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Abstract

The first part of this paper studies a specific class of uncertain
quadratic and linear programs, where the uncertainty enters the
constraints in an affine manner and the uncertainty set is a poly-
tope. It is shown that one can convert the resulting semi-infinite
optimization problem into a standard QP or LP with a finite
number of decision variables and a finite number of constraints.
This transformation is achieved in a computationally tractable
way by solving as many LPs as there are constraints in the op-
timization problem without uncertainty. It is also shown that if
the uncertainty set is given by upper and lower bounds only, then
one need not solve any LPs in order to do this transformation;
computing the 1-norms of the rows of the matrix by which the
uncertainty enters the constraints is sufficient. The second part
of the paper reviews and extends some definitions and results
on input-to-state stability for nonlinear discrete-time systems.
The third part of the paper shows how one can translate a class
of robust finite-horizon optimal control problems (RFHOCPs)
into the class of robust convex optimization problems that was
studied in the first part of the paper. It is assumed that the sys-
tem under consideration is linear, that there is a persistent, but
bounded state disturbance that assumes values in a polytope and
that there are mixed affine constraints on the input and state. By
using the results from the previous sections, it is shown that one
can set up a receding horizon controller (RHC) that is input-to-
state stable (ISS) and guarantees robust constraint satisfaction
for all time. The number of decision variables and constraints
in the RFHOCP that define the RHC law increases linearly with
the horizon length.

1 Introduction

The field of optimal control of constrained systems without un-
certainty is fairly well developed and understood, but the op-
timal control of constrained systems with uncertainty is still a
very open area with very few useful results [17, 18, 19]. One
of the reasons for the difficulty in implementing robust con-
trollers for constrained systems is that the incorporation of the
effect of the uncertainty in the model often translates into com-
putationally intractable problems. Various researchers, espe-

cially those working in the field of model predictive control,
have suggested compromise solutions to addressing this prob-
lem [1, 7, 13, 14, 15, 16, 22]. However, some of these solutions
are, arguably, still computationally intensive or conservative.

Recent research in the optimization literature onrobust convex
optimizationproblems [3, 4, 5, 22] might shed some light on the
tractability of a large class of robust optimal control problems.
This paper studies a very specific class of robust quadratic pro-
gramming problems, where the uncertainty enters the problem
only via the constraints and the uncertainty set is a polytope.
The results from this study will be applied to a class of robust
finite-horizon optimal control problems (RFHOCPs), where the
uncertainty is a bounded, persistent state disturbance that can
take on values from a polytopic uncertainty set. The solution of
the RFHOCP will then be used to define a robustly stabilizing
receding horizon control (RHC) law.

Section 2 defines the class of robust optimization problems that
will be studied. Section 3 reviews and extends some basic re-
sults in input-to-state stability of nonlinear discrete-time sys-
tems. Section 4 introduces a class of RFHOCPs. It will be
shown that if the cost is assumed to be quadratic and the dis-
turbance is zero in cost, but included in the constraints, then
the RHC law can be computed efficiently using the results from
Section 2. It is also shown that the resulting closed-loop is input-
to-state stable (ISS) and that mixed constraints on the state and
input are robustly satisfied for all time.

Many of the results in this paper are available in the literature in
one form or another. This paper makes a contribution by bring-
ing these results together in a single paper, presenting them with
a slightly different emphasis and extending the results where
necessary.

Notation: If x ∈ IRn is a vector, thenx′ denotes its transpose,
‖x‖p and‖x‖ denotes thep-norm and Euclidean norm ofx,
respectively. 1 := [1 · · · 1]′ is a column vector of ones of
suitable dimension.ei := [0 · · · 1 · · · 0]′ is thei ’th standard
basis vector in Euclidean space, i.e. a column vector with 1 as the
i ’th component and all other components being zero. Ifx andy
are vectors, thenx ≤ y will be used to denote component-wise
inequality. If S ∈ IRq×t is a matrix andW ⊂ IRt is a non-
empty compact set, then the column vector vec minw∈W Sw :=
[minw∈W e′1Sw · · · minw∈W e′qSw]′, wheree′i S is clearly the
i ’th row of S. The matrix|S| is formed by taking the absolute
values of the components ofS, i.e. if S := [si j ] ∈ IRq×t , then



|S| := [|si j |] ∈ IRq×t . Where it will not lead to confusion,ω(k)
will denote the actual value of the sequence of variablesω(·) at
timek, whileωk will be used to denote the prediction ofω(τ+k)
at a time instantk steps into the future ifω(τ) = ω0 = ω is the
current value of the variable.

