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input-to-state stability, receding horizon control, model predibave suggested compromise solutions to addressing this prob-

tive control, discrete-time systems. lem |1, 7,13, 14, 15, 16, 22]. However, some of these solutions
are, arguably, still computationally intensive or conservative.

Abstract Recent research in the optimization literaturer@ioust convex

optimizatiorproblems [3, 4, 5, 22] might shed some light on the

The f'rSt. part OT this paper studies a specific class_ of uncertgy ctability of a large class of robust optimal control problems.
guadratic and linear programs, where the uncertainty entersﬁ?

T ) . . s paper studies a very specific class of robust quadratic pro-
constraints in an affine manner and the uncertainty setisap Yémming problems, where the uncertainty enters the problem
tope. Itis shown that one can convert the resulting semi-infin

o blem | dard OP or LP with a fini ?\Iy via the constraints and the uncertainty set is a polytope.
optimization problem into a standard QP or with a finitey, o reqyits from this study will be applied to a class of robust

”“T“ber of decisic_)n v_ariablgs and_ afinite numbgr of constraingse orizon optimal control problems (RFHOCPSs), where the
This transfo_rmatlon is achieved in a computauonglly FraCtabLll%certainty is a bounded, persistent state disturbance that can
way by_ solving as many LPs as ”“?re are.constramts in the P8%e on values from a polytopic uncertainty set. The solution of
timization p_roblem.W|th0ut uncertainty. Itis also shown that he RFHOCP will then be used to define a robustly stabilizing
the uncertainty setis given by.upper and Iower.bounds only, t,hr%réeding horizon control (RHC) law.

one need not solve any LPs in order to do this transformation;

computing the 1-norms of the rows of the matrix by which th&ection 2 defines the class of robust optimization problems that
uncertainty enters the constraints is sufficient. The second paift be studied. Section 3 reviews and extends some basic re-
of the paper reviews and extends some definitions and resgi§§s in input-to-state stability of nonlinear discrete-time sys-
on input-to-state stability for nonlinear discrete-time systeniéms. Section 4 introduces a class of RFHOCPs. It will be
The third part of the paper shows how one can translate a claggwn that if the cost is assumed to be quadratic and the dis-
of robust finite-horizon optimal control problems (RFHOCPd)rbance is zero in cost, but included in the constraints, then
into the class of robust convex optimization problems that wege RHC law can be computed efficiently using the results from
studied in the first part of the paper. It is assumed that the sggction 2. Itis also shown that the resulting closed-loop is input-
tem under consideration is linear, that there is a persistent, fustate stable (ISS) and that mixed constraints on the state and
bounded state disturbance that assumes values in a polytopeapidt are robustly satisfied for all time.

that there are mixed affine constraints on the input and state. lﬁXny of the results in this paper are available in the literature in

using the results from the previous sections, it is shown that O form or another. This paper makes a contribution by bring-

can set up a receding horizon controller (RHC) that is 'npUt'tRf%ﬁhese results together in a single paper, presenting them with

state stable (ISS) and guarantees robust constraint satisfacg Rghtly different emphasis and extending the results where
for all time. The number of decision variables and constraiqt@cessary

in the RFHOCP that define the RHC law increases linearly wit
the horizon length. Notation: If x € R" is a vector, therx” denotes its transpose,

IX|lp and ||x]| denotes thg-norm and Euclidean norm o,
respectively. 1 := [1 --. 1] is a column vector of ones of
suitable dimensiong :=[0 --- 1 --. 0] is thei'th standard

The field of optimal control of constrained systems without ufasis vector in Euclidean space, i.e. acolumn vector with 1 as the
certainty is fairly well developed and understood, but the opth componentand all other components being zera.afdy

timal control of constrained systems with uncertainty is still @€ vectors, ther < y will be used to denote component-wise
very open area with very few useful results [17, 18, 19]. ofgequality. If S € R9*! is a matrix andW C R'is a non-

of the reasons for the difficulty in implementing robust coreMpty compact set, then the column vector vecain Sw :=
trollers for constrained systems is that the incorporation of th@iNwew €;SW - - Minycyw € Sw]’, wheree(Siis clearly the
effect of the uncertainty in the model often translates into coth row of S. The matrix|§| is formed by taking the absolute
putationally intractable problems. Various researchers, esp@lues of the components & i.e. if S := [sj] € R%, then

1 Introduction



IS :=T[Isjll e IRY*t, Where it will notlead to confusiom (k) ~ Since the main aim of this paper is to show how results in robust

will denote the actual value of the sequence of variablesat optimization can be used to efficiently solve a class of control

timek, while wy will be used to denote the predictionofr +k) problems, the current staxewill be treated as the parameter of

at a time instank steps into the future b () = wg = wis the the UPQP that results from formulating the associated control

current value of the variable. problem; in the seque¥ will denote a sequence of disturbances
that acts on the system over a finite horizon of lenytland

2 A Class of Uncertain Parametric QPs v*(-) will be used to define a control policy.

This paper will consideuncertain parametric quadratic pro- FOr @ givenx, the optimization problem defined in (1) can be

grams(UPQPs) [3, 5] in the form seen to be a semi-infinite optimization problem, where there
is a finite number of decision variables, but an infinite number
V(X)) := min VHV+VGx+XxYx+cl, (1a) of constraints. The rest of this section will show how one can

VECN (X)

efficiently convert the optimization problem in (1) into an op-

and therobustly feasible setf decision variables is defined astimization problem with a finite number of decision variables
and affine inequality constraints.

