⊗ C 0

0 Y

]

, D :=

[

IN ⊗D

0

]

. (51)
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It is easy (though tedious) to check that the expression in (7) is equivalent to (37) with

F := CB + D, G := CA, H := −CA, c :=

[

1N ⊗ b

z

]

. (52)

References

[1] A. Bemporad, F. Borrelli, and M. Morari. Min-max control of constrained uncertain

discrete-time linear systems. IEEE Transactions on Automatic Control, 48(9):1600–1606,

September 2003.

[2] D.P. Bertsekas and I.B. Rhodes. On the minimax reachability of target sets and target

tubes. Automatica, 7:233–247, 1971.

[3] F. Blanchini. Minimum-time control for uncertain discrete-time linear systems. In

Proc. 31st IEEE Conference on Decision and Control, Tucson, Arizona, USA, December

1992.

[4] F. Blanchini. Ultimate boundedness control for uncertain discrete-time systems via set-

induced Lyapunov functions. IEEE Trans. Automatic Control, 39(2):428–433, 1994.

[5] F. Blanchini. Set invariance in control. Automatica, 35(11):1747–1767, 1999. Survey

paper.

[6] J.D. Glover and F.C. Schweppe. Control of linear dynamic systems with set constrained

disturbances. IEEE Transactions on Automatic Control, AC-16(5):411–423, October

1971.

[7] E.C. Kerrigan and J.M. Maciejowski. Robustly stable feedback min-max model predictive

control. In Proc. 2003 American Control Conference, Denver, Colorado, USA, June 2003.

[8] E.C. Kerrigan and D.Q. Mayne. Optimal control of constrained, piecewise affine systems

with bounded disturbances. In Proc. 41st IEEE Conference on Decision and Control,

Las Vegas, Nevada, USA, December 2002.

[9] D.Q. Mayne. Control of constrained dynamic systems. European Journal of Control,

7:87–99, 2001. Survey paper.

[10] D.Q. Mayne, J.B. Rawlings, C.V. Rao, and P.O.M. Scokaert. Constrained model predic-

tive control: Stability and optimality. Automatica, 36:789–814, 2000. Survey paper.

[11] D.Q. Mayne and W.R. Schroeder. Robust time-optimal control of constrained linear

systems. Automatica, 33:2103–2118, 1996.

19



[12] P.O.M. Scokaert and D.Q. Mayne. Min-max feedback model predictive control for con-

strained linear systems. IEEE Trans. Automatic Control, 43:1136–1142, 1998.

[13] A. Bemporad. Reducing conservativeness in predictive control of constrained systems

with disturbances. In Proc. 37th IEEE Conference on Decision and Control, Tampa,

Florida, USA, December 1998.

[14] L. Chisci, J.A. Rossiter, and G. Zappa. Systems with persistent disturbances: predictive

control with restricted constraints. Automatica, 37:1019–1028, 2001.

[15] E.C. Kerrigan and J.M. Maciejowski. On robust optimization and the optimal control of

constrained linear systems with bounded state disturbances. In Proc. European Control

Conference, Cambridge, UK, September 2003.

[16] Y.I. Lee and B. Kouvaritakis. Constrained receding horizon predictive control for systems

with disturbances. International Journal of Control, 72(11):1027–1032, 1999.

[17] A. Ben-Tal, A. Goryashko, E. Guslitzer, and A. Nemirovski. Adjustable

robust solutions of uncertain linear programs. Technical report, Technion

(Israel Institute of Technology), Haifa, Israel, 2002. Downloadable from

http://iew3.technion.ac.il/Labs/Opt/index.php?4.

[18] E. Guslitser. Uncertainty-immunized solutions in linear programming. Master’s thesis,

Technion (Israel Institute of Technology), Haifa, Israel, June 2002. Downloadable from

http://iew3.technion.ac.il/Labs/Opt/index.php?4.
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