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Abstract

This paper is concerned with the practical real-time im-
plementability of robustly stable model predictive control
(MPC) when constraints are present on the inputs and the
states. We assume that the plant model is known, is discrete-
time and linear time-invariant, is subject to unknown but
bounded state disturbances and that the states of the sys-
tem are measured. In this paper we introduce a new stage
cost and show that the use of this cost allows one to for-
mulate a robustly stable MPC problem that can be solved
using a single linear program. Furthermore, this is a multi-
parametric linear program, which implies that the receding
horizon control (RHC) law is piecewise affine, and can be
explicitly pre-computed, so that the linear program does not
have to be solved on-line.

Keywords: min-max problems, robust control, optimal
control, receding horizon control, parametric programming,
piecewise linear control

1 Introduction

In general, solving a feedback min-max problem subject
to constraints and disturbances is computationally too de-
manding for practical implementation. However, various at-
tempts have been made at presenting solutions to this prob-
lem. Most of these solutions appear to have come from the
field of robust MPC [13, 15].

It is by now also well-established that with polytopic dis-
turbance bounds, a linear model and a convex cost, in order
to solve finite horizon min-max problems it is sufficient to
consider only the disturbance realisations that take on val-
ues at the vertices of the disturbance set [16].

As an alternative, in [3, 4, 10] it is proposed that a dynamic-
and parametric programming approach be used to obtain an
explicit expression for the control law. Provided the stage
cost is piecewise affine (e.g. if a 1-norm or∞-norm is used),
a piecewise affine expression for the control law can be
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computed off-line. However, stability is not proven for the
stage and terminal costs proposed in [3, 4] nor do the costs
satisfy the stability conditions given in [14,§3.3] and [15,
§4.4].

The main contribution of this paper is the introduction of
a new type of stage cost that can be applied to the results
presented in [3, 4, 10, 16] such that robust stability of the
closed-loop system is guaranteed. In Section 2 we define
in detail the feedback min-max problem that will be con-
sidered in this paper and in Section 3 we review known re-
quirements for a receding horizon controller to be robustly
stable, and show how the newly-introduced stage cost sat-
isfies these requirements. We also point out some advan-
tages of this cost, over the cost proposed in [10]. In Sec-
tion 4 we show in detail how the finite-horizon feedback
min-max problem can be solved as a single LP, using the
results presented in [16], and point out its multi-parametric
nature. The conclusions are given in Section 5.

Notation: ‖ · ‖ denotes any norm,d(z,Z) := infy∈Z ‖z− y‖
for any setZ⊂ IRn, 1 := [1,1, . . . ,1]′ is a column vector of
appropriate length, := reads “is defined as” and=: reads
“defines”. For any setZ, ZN := Z×·· ·×Z︸ ︷︷ ︸

N times

.

2 Problem Formulation

We consider a discrete-time, linear, time-invariant plant

xk+1 = Axk + Buk + wk , (1)

wherexk ∈ IRn is the system state,uk ∈ IRm is the control in-
put andwk ∈W is a persistent disturbance that only takes on
values in the polytopeW⊂ IRn. It is assumed that the distur-
bancewk can jump between arbitrary values withinW and
that no stochastic description for it is postulated. Therefore,
a worst-case approach is taken in this paper. It is assumed
that (A,B) is stabilisable and that polytopic constraints on
the state and input, that are either due to physical, safety
and/or performance considerations, are also given:

xk ∈ X, uk ∈ U, ∀k∈ IN .



We assume thatW contains the origin and thatX ⊂ IRn and
U⊂ IRm contain the origin in their interiors.

Since a persistent, unknown disturbance is present, it is im-
possible to drive the state to the origin. Instead, it is only
possible to drive the system to a bounded target setT con-
tained insideX. The goal is to obtain a (time-invariant) non-
linear feedback control lawu = κ(x) such that the system is
robustly steered to the target set, while also satisfying the
state and input constraints, and minimising some worst case
cost.