2 A Class of Uncertain Parametric QPs

This paper will consideruncertain parametric quadratic pro-
grams(UPQPs) [3, 5] in the form

V∗N(x) := min
v∈CN(x)

v′Hv+ v′Gx+ x′Y x+ c′v, (1a)

and therobustly feasible setof decision variables is defined as

CN(x) :=
{
v ∈ IRd | Lv ≤ b+ Mx + Sw,∀w ∈ W

}
(1b)

where the matricesH ∈ IRd×d, G ∈ IRd×n, Y ∈ IRn×n, L ∈
IRq×d, M ∈ IRq×n, S∈ IRq×t and the vectorsb ∈ IRq, c ∈ IRd.
The minimizer is

v∗(x) := arg min
v∈CN(x)

v′Hv+ v′Gx+ x′Y x+ c′v. (1c)

In the above,v ∈ IRd is thedecision variable, x ∈ IRn is the
parameterthat affects the solution of the optimization problem,
w ∈ IRt is theuncertain dataandW ⊂ IRt is theuncertainty set.
The reason for includingN is to be consistent with the notation
in subsequent sections; the role ofN will become clearer. Note
that if H , G andY are zero andc is non-zero, then (1) is an
uncertain parametric linear program(UPLP) [4, 22].

Assumption 1. W is a polytope (i.e. a bounded, closed and
convexpolyhedron)containing the origin and is given by a finite
number of affine inequalities. The set of parameters for which
there exists a robustly feasible decision variable

Xv
N :=

{
x ∈ IRn | CN(x) 6= ∅

}
(2)

is non-empty and compact. The setCN(x) is compact for all
x ∈ Xv

N . If c = 0, thenH andY are positive definite. Ifc 6= 0,
thenH , G andY are zero.

Remark1. Note that [3, 4, 5, 22] do not considerparametric
programs explicitly in their formulation. However, it is trivial
to extend the relevant ideas for standard uncertain programs
to uncertain parametric programs. Note also that even though
the uncertaintyw does not enter the cost in the class of UPQPs
considered here, it is still possible to formulate certain classes of
min-max problems in the form of (1) [3, 4, 15, 22]. However,
in the sequel we will be restricting our attention to optimal
control problems in which the uncertainty only enters via the
constraints.

Remark2. The notation used above is slightly inconsistent with
conventional notation used in the parametric programming lit-
erature, wherex is conventionally used to denote the decision
variable and another variable is used to denote the parameter.
However, it is consistent with conventional notation used in con-
trol theory,wherex often denotes the current state of the system.

Since the main aim of this paper is to show how results in robust
optimization can be used to efficiently solve a class of control
problems, the current statex will be treated as the parameter of
the UPQP that results from formulating the associated control
problem; in the sequelw will denote a sequence of disturbances
that acts on the system over a finite horizon of lengthN and
v∗(·) will be used to define a control policy.

For a givenx, the optimization problem defined in (1) can be
seen to be a semi-infinite optimization problem, where there
is a finite number of decision variables, but an infinite number
of constraints. The rest of this section will show how one can
efficiently convert the optimization problem in (1) into an op-
timization problem with a finite number of decision variables
and affine inequality constraints.

SinceW is assumed to be given by a finite number of affine
inequalities, the following well-known result implies that, by
solvingq LPs (recall thatq is the number of rows inL, M, S
and components ofb), one can obtain an expression forCN(x)
in terms ofq affine inequalities:

Proposition 1 (Robustly feasible set).If CN(x) is given
by (1b), then

CN(x) =
{

v ∈ IRd
∣∣∣∣ Lv ≤ b+ Mx + vec min

w∈W Sw
}
. (3)

Proof. Note that one can interchange the order of the universal
quantifiers to get that

CN(x) =
{

v ∈ IRd

∣∣∣∣∣ e′i (Lv − b− Mx − Sw) ≤ 0,

∀i ∈ {1, . . . ,q},∀w ∈ W

}

=
{

v ∈ IRd

∣∣∣∣∣ e′i (Lv − b− Mx − Sw) ≤ 0,

∀w ∈ W ,∀i ∈ {1, . . . ,q}

}
.

