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Abstract

This paper is concerned with the application and analysis of a recent result in the

literature on robust optimization to the control of linear discrete-time systems, which

are subject to unknown state disturbances and mixed constraints on the state and input.

By parameterizing the control input sequence as an affine function of the disturbance

sequence, it is shown that a certain class of finite horizon min-max control problems is

convex and that the number of variables and constraints grows polynomially with the

problem size. It is assumed that the constraint and the disturbance sets are polyhedral

and that the cost is a suitably-chosen quadratic, in which the disturbance is negatively

weighted as in H∞ control.

Keywords: Constrained control, robust optimization, optimal control, robust control,

receding horizon control, predictive control.

1 Introduction

Consider the following discrete-time LTI system:

x+ = Ax+Bu+ w, (1)

where x ∈ R
n is the system state, x+ is the successor state, u ∈ R

m is the control input

and w ∈ R
n is the disturbance. The actual values of the state, input and disturbance at a
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time instant k are denoted by x(k), u(k) and w(k), respectively; where it is clear from the

context, x, u and w will be used to denote the current or initial state, input and disturbance.

It is assumed that (A,B) is stabilizable and that at each sample instant a measurement of

the state is available. The current and future values of the disturbance are unknown and the

disturbance is persistent, but contained in a polytope (bounded polyhedron) W . Without loss

of generality and in order to simplify notation (see [1, 2] for ways of generalizing the results

in this paper), we assume that W is a hypercube:

W := {w ∈ R
n | ‖w‖∞ ≤ η} . (2)

The system is subject to polyhedral, mixed constraints on the state and input:

Y := {(x, u) ∈ R
n × R

m | Cx+Du ≤ b} , (3)

where the matrices C ∈ R
s×n, D ∈ R

s×m and the vector b ∈ R
s; s is the number of affine

inequality constraints in (3).

For a given initial state, a time-varying control policy is to be designed, which guarantees

that for all disturbance sequences of a length N , the state and input of the closed-loop system

is in Y over the horizon k = 0, . . . , N − 1. The state is required to be in a target/terminal

constraint set Xf at the end of the horizon (k = N), where Xf is a polyhedron given by

Xf := {x ∈ R
n | Y x ≤ z } , (4)

where the matrix Y ∈ R
r×n and the vector z ∈ R

r; r is the number of affine inequality

constraints that define Xf .

Notation: 1 is an appropriately-size column vector of ones. If A and B are matrices, then

abs(A) is a matrix of the absolute values of the corresponding components of A, B ≻ 0

denotes that B is positive definite and A ≤ B is used to denote component-wise inequality.

2 An affine parameterization of the control input sequence

Let N be a positive integer and the vectors v ∈ R
mN and w ∈ R

nN be defined as

v :=













v0

v1
...

vN−1













, w :=













w0

w1

...

wN−1













, (5)

where the vectors vi ∈ R
m and wi ∈ R

n for all i ∈ {0, . . . , N − 1}.
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Let the set W := WN := W × · · · ×W .

We define the strictly block lower triangular matrix M := [Mi,j ] ∈ R
mN×nN , where the

matrices Mi,j ∈ R
m×n for all i ∈ {0, . . . , N − 1} and j ∈ {0, . . . , N − 1} and Mi,j := 0 for all

j ∈ {i, . . . , N − 1}. In other words,

M :=



















0 0 · · · · · · 0

M1,0 0 · · · · · · 0
...

...
. . .

...
...

MN−2,0 MN−2,1 · · · 0 0

MN−1,0 MN−1,1 · · · MN−1,N−2 0



















. (6)

This constraint on M is assumed throughout the rest of this paper.

The variable ψ is defined as the pair

ψ := (v,M). (7)

Using the same affine parameterization of the control input sequence originally proposed in [1],

let the current value of the state x define the set of admissible ψ, which will be used to define

a feedback policy, as:

ΨN (x) :=



















































ψ

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

v, w satisfies (5), M satisfies (6),

xi+1 = Axi +Bui + wi, x0 = x,

ui = vi +

i−1
∑

j=0

Mi,jwj ,

(xi, ui) ∈ Y, xN ∈ Xf ,

∀i ∈ {0, . . . , N − 1}, ∀w ∈ W



















































. (8)

Remark 1. The reader is referred to [1–3] for a discussion on advantages and system-theoretic

properties of the above parameterization, compared to the case if M = 0, as in open-loop

finite horizon control.

By eliminating xi and ui from (8), it is easy to find matrices F ∈ R
q×mN , G ∈ R

q×nN ,

L ∈ R
q×n and a vector c ∈ R

q, where q := sN + r, such that one can rewrite ΨN (x) in (8) as

ΨN (x) =
{

ψ
∣

∣

∣ Fv + (FM +G)w ≤ c+ Lx, ∀w ∈ W
}

(9a)

=
{

ψ
∣

∣

∣ Fv + ηabs(FM +G)1 ≤ c+ Lx
}

. (9b)

Note that abs(FM+G)1 is a vector formed from the 1-norms of the rows of FM+G. In going
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from (9a) to (9b) we have used the well-known fact (see, for example, [1–3]) that aTw ≤ d

for all w ∈ W if and only if maxw

{

aTw | ‖w‖∞ ≤ η
}

= η‖a‖1 ≤ d, where a is any vector in

R
nN and d is any scalar.