In order to determine a suitable control law an optimal con-
trol problemPN (defined below) with horizonN is solved.
Let w := {w0,w1, . . . ,wN−1} denote a disturbance sequence
over the interval 0 toN− 1. Effective control in the pres-
ence of the disturbance requires state feedback [15,§4.6],
so that the decision variable in the optimal control problem
(for a given initial state) is a control policyπ defined by

π := {u(0),µ1(·), . . . ,µN−1(·)} , (2)

whereu(0) ∈ U andµk : X → U, k = 1, . . . ,N− 1; u(0) is
a controlaction (since the current state is known) and each
µk(·) is a state feedback controllaw. Letφ(k;x,π,w) denote
the solution to (1) at timek when the state isx at time 0, the
control is determined by policyπ (u = µk(x) at event(x,k),
i.e. statex, timek) and the disturbance sequence isw.

Given a target set (often also called terminal constraint set)
T ⊂ X containing the origin, for each initial statex∈ X, let
ΠN(x) denote the set ofadmissiblepolicies, i.e.

ΠN(x) := {π | u(0) ∈ U, µk(φ(k;x,π,w)) ∈ U,

φ(k;x,π,w) ∈ X, φ(N;x,π,w) ∈ T,

∀k∈ {1, . . . ,N−1},∀w ∈WN} (3)

and let
XN := {x∈ X | ΠN(x) 6= /0} (4)

denote the set of states inX that can be robustly steered
(steered for allw ∈WN) to the target setT in N steps.

In order to define an optimal control problem, a costVN(·)
that is dependent on the policyπ and current statex, but not
dependent onw, is defined; the conventional choice is

VN(x,π) := max
w∈WN

[
N−1

∑
k=0

L(xk,uk) + F(xN)

]
, (5)

where xk := φ(k;x,π,w) if k ∈ {0, . . . ,N}, uk :=
µk(φ(i;x,π,w)) if k∈ {1, . . . ,N−1} andu0 := u(0).

The target setT, stage costL(·) and terminal costF(·) have
to satisfy certain conditions in order to ensure that the so-
lution of the feedback min-max optimal control problem,
when implemented in a receding horizon fashion, is robustly
stabilising. These conditions will be set out in the following
section.

The feedback min-max optimal control problemPN can now
be defined as

PN(x) : V∗N(x) := min
π
{VN(x,π) | π ∈ΠN(x)} . (6)

Let π∗N(x) =:
{

u∗0(x),µ∗1(·;x), . . . ,µ∗N−1(·;x)
}

denote the so-
lution toPN(x), i.e.

π∗N(x) := argmin
π
{VN(x,π) | π ∈ΠN(x)} , (7)

where the notationµ∗i (·;x) shows the dependence of the op-
timal policy on the current statex.

It should be noted that the solution to problemPN is fre-
quently not unique — that is, there can be a whole set of
minimisers, from which one must be selected. Thus the
time-invariant,set-valuedreceding horizon control (RHC)
law κN : XN→ 2U (2U is the set of all subsets ofU) is de-
fined by the first element ofπ∗N(x):

κN(x) := u∗0(x), ∀x∈ XN. (8)

Typically, but not always,u∗0(x) is a singleton.

The feedback min-max problemPN defined in (6) is an in-
finite dimensional optimisation problem and impossible to
solve directly. However, methods for solvingPN using finite
dimensional optimisation techniques have been proposed
in [3, 4, 10, 16] and this paper can be seen as an immediate
extension of [16].