For any continuous scalar functionψi : IRd × IRn × IRt → IR,
ψi (v, x,w) ≤ 0,∀w ∈ W ⇔ maxw∈W ψi (v, x,w) ≤ 0. The
result follows from lettingψi (v, x,w) := e′i (Lv−b−Mx−Sw)
for all i ∈ {1, . . . ,q} and noting that maxw∈W (e′i Lv − e′i b−
e′i Mx − e′i Sw) = e′i Lv − e′i b− e′i Mx +maxw∈W (−e′i Sw) =
e′i Lv − e′i b− e′i Mx −minw∈W (e′i Sw).

Remark3. Proposition 1 implies that solving theuncertainprob-
lem (1) is only slightly more involved than solving the equivalent
certainproblem (in other words, whenW := {0} and there is no
uncertainty in the data); the number of decision variables and
the number of constraints are the same. Note also that theq LPs
that define vec minw∈W Sw are independent of the parameterx
and therefore do not need to be solved for different values ofx.

If W is given by simple upper and lower bounds only (which is
often the case in practical applications), then the use of an LP
solver in obtaining a computationally tractable expression for
CN(x) is not necessary. This is because vec minw∈W Sw can
be computed far more efficiently by computing the 1-norms of
each of the rows ofS. To see why this is the case, recall the
following result:



Proposition 2 (LP with box constraints). If the vectora ∈ IRt

andW is a hypercube given by

W := {w ∈ IRt | ‖w‖∞ ≤ η
}
, (4)

whereη is a positive scalar, thenminw∈W a′w = −η‖a‖1 and
maxw∈W a′w = η‖a‖1.

Proof. Note that the constraints on componentwi of w are
independent of constraints on the other componentsw j , i 6= j .
In other wordsW = {

w ∈ IRt | |wi | ≤ η, i = 1, . . . , t
}
. It

then follows that maxw∈W a′w = maxw∈W
∑t

i=1 ai wi =∑t
i=1 max|wi |≤η ai wi = ∑t

i=1 max{ηai ,−ηai } =∑t
i=1 η|ai | = η‖a‖1. The proof is completed by recall-

ing that minw∈W a′w = −maxw∈W (−a′w).

From Propositions 1 and 2 it follows that:

Corollary 1 (Uncertainty set is a hypercube). If W is given
by(4)andCN(x) is defined in(1b), then one need only compute
the1-norms of each of the rows ofS in order to generate theq
affine inequalities in(3), i.e.

CN(x) =
{
v ∈ IRd | Lv ≤ b+ Mx − η|S|1

}
. (5)

Note that|S|1 is a column vector formed by stacking the1-norms
of the rows ofSon top of each other.

Remark4. Proposition 2 and Corollary 1 can be stated without
loss of generality. IfW is not a hypercube,but a hyper-rectangle
given by asymmetric upperand lower bounds on thecomponents
of w, then it is possible to redefineS, b andW in (1b) via a
suitable mapping. Similarly, it is trivial extending the result
to the more general case whenW is the affine mapping of a
hypercube and the mapping is known, i.e. ifW is the translation
of a scaled, rotated and/or projected hypercube. For example, if
W := {Tw̃ + y

∣∣ ‖w̃‖∞ ≤ η }, then minw
{
a′w | w ∈ W

} =
minw̃

{
a′(Tw̃ + y)

∣∣ ‖w̃‖∞ ≤ η } = −η‖T ′a‖1+ a′y.

Once (1) has been converted into an equivalent finite-
dimensional optimization problem by replacing (1b) with (3)
or (5), one can compute a solution in a number of standard ways.
One way is: givenx, computeV∗N(x) andv∗(x) using off-the-
shelf LP or QP solvers. Alternatively, one can obtain explicit
expressions for the functionsV∗N(·) andv∗(·) using parametric
programming techniques [2, 6].

Lemma 1. If Assumption 1 holds and(1b) is replaced with(3)
or (5), then the value functionV∗N : Xv

N → IR is Lipschitz con-
tinuous onXv

N . Furthermore, ifH andY are positive definite,
then the minimizing functionv∗ : Xv

N → IRd is also Lipschitz
continuous onXv

N .