It follows immediately from (9b) that ψ ∈ ΨN (x) if and only if there exists a matrix Λ ∈ R
q×nN

such that

Fv + ηΛ1 ≤ c+ Lx (10a)

−Λ ≤ FM +G ≤ Λ. (10b)

3 A min-max problem with a quadratic cost

Consider now the following finite horizon quadratic cost, as encountered in the literature on

H∞ control:

JN (x, γ, ψ,w) := xNPxN +
N−1
∑

i=0

xTi Qxi + uTi Rui − γ2wTi wi (11)

where x0 = x, xi+1 = Axi + Bui + wi and ui = vi +
∑i−1

j=0Mi,jwj for all i ∈ {0, . . . , N − 1}.

The matrices P , Q and R are positive definite and γ is a positive scalar.

As in (9a), one can eliminate xi and ui in (11) to get matrices Hxx, Hxu, Hxw, Huu, Huw,

Hww of suitable dimensions such that

JN (x, γ, ψ,w) = xTHxxx+ 2xTHxuv + vTHuuv

+ 2xT (HxuM +Hxw)w + 2vT (HuuM +Huw)w

− wT (γ2I −Hww − 2MTHuw − MTHuuM)w, (12)

where Hxx and Huu are positive definite and Hww is positive semi-definite.

It is easy to show that JN (x, γ, ψ,w) is a convex function in ψ. To see why this is the case,

note that it is sufficient to show that

f(ψ,w) := vTHuuv + 2vTHuuMw + wTMTHuuMw (13)

is convex in ψ. Consider the function g(u) := uHuuu, which is convex in u. Since f(ψ,w) =

g(v + Mw) and recalling that convexity of a function is preserved under an affine map, it

follows that f(ψ,w) is convex in ψ.

Since the pointwise supremum of an arbitrary, infinite set of convex functions is convex, it

follows that

VN (x, γ, ψ) := max
w∈W

JN (x, γ, ψ,w) (14)

4



is a convex function in ψ.

Note also that γ can be chosen sufficiently large such that

γ2I −Hww − MTHuw −HT
uw

M − MTHuuM ≻ 0. (15)

Clearly, if (15) is satisfied, then JN (x, γ, ψ,w) is a strictly concave function in w. This

implies that VN (x, γ, ψ) can be computed by defining and solving a tractable, strictly convex

quadratic programming (QP) problem.

Note that the number of variables and constraints in (10) is polynomial in N , n, m, r and s.

Observe also that (15) is a quadratic matrix inequality (QMI) that, by Schur complement,

can be converted to a linear matrix inequality (LMI) in M and γ2. This implies that, for a

given initial state x = x(0), a sufficiently large γ and an admissible ψ can be found by solving

an LMI defined from (6), (10) and (15).

We can now state the min-max problem that is of interest to us. For a given initial state

x = x(0) and γ, let

V ∗
N (x, γ) := min

(ψ,Λ)
{VN (x, γ, ψ) | (ψ,Λ) satisfy (6), (10) and (15)} . (16)

Recalling from the above that VN (x, γ, ψ) can be calculated efficiently by solving a tractable

QP, it follows that one can compute V ∗
N (x, γ) efficiently using standard tools from convex

optimization, such as cutting plane and interior-point methods.

4 Finite ℓ2 gain

As a final, motivating point for this paper, let ψ∗(x, γ) be a minimizer of the problem in (16)

for the initial state x = x(0) and a time-varying control policy be given by

u(k) = v∗k(x, γ) +
k−1
∑

j=0

M∗
k,j(x, γ)w(j), ∀k ∈ {0, . . . , N − 1}. (17)

Note that (17) is a causal feedback policy that is dependent on the current state and past

values of the state and input; since measurements of the state are available and past inputs

are known, w(j) in (17) is given by

w(j) = x(j + 1) −Ax(j) −Bu(j), ∀j ∈ {0, . . . , N − 1}.

It follows from the optimality of ψ∗(x, γ) that if the disturbance sequence {w(0), . . . , w(N−1)}

takes on values in W and the input sequence {u(0), . . . , u(N − 1)} is defined as in (17), then
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one has the following finite ℓ2 gain property:

N−1
∑

k=0

x(k)TQ(k) + u(k)TRu(k) + x(N)TP (N) ≤ γ2
N−1
∑

k=0

w(k)Tw(k) + V ∗
N (x, γ). (18)

Furthermore, (x(k), u(k)) ∈ Y for all k ∈ {0, . . . , N − 1} and x(N) ∈ Xf

Remark 2. Further research may involve extending the results in this paper to H∞ receding

horizon control [4, Sect. 4.7]. The reader is referred to [2] for some initial results on the robust

invariance of receding horizon controllers that are based on the parameterization in Section 2.
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