Before proceeding, some comments regarding the choice of
stage cost are in order. Robust stability can be guaranteed if
the stage cost

L(x,u) :=

{
‖Qx‖+‖Ru‖ if (x,u) ∈ (X \T)×U

0 if (x,u) ∈ T×U
, (9)

proposed in [10, 14], is used. Though this choice of cost
solves the stability problem, it should be noted that (9) is not
continuous (on the boundary ofT). The use of such a dis-
continuous stage cost is a major obstacle to implementation
using standard solvers for linear, quadratic, semi-definite or
other smooth, convex nonlinear programming problems. As
such, a new cost (defined below) is proposed as an alterna-
tive that solves the problem of obtaining a continuous stage
cost that can be implemented using smooth, convex pro-
gramming solvers, while still guaranteeing robust stability
of the closed-loop system.

In this paper, we introduce a new type of stage cost:

L(x,u) := min
y∈T
‖Q(x−y)‖p+‖R(u−Kx)‖p, (10)

whereQ∈ IRn×n andR∈ IRm×m are weights,K ∈ IRm×n is
a linear feedback gain andT ⊂ IRn is a polytope contain-
ing the origin. We will show that, ifp = 1 or p = ∞, the
use of this stage cost allows the robustly stable feedback
min-max MPC problem to be solved using asingle linear
program (LP). Furthermore, we will show that this LP is in
fact amulti-parametricLP (mp-LP), that allows the RHC
law κN(·) to be pre-computed off-line along the lines devel-
oped in [2, 5], and from which it follows that this law is in
fact piecewise affine. These facts make robust MPC/RHC,
using the stage cost (10), a viable proposition for some re-
alistic problems.



Remark 1 A similar stage cost to(10) was independently
proposed in [12] and briefly discussed within the context of
guaranteeing robust stability of a new type of MPC scheme.
The stage cost proposed in [12] is L(x,u) := (1/2)‖x−
ProjT(x)‖22 + (1/2)‖u−Kx‖22, whereProjT(x) denotes the
orthogonal projection of x ontoT. The difference between
this stage cost and(10) is minor, but the formulation in(10)
is perhaps more natural.

Remark 2 This paper investigates the use of(10) in solv-
ing PN using the method proposed in [16]. Though not dis-
cussed here, it is possible to use(10) in solving PN using the
methods described in [3, 4, 10].

3 Requirements for Robust Stability

It is well-known that, for an MPC/RHC law that assumes
a finite horizon, an arbitrary choice of terminal constraint,
stage cost and terminal cost does not guarantee stability of
the closed-loop system. In the absence of state disturbances,
conventional MPC/RHC schemes employ a terminal cost
F(x) := ‖Px‖, that is a control Lyapunov function inside
T, in order to guarantee robust stability of the origin for
the closed-loop system [14, 15]. However, if the interior of
W is non-empty and the disturbance is persistent, then one
can easily show that there does not exist a so-calledrobust
control Lyapunov function in a neighbourhood of the ori-
gin. Since it is no longer possible to drive the system to the
origin, but only to some set containing the origin, the con-
ventional choice of stage and terminal cost cannot guarantee
stability or convergence [14,§3.3.2] and a new type of stage
and terminal cost is needed.

The following definitions are taken from [10]: The setT is
robustly stableiff, for all ε> 0, there exists aδ> 0 such that
d(x0,T)≤ δ impliesd(xi ,T)≤ ε, for all i ≥ 0 and all admis-
sible disturbance sequences. The setT is robustly asymptot-
ically (finite-time) attractivewith domain of attractionX iff
for all x0 ∈ X, d(xi ,T)→ 0 asi→ ∞ (there exists a timeM
such thatxi ∈ T for all i ≥M) for all admissible disturbance
sequences. The setT is robustly asymptotically (finite-time)
stablewith domain of attractionX iff it is robustly stable
and robustly asymptotically (finite-time) attractive with do-
main of attractionX.