Proof. Immediate from the results in [2, 6], where it is shown
thatV∗N(·) is a convex, piecewise quadratic (piecewise affine if
c is non-zero andH , G andY are zero) function andv∗(·) is a
continuous, piecewise affine function ifc = 0 andH andY are
positive definite. Note that, contrary to [8], [2, 6] do not require
that the solution of the dual of (1), with (1b) replaced by (3)
or (5), be unique.

3 Input-to-State Stability

A function α : IR≥0 → IR≥0 is a K-function if it is strictly
increasing andα(0) = 0; it is a K∞-function if it is a K-
function andα(z) → ∞ asz → ∞. A functionβ : IR≥0 ×
IR≥0→ IR≥0 is aKL-function if, for eachk ≥ 0, the function
β(·, k) is aK-function and, for eachz≥ 0, the functionβ(z, ·)
is decreasing andβ(z, k)→ 0 ask→∞.

Consider now the following nonlinear, discrete-time system

x(k+ 1) = f (x(k),w(k)), (6)

wherex ∈ IRn is the state andw ∈ IRr is a disturbance that takes
on values in a compact setW⊂ IRr containing the origin. Given
the statex at time 0 (note that since the system is time-invariant,
we can always regard current time as zero) and a disturbance
sequencew(·), let φ(k, x, w(·)) denote the solution to (6) at
time instantk and letMW denote the set of infinite disturbance
sequences taking values inW.

It is assumed that the state is measured at each time instant, that
f (0,0) = 0 but thatf (0,W) 6= {0}; in other words, the origin is
an equilibrium for the undisturbedsystem, but it is nota common
fixed point for allw ∈ W. For systems of this type, a useful
notion of stability is input-to-state stability [9, 10, 16, 21]. We
therefore introduce the following definition, which is a slight
modification of the one in [10], in order to have aregional
definition of input-to-state stability:

Definition 1 (ISS). System (6) is(regionally) input-to-state
stable(ISS) in a setX ⊂ IRn containing the origin in its interior
if a KL-functionβ and aK-function γ exist such that, for
all x ∈ X and allw(·) ∈ MW, the solution of (6) satisfies
φ(k, x, w(·)) ∈ X and

‖φ(k, x, w(·))‖ ≤ β (‖x‖, k)+ γ
(

sup
τ∈{0,...,k−1}

‖w(τ)‖
)

(7)

for all k ∈ IN. If X = IRn, then we say that system (6) is
globally ISS.

Remark5. It can be seen from (7) that the ISS property im-
plies that the origin is an asymptotically stable fixed point of
the undisturbed systemx(k + 1) = f (x(k),0) with region of
attractionX. Note also that ISS implies that all trajectories
of (6) are bounded for all bounded disturbance sequences and
that (6) is “converging-disturbanceconverging-state”, i.e. every
trajectoryφ(k, x, w(·)) → 0 if w(k) → 0 ask → ∞. Fur-
thermore, the bound on the state trajectory is proportional to the
bounds on the disturbance and initial condition. See also [10]
and the extensive literature on ISS [11, 21] for more results and
interpretations of input-to-state stability.

In order to be self-contained, we present the following result:

Lemma 2. Let X contain the origin in its interior and be a
robustly positively invariant set for system(6), i.e. f (x, w) ∈ X
for all x ∈ X and allw ∈ W. If there existK∞-functionsα1,
α2, α3, a K-functionσ and a continuous functionV : X →



IR≥0, such that, for allx ∈ X and allw ∈ W the following
holds:

α1(‖x‖) ≤ V(x) ≤ α2(‖x‖), (8a)

V( f (x, w))− V(x) ≤ −α3(‖x‖)+ σ(‖w‖), (8b)

then system(6) is ISS inX.

Proof. See [10, Lem. 3.5].

Remark6. A V(·) that satisfies (8) is often referred to as an
ISS-Lyapunov function.

We conclude this section with the following result, which, to
the best of our knowledge, is new:

Lemma 3. Let X contain the origin in its interior and be a
robustly positively invariant set for system(6), i.e. f (x, w) ∈ X
for all x ∈ X and allw ∈ W. If f :X×W→ IRn is Lipschitz
continuous onX×W and there existK∞-functionsα1, α2 and
α3 and a functionV : X → IR≥0 that is Lipschitz continuous
onX such that, for allx ∈ X the following holds:

α1(‖x‖) ≤ V(x) ≤ α2(‖x‖), (9a)

V( f (x,0))− V(x) ≤ −α3(‖x‖), (9b)

thenV(·) is an ISS-Lyapunov function and system(6) is ISS in
X.