— d
Cn(X) = {V €R™ |Lv=Db+Mx+Sw Vwe W} (1b)  sincew is assumed to be given by a finite number of affine

inequalities, the following well-known result implies that, by
where the matricesi € R4, G € R™", Y € R™", L € golyingq LPs (recall thag is the number of rows i, M, S
R4, M € R™", S R and the vectorb € RY,c € R%. " and components df), one can obtain an expression @y (x)
The minimizer is in terms ofq affine inequalities:

v¥(x) :=arg min VVHvV+V'Gx+x'Yx+cv. (1c) Proposition 1 (Robustly feasible set).If Cn(x) is given
veeN ) by (Lb), then

In the abovey e RY is thedecision variablex € R" is the
parametetthat affects the solution of the optimization problem, Cn(X) = {v e RY
w € R!istheuncertain datandWw c R'istheuncertainty set
The reason for includiniy is to be consistent with the notation
in subsequent sections; the roleMdfwill become clearer. Note
that if H, G andY are zero and is nhon-zero, then (1) is an
uncertain parametric linear progrartUPLP) [4, 22].

Lv < b+ Mx + vec minSN}. 3)
wew

Proof. Note that one can interchange the order of the universal
quantifiers to get that

CN(X) = {v c RY

g(Lv—b— Mx—Sw) <0,
Vie{l,...,q},Vvwe W

e{(Lv—b—Mx—SW)go,}

Assumption 1. ‘W is a polytope (i.e. a bounded, closed and
convex polyhedron) containing the origin and is given by a finite
number of affine inequalities. The set of parameters for which _ {v c R

there exists a robustly feasible decision variable Ywe W, Vi e {l,...,q}

XN ={xeR" |Cn(X) # 0} (2)  For any continuous scalar functigh : RY x R" x Rt > R,

. . i(V,X,W) <0,Yw € W & maxy i(v,Xx,w) < 0. The
is non-empty and compact. The €&y (x) is compact for all ;qultfollowsfrom lettingy; (v, X, w)ellg(Lv—b—Mx—SN)

y & % o
i(hgn>|(—|N IGIfaCnE\?:;rZezneToandY are positive definite. 1€ 0, 5”21 c (1. q) and nofing that méca (el Lv — elb —

: : &/Mx — &Sw) = € Lv — &b — &/ MX + Maxye w(—€ Sw) =
Remarkl. Note that [3, 4, 5, 22] do not considparametric €LV — &b — &Mx — minyew (€ Sw). O

programs explicitly in their formulation. However, it is trivialRemarIG Proposition 1 implies that solving the uncertain prob-
to extend the relevant ideas for standard uncertain programs '

to uncertain parametric programs. Note also that even thoueﬂ] (1)is only slightly more involved than solving the equivalent

the uncertaintyv does not enter the cost in the class of UPQPS rtalnprobl_em (in other.words, whew := {0}. qnd the(e ISNno
X AR : : unf:ertamty in the data); the number of decision variables and

considered here, itis still possible to formulate certain classeﬁrc])e number of constraints are the same. Note also thatitis

min-max problems in the form of (1) [3, 4, 15, 22]. However, ' q

. . . ) . at define vec migcw Sw are independent of the parameter
in the sequel we will be restricting our attention to optimal :

. . : . .and therefore do not need to be solved for different values of
control problems in which the uncertainty only enters via the

constraints. If ‘W is given by simple upper and lower bounds only (which is
Remarlk2. The notation used above is slightly inconsistent witbften the case in practical applications), then the use of an LP
conventional notation used in the parametric programming Igelver in obtaining a computationally tractable expression for
erature, where is conventionally used to denote the decisio@y (x) is not necessary. This is because vecgain Sw can
variable and another variable is used to denote the paramdiercomputed far more efficiently by computing the 1-norms of
However, itis consistent with conventional notation used in coeach of the rows o6. To see why this is the case, recall the
trol theory, where often denotes the current state of the systeffollowing result:



Proposition 2 (LP with box constraints). Ifthe vectora e R' 3 Input-to-State Stability

and W is a hypercube given b
P J y A functiona : R>g — Rxg is a X-function if it is strictly

Wi={weR"||W]|w<n}, (4) increasing andy(0) = O; it is a Ko-function if it is a k-
function andu(z) — oo asz — oco. A functiong : Rxg x
R>0 — R>pis aX L-function if, for eachk > 0, the function
B(-, k) is aKX -function and, for each > 0, the functiorg(z, -)
is decreasing anfl(z, k) — 0 ask — oc.

wheren is a positive scalar, theminycw a'w = —n||a||1 and
MaXyew aW = nlla|1.

Proof. Note that the constraints on component of w are
independent of constraints on the other components # j. Consider now the following nonlinear, discrete-time system

In other wordsW = {we R' [|wij| <n,i=1...,t} It
then follows that magcw aw = MaXycw Y \_; &Wi = x(k+1) = fxk), wk)), (6)
t t
L maXy <, W = i max(naj, —na; = . o
%{:1 g:?w"_—" a4”v;/.” The p%cl)?lis c)(;{rza*pleteizja‘gy recall-Wherex € R"isthe state and € R" is adisturbance that takes
ing;:trﬁgt mirv,v_w];’w l_ MaXyey (—a'W) onvaluesinacompact 9&t C R" containing the origin. Given
€ - € - .

the statex at time 0 (note that since the system is time-invariant,
we can always regard current time as zero) and a disturbance
sequenceu(-), let ¢ (