Consider now the following assumptions, adapted from [10,
16, 17]:

A1: The terminal constraint setT ⊂ X contains the ori-
gin in its interior. A linear, time-invariant control law
K : IRn→ IRm is given such that the terminal constraint set
T is disturbance invariant[11] under the controlu = Kx,
i.e. (A+ BK)x+ w∈ T for all x∈ T and allw∈W. In ad-
dition, Kx∈U for all x∈ T.
A2: The terminal costF(x) := 0 for all x∈ IRn.
A3: The stage costL(x,u) := 0 if x∈ T andu = Kx.
A4a: L(·) is continuous overX×U and there exists ac> 0
such thatL(x,u)≥ c(d (x,T)) for all (x,u) ∈ (X \T)×U.

A4b: L(·) is continuous over(X \T)×U and there exists a
c> 0 such thatL(x,u)≥ c‖x‖ for all (x,u) ∈ (X \T)×U.

A1, A2, A3, A4a and A4b satisfy the assumptions on
the stage cost, terminal cost and terminal constraint given
in [14, §3.3] and [15,§4.4]. Hence, one can follow a stan-
dard procedure of using the optimal value function as a can-
didate Lyapunov function [14, 15] and show that:

Theorem 1 If A1, A2, A3 and A4a (and A4b) hold, thenT
is robustly asymptotically (finite-time) stable for the closed-
loop system xk+1 = Axk +BκN(xk)+wk with a region of at-
traction XN.

Consider also the “dual-mode” control law

Γ(x) :=

{
κN(x) if x∈ XN\T
Kx if x∈ T

(11)

whereκN(·) is defined in (8). IfT, K, F(·) andL(·) are cho-
sen such that assumptions A1, A2, A3 and A4 are satisfied,
thenΓ(·) is clearly also a robustly stabilising control law, by
Theorem 1.

In [15, §4.6.3] and [16] it is argued that one need only con-
sider the set of extreme disturbance realisations if the fol-
lowing assumption holds in addition to those given above:

A5: L(·) is convex overX×U.

It is shown in [16] how, provided A1, A2, A3, A4a (and
A4b) and A5 hold, one can associate a different control in-
put sequence with each extreme disturbance realisation and,
using acausality constraintthat prevents the optimiser from
assuming knowledge of future disturbances, one can com-
pute a control inputu∈ κN(x) on-line using standard finite-
dimensional convex programming solvers. However, in [15,
§4.6.3] and [16], an exact expression for the stage cost that
allows one to implement the proposed method is not given;
only general conditions onL(·) as in A3, A4a and A4b are
given.

Our main concern here is to point out that ifQ is non-
singular, then the stage cost (10) satisfies assumptions A3
and A4a (but not A4b). Using this stage cost in computing
κN(·) thus assures thatT is robustly asymptotically stable
(but not necessarily finite-time stable) for the closed-loop
system. Additional assumptions, which guarantee thatT is
robustly finite-time stable, can be found in [9].

Furthermore, the stage cost (10) satisfies assumption A5 if
T is convex (for proof, see [9]). Its use thus allows problem
PN to be solved as a finite-dimensional problem, as will be
shown in more detail in the next section.

Remark 3 We once again point out that the stage cost(9),
that was proposed in [10, 14], is not continuous and hence
not convex. As such, it does not satisfy assumption A5
and therefore cannot be used with the approach proposed
in [16].

The choice ofK in (10) is problem-dependent, but typically
it is chosen such thatA+ BK has all its eigenvalues strictly



inside the unit disk and the controlu = Kx is optimal with
respect to some performance measure. The exact choice of
T is also problem-dependent, but a sensible choice forT is
theminimalor maximaldisturbance invariant set [11]. For
methods of computing aT that satisfies A1, see [11, 16], and
for a further discussion regarding the choice ofT, see [9].

Finally, it is worth pointing out that, providedQ is non-
singular, A3 and A4a are satisfied even ifR is singular or
R := 0 in (10). As such, the use of the second term is not
necessary in guaranteeing robust stability and only affects
the performance of the closed-loop system.