Proof. Since‖V( f (x, w)) − V( f (x,0))‖ ≤ LV‖ f (x, w) −
f (x,0)‖ ≤ LV L f ‖w‖, where LV and L f are the Lips-
chitz constants ofV(·) and f (·), respectively, it follows that
V( f (x, w)) − V(x) = V( f (x,0)) − V(x) + V( f (x, w)) −
V( f (x,0)) ≤ −α3(‖x‖)+ LV L f ‖w‖. The proof is completed
by lettingσ(z) := LV L f z in Lemma 2.

Remark7. Note that, ifX in Lemmas 2 and 3 is compact, then
the condition thatα1, α2 andα3 be of classK∞ can be relaxed
to the condition that they only be of classK.

Remark8. Lemma 3 can be interpreted as a discrete-time ana-
logue of [11, Lem. 4.6]. If the conditions of Lemma 3 are
satisfied, then the origin is also an exponentially stable fixed
point of the undisturbed systemx(k + 1) = f (x(k),0) with a
region of attractionX. Many robust stability results, similar to
those in [10], can be derived based on this fact [11, 20].

4 ISS Receding Horizon Control

Consider the LTI discrete-time system

x(k+ 1) = Ax(k)+ Bu(k)+ Ew(k), (10)

where the matricesA ∈ IRn×n, B ∈ IRn×m andE ∈ IRn×r , the
statex ∈ IRn, the control inputu ∈ IRm and the disturbance
w ∈ IRr .

Assumption 2. The pair(A, B) is stabilizable and measure-
ments of the state are available. The disturbance is unknown,
persistent, but only takes on values in a polytopeW ⊂ IRr

containing the origin.

The goal is to design a time-invariant, state feedback, receding
horizon control (RHC) policyu = κN(x) such that the closed-
loop system (6) withf (x, w) := Ax+ BκN(x) + Ew is ISS
and the following mixed constraints on the state and input are
satisfied for all disturbance sequencesw(·) ∈MW:

Cx(k)+ Du(k) ≤ g, ∀k ∈ IN, (11)

whereC ∈ IRs×n, D ∈ IRs×m, g ∈ IRs ands is the number of
constraints. Note that if the constraints are not mixed, but are
only simple upper and lower bounds on the state and input, then
s= 2(m+ n).

Assumption 3. The setZ := {(x,u) | Cx+ Du ≤ g} is non-
empty, compact and contains the origin in its interior.

We follow the same useful idea as in [1, 7, 14, 15] of pre-
stabilizing (10) with a linear state feedback gain and optimizing
over a sequence of perturbations to this control law. A gain
K ∈ IRm×n is chosen such that the eigenvalues ofA+ BK are
strictly inside the unit disk and

u(k) = K x(k)+ v(k), (12)

wherev ∈ IRm is the input perturbation, is substituted into (10)
to get the system

x(k+ 1) = AK x(k)+ Bv(k)+ Ew(k), (13)

whereAK := A+ BK . With a slight abuse of earlier notation,
let φ(k, x, v,w) denote the solution of (13) at timek if the
initial state isx at time 0 andv := [v′0 · · · v′N−1]′ ∈ IRNm

andw := [w′0 · · · w′N−1]′ ∈ IRNr are, respectively, sequences
of input perturbations and disturbances over the horizonk =
0, . . . , N − 1, i.e.

φ(k, x, v,w) := Ak
K x +

k−1∑
i=0

Ai
K (Bvk−1−i + Ewk−1−i ) (14)

for all k ∈ {1, . . . , N} with φ(0, x, v,w) := x.

Let W := WN :=
N times︷ ︸︸ ︷

W × · · · ×W, t := Nr , d := Nm and
the robust finite horizon optimal control problem (RFHOCP)
be defined as:

V∗N(x) := min
v∈CN(x)

N−1∑
k=0

x′k Qxk + u′k Ruk + x′N PxN , (15a)

whereQ ∈ IRn×n, R ∈ IRm×m and P ∈ IRn×n are positive
definite, xk := φ(k, x, v,0), uk := Kφ(k, x, v,0) + vk for
all k ∈ {0, . . . , N − 1} andxN := φ(N, x, v,0). The set of
robustly feasible input perturbation sequences of lengthN is

CN(x) :=

v ∈ IRd

∣∣∣∣∣∣∣∣∣
Cφ(k, x, v,w)+ Duk ≤ g,

uk = Kφ(k, x, v,w)+ vk,

k = 0, . . . , N − 1,

φ(N, x, v,w) ∈ X f , ∀w ∈ W

 .
(15b)



The terminal constraint setX f ⊂ IRn is given byp affine in-
equality constraints, and will be defined below. The minimizer
in (15a) is

v∗(x) := [v∗0(x)′ · · · v∗N−1(x)
′]′

:= arg min
v∈CN(x)

N−1∑
k=0

x′k Qxk + u′k Ruk + x′N PxN .
(15c)

Remark9. Note that thecost in (15a) and (15c) assumes that
the disturbance sequence is zero. However, it is still required
that all theconstraintsin (15b) be satisfied for all finite dis-
turbance sequencesw ∈ W . The motivation often given for
not including the disturbance in the cost is that, in practice, the
model is usually a good estimate of the true plant; minimizing
the worst-case cost over all disturbance sequences may result in
an unnecessarily conservative control action. As will be shown
below, one can still define a receding horizon controller that
makes the closed-loop system ISS, despite not having included
the disturbance in the cost function of the RFHOCP.

It is straightforward, by substituting (14) and thep affine in-
equalities definingX f into (15), to derive anH , G, Y, L, M, S,
bandcsuch that the RFHOCP (15) is equivalent to the UPQP(1)
with H andY being positive definite andc = 0. One can then
efficiently compute equivalent expressions forCN(x) as in (3)
and (5), where the number of affine inequality constraints is
q = sN+ p.

Before proceeding,note that the set of states for which a solution
to the RFHOCP (15) exists is the compact setXv

N defined in (2)
(assumingXv

N is non-empty). The receding horizon control law
κN : Xv

N → IRm can now be defined in the usual manner [19]
by the first component in the minimizer (15c) of the RFHOCP:

κN(x) := K x + v∗0(x), ∀x ∈ Xv
N . (16)

Since the controlu = κN(x) adopts a receding horizon policy,
additional assumptions on the RFHOCP are needed in order to
guarantee that the closed-loop system

x(k+ 1) = Ax(k)+ BκN(x(k))+ Ew(k) (17)

is ISS in Xv
N and that the constraints (11) are satisfied for all

time and for all disturbance sequences.

Assumption 4. The terminal constraint setX f in (15b) is a
(non-empty) polytope containing the origin in its interior, isro-
bustly positively invariantfor thedisturbedclosed-loop system
x(k+ 1) = (A+ BK)x(k)+ Ew(k), i.e.

(A+ BK)x + Ew ∈ X f , ∀x ∈ X f ,∀w ∈ W, (18)

andXv
N is contained inside the set

XK :=
{
x ∈ IRn | (C + DK )x ≤ g

}
. (19)

Remark10. For methods of computing anX f that satisfies (18),
see [12]. In particular, [12] shows how one can computeX f

such that it is themaximalpositively invariant set contained in
XK .

The above assumption allows us to state our first main result:

Theorem 1. If Assumptions 2–4 hold, then the set of statesXv
N

for which a robustly feasible input perturbation sequence exists
is non-empty, contains the origin in its interior and is robustly
positively invariant set for the closed-loop system(17), i.e.

Ax+ BκN(x)+ Ew ∈ Xv
N, ∀x ∈ Xv

N ,∀w ∈ W. (20)

Furthermore, an increase in the horizon lengthN does not result
in a decrease in the size ofXv

N , i.e.

X f ⊆ Xv
1 ⊆ · · · ⊆ Xv

N−1 ⊆ Xv
N . (21)

Proof. Proving (20) follows the standard procedure [7, 15, 19]
of showing that theshifted perturbation sequencẽv(x) :=
[v∗1(x)′ · · · v∗N−1(x)

′ 0′]′ is a feasible perturbation sequence
contained inCN(Ax+ BκN(x)+ Ew) if x ∈ Xv

N andw ∈ W.
Proving (21) is done by induction and follows similar arguments
as in proving (20), but showing instead that theappendedper-
turbation sequencêv(x) := [v∗0(x)′ v∗1(x)′ · · · v∗N−1(x)

′ 0′]′
is a feasible perturbation sequence contained inCN+1(Ax +
BκN(x)+ Ew) if x ∈ Xv

N andw ∈ W.