4 Solution via Linear Programming

Following the same approach as the one taken in [16],
let w` := {w`0, . . . ,w`N−1} denote an allowable disturbance
sequence over the finite horizonk = 0, . . . ,N− 1 and let
` ∈ L index these realisations (this is a slight abuse of no-
tation, because the set of possible realisations is uncount-
able). Also letu` := {u`0, . . . ,u`N−1} denote a control se-
quence associated with the`’th disturbance realisation and
let x` := {x`0, . . . ,x`N} represent the sequence of solutions of
the model equation

x`k+1 = Ax`k + Bu`k + w`k, ` ∈ L (12)

with x`0 = x, wherex denotes the current state.

Let the finite subsetLv ⊂ L index those disturbance se-
quencesw` that take on values at the vertices of the polytope
WN. Also, let the set of input sequences associated with the
set of extreme disturbance realisations be

u :=
{

u1,u2, . . . ,uV} ,
whereV is the cardinality ofLv.

As a first step towards an implementable solution we fol-
low [16] in replacing problemPN by the followingfinite-
dimensional problem, in which the optimisation is over con-
trol sequences associated with extreme disturbance realisa-
tions, but with a so-calledcausality constraint:

Problem 1 (Finite-dimensional feedback min-max)
Given the current state x, find a solution to the problem

u∗(x) := (argmin
u

)max
`∈Lv

[
F
(

x`N
)

+
N−1

∑
k=0

L
(

x`k,u
`
k

)]
, (13a)

such that for all̀ ∈ Lv and k∈ {0, . . . ,N−1},

x`k+1 = Ax`k + Bu`k + w`k, x`0 = x, (13b)

u`k ∈U, x`k ∈ X, x`N ∈ T, (13c)

x`1k = x`2k ⇒ u`1k = u`2k , ∀`1, `2 ∈ Lv . (13d)

Note the following: (i) adifferent control input sequence
is associated with each disturbance sequence, thereby over-
coming the problem of open-loop MPC [1, 7] that asso-
ciates asinglecontrol input sequence with all disturbance

sequences; (ii) thecausality constraint(13d) associates with
eachx`k a single control input, thereby reducing the degrees
of freedom and making the control law independent of the
control and disturbance sequence taken to reach that state.

If one lets

u∗(x) =:
{

u1∗(x),u2∗(x), . . . ,uV∗(x)
}
,

then the question one can now ask is under what conditions
the first component ofu1∗(x), denoted byu1∗

0 (x), is equal to
κN(x) (recall that (13d) ensures that the first components of
all theu`∗(x), ` ∈ Lv, are equal). As noted in [15,§4.6.3], if
the system is linear,X, U, W andT are polytopes andF(·)
andL(·) are convex functions, then using similar convexity
arguments as in [16, Thm. 2], it can be shown that the first
element ofu1∗(x) is equal toκN(x). The next result follows:

Theorem 2 (Robustly stable feedback min-max RHC)
Suppose A1, A2 and A3 are satisfied. If the stage cost is
given by(10) and Q is non-singular, thenκN(x) = u1∗

0 (x)
and T is robustly asymptotically stable for the closed-
loop system xk+1 = Axk + BκN(xk) + wk with a region of
attraction XN.

At first sight, it might not be clear how the the causality
constraint (13d) translates into linear constraints. How-
ever, note that for allk ∈ {0, . . . ,N−2} and`1, `2 ∈ Lv, if
x`10 = x`20 , w`1j = w`2j and u`1j = u`2j for all j ∈ {0, . . . ,k},
thenx`1j = x`2j for all j ∈ {1, . . . ,k+ 1}. Hence one needs

to set u`1k+1 = u`2k+1 in order to satisfy the causality con-
straint. Therefore, as discussed in [13, 16], the causality
constraint (13d) can be replaced by associating the same
control input with each node of the resulting extreme dis-
turbance/state trajectory tree. This observation reduces the
original number of control inputs that need to be computed
from NvN to 1+ v+ . . .+ vN−1, wherev is the number of
vertices ofW. A similar observation holds for the number
of constraints and slack variables that need to be considered.

As a small example, consider the case whenv = 2 andN =
2. There areV = vN = 4 extreme disturbance sequences
and if Lv has been defined such thatw1

0 = w2
0 andw3

0 = w4
0,

then (13d) can be substituted withu1
0 = u2

0 = u3
0 = u4

0, u1
1 =

u2
1 andu3

1 = u4
1.

Clearly, the number of decision variables and constraints
grows exponentially with the length of the control hori-
zon. Implementing robust MPC formulated along these
lines with large control horizons is therefore questionable.
However, for some problems the computational complexity
might still be acceptable.

4.1 Setting up as an LP problem
In [16] it was suggested that the solution to (13) should
be computed on-line using standard convex, nonlinear pro-
gramming solvers. We will now describe how this problem
can be solved using linear programming if stage cost (10) is
used. This will involve setting up a linear program that is
equivalent to (13).



Recalling thatF(x) := 0, let the total costJ(x,u`,w`) for the
current statexand a sequence of control inputsu` associated
with a given disturbance realisationw` be defined as

J(x,u`,w`) :=
N−1

∑
k=0

L
(

x`k,u
`
k

)
.

As in [16], the optimisation problem in (13) can be written
as

min
u∈C(x)

max
`∈Lv

J(x,u`,w`), (14)

whereC(x) is a polytope implicitly defined by the con-
straints in (13). Clearly, the optimisation in (14) is equiv-
alent to the convex program

min
u,γ

{
γ
∣∣∣ u ∈ C(x) , J(x,u`,w`)≤ γ, ∀` ∈ Lv

}
. (15)

Before proceeding, note that if one uses the stage cost (10)
with p= 1 then the value of minu∈U L(x,u) can be computed
by solving the linear program

min
u∈U

L(x,u) = min
u,y,α,β

1′α + 1′β

subject to

−α≤Q(x−y)≤ α, y∈ T,

−β≤ R(u−Kx)≤ β, u∈ U,

where the vectorsα ∈ IRn andβ ∈ IRm.

The above procedure is fairly standard and has been used in
converting standard and open-loop min-max MPC problems
with 1-norm and∞-norm costs to linear programs [1, 2, 7,
13]. We now use it to set up a linear program equivalent
to (13). Let

J(x,u`,w`) := min
y`

N−1

∑
k=0

‖Q(x`k−y`k)‖1 +‖R(u`k−Kx`k)‖1 ,

andy`, µ`, η` andy, µ, η be defined similarly tou` andu. It
now follows that (13) is equivalent to

min
u,y,µ,η,γ

γ (16a)

such that for all̀ ∈ Lv andk∈ {0, . . . ,N−1},

x`k+1 = Ax`k + Bu`k + w`k, x`0 = x, (16b)

−µ`k≤Q(x`k−y`k)≤ µ`k, y`k ∈ T, (16c)

−η`k ≤ R(u`k−Kx`k)≤ η`k, u`k ∈U, (16d)

x`k ∈ X, x`N ∈ T, (16e)
N−1

∑
k=0

1′µ`k + 1′η`k ≤ γ, (16f)

x`1k = x`2k ⇒ u`1k = u`2k , ∀`1, `2 ∈ Lv. (16g)

Note that it is also possible to convert (13) to a linear pro-
gram if p = ∞ is chosen in the stage cost (10). This is

achieved in a similar fashion as above by noting that if
L(x,u) := miny∈T ‖Q(x−y)‖∞ +‖R(u−Kx)‖∞, then

min
u∈U

L(x,u) = min
u,y,α,β

α + β

subject to

−1α≤Q(x−y)≤ 1α, y∈ T,

−1β≤ R(u−Kx)≤ 1β, u∈ U,

where the scalarsα ∈ IR andβ ∈ IR.