The next assumption allows us to use the value functionV∗N(·)
as an ISS-Lyapunov function for (17):

Assumption 5. The feedback gainK and positive definite ma-
trix P is chosen such thatF(x) := x′Px is a control Lya-
punov function inX f for theundisturbedclosed-loop system
x(k+ 1) = (A+ BK)x(k), i.e.

F((A+BK)x)−F(x)≤ −x′(Q+K ′RK)x, ∀x ∈ X f . (22)

Remark11. Clearly, aK andP that satisfy (22) are easily ob-
tained by solving the unconstrained infinite horizon LQR prob-
lem with weightsQ and R, i.e. K = −(R+ B′P B)−1B′P A
andP = (A+ BK)′P(A+ BK)+ K ′RK+ Q. Alternatively,
if A is strictly stable, then one can setK = 0 and letP be the
solution of the Lyapunov equationP = A′P A+ Q.

We can now state our final, main result:

Theorem 2. If Assumptions 2–5 hold and the receding horizon
control policyu = κN(x) is given by(16), then the closed-loop
system(17) is ISS inXv

N and the constraints(11) are satisfied
for all time and for all disturbance sequencesw(·) ∈MW.

Proof. Let f (x, w) := Ax + BκN(x) + Ew. Recall from
Theorem 1 thatXv

N is robustly positively invariant, hence the
constraints are satisfied for all time and allw(·) ∈ MW. It
follows from Lemma 1 thatV∗N andv∗0 are Lipschitz continuous
onXv

N , hencef is Lipschitz continuous onXv
N×W. SinceV∗N is

a continuous, positive definite function and 0∈ int
(
Xv

N

)
, there

existK-functionsα1 andα2 such that (9a) holds forV∗N [11,
Lem. 4.3]. Using standard arguments [18, 19] one can show
thatV∗N is a Lyapunov function for theundisturbedclosed-loop
systemx(k+1) = Ax(k)+BκN(x(k)), henceV∗N satisfies (9b)
with α3(z) := λmin(Q)z2. It follows from Lemma 3 that (17)
is ISS. Note that sinceXv

N is compact, it is sufficient to require
α1 andα2 to be of classK, rather thanK∞.



Remark12. Similar results to Theorem 2 have been obtained
for the receding horizon control of linear discrete-time sys-
tems [9] and nonlinear discrete-time systems [16]. The results
presented in this paper and the techniques used for proving them
are stronger than those in [9, 16]. For example,we do not require
V∗N to be continuously differentiable, as in [9]; continuous dif-
ferentiability of requires additional assumptions on (1) [6]. In
contrast to [16], since we are dealing with linear, rather thannon-
linear systems, we can guarantee the inclusion property in (21)
and that an exact expression forCN(x) can be computed.

5 Conclusions

Section 2 presented a tractable method for computing the so-
lution to a very specific class of uncertain parametric QPs and
LPs. It was shown that, in order to turn the problem from a
semi-infinite optimization problem to a finite dimensional opti-
mization problem, one need only solve a small number of LPs
or, if the uncertainty set is given by upper and lower bounds,
only compute the 1-norms of the rows of the matrix by which
the uncertainty enters the constraints. Once this has been done,
one can find the solution to the robust optimization problem
using standard QP or LP solvers. It was also shown that, under
some mild assumptions, the solution to the problem is Lipschitz
in the parameter.

Section 3 showed that if a nonlinear, discrete-time system is
Lipschitz in the state and the disturbance and the origin is expo-
nentially stable for the undisturbed system, then the disturbed
system is input-to-state stable.

Section 4 showed that one can use the results of Section 2 to
efficiently translate a class of robust finite-horizon optimal con-
trol problems (RFHOCPs) into a finite dimensional parametric
QP. The resulting optimization problem was shown to have the
same number of constraints and decision variables as the opti-
mal control problem with no disturbance and that the number of
decision variables and constraints increases only linearly with
the horizon lengthN. Under some mild assumptions, it was
shown that one can use the solution of the RFHOCP to define
a robust receding horizon controller that makes the closed-loop
system ISS and guarantees robust constraint satisfaction.
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