It is interesting to observe that the use of the∞-norm re-
sults in less variables and constraints than in the case of the
1-norm. The former choice of norm is therefore probably
preferred if computational speed is an issue. However, the
latter norm might be preferred if a control action is sought
that is closer to having used the quadratic norm, as in con-
ventional MPC.

4.2 Explicit solution of the RHC law via parametric pro-
gramming
The development in the previous section allows the on-line
solution of the robust MPC problem, providing that the
available computing resources and the required update in-
terval are such that the LP can be solved quickly enough.
If this is not possible, an alternative is to pre-compute the
solution, to store this solution in a database, and to read out
the appropriate part of the solution (which can be done rel-
atively quickly) as required.

By substituting (16b) into the rest of the constraints it is
possible to show, as in [2, 5], that (16) can be written in the
form

min
θ

{
c′θ | Fθ≤ g+ Gx

}
, (17)

whereθ is the decision variable that consists of the non-
redundant components of(u,y,µ,η,γ); the vectorsc,g and
matricesF,G are of appropriate dimensions and do not de-
pend onx. The key observation here is that the constraints
are dependent on the current statex in the affine manner
shown above. This means that the feedback min-max prob-
lem falls into the class ofmulti-parametriclinear programs
(mp-LPs) [6, 8], where each component ofx represents a
parameter that will affect the solution. This class of prob-
lems can be solvedoff-line for all allowable values ofx and
results in apiecewise affineexpression for the solution in
terms ofx [6, 8].

The polyhedronXN = {x∈ IRn | ∃θ : Fθ≤ g+ Gx} is the
set of states for which a solution to (17) exists. Given a
polytope of statesX⊆XN and using the algorithm described
in [6], one can compute the explicit expression of the feed-
back min-max RHC law for allx∈ X. The resulting feed-
back min-max RHC law is then of the following piecewise
affine form:

κN(x) = Kix+ hi, if x∈ Xi ,

where each matrixKi ∈ IRm×n and vectorhi ∈ IRm are asso-
ciated with a polytopeXi . The set of polytopes{Xi} have



mutually disjoint interiors andX =
⋃

i Xi . All that is re-
quired on-line is to determine in which critical region the
current state lies and then compute the control action using
only matrix multiplication and addition.

The solution to the control law presented here is of the same
piecewise affine structure as the one given in [3, 4]. How-
ever, the derivation in [3] requires the solution of 2N multi-
parametricmixed-integerlinear programs (mp-MILPs). By
exploiting the convex, piecewise affine nature of the optimal
cost, this has since been improved to solvingN mp-LPs [4].
The result presented in this paper requires the solution of a
single mp-LP instead, though this is perhaps of more sig-
nificance for the on-line computation than for off-line pre-
computation of the RHC law.

Finally, we once again mention that robust stability is not
guaranteed for the stage cost used in [3, 4]. However, ro-
bust stability in [3, 4] can be guaranteed using the new stage
cost (10) proposed in this paper.

5 Conclusions

Robust MPC requires optimisation over feedback policies,
rather than the more traditional optimisation over open-loop
sequences, if excessive conservativeness, and hence infea-
sibility and/or instability, is to be avoided. But this is diffi-
cult to implement with reasonable computational effort, and
hence its practicality has been questionable, particularly if
on-line optimisation in real-time is envisaged.

In this paper we have introduced a new stage cost, which al-
lows one to compute the solution of the full robust receding
horizon control problem — that is, optimisation over feed-
back policies with guaranteed robust convergence to the tar-
get set in the face of persistent disturbances — using only
one linear program. This is in contrast with previous pro-
posals that have required the solution of nonlinear programs
and/or the solution of a number of optimisation problems.

A detailed comparison of the competing proposals is not
straightforward, however, because the dimensions of the op-
timisations involved vary in complicated ways. It is there-
fore not yet possible to say conclusively which scheme will
be more efficient for on-line implementation, or which one
would be preferred for off-line pre-computation. The an-
swers may well depend on problem-specific details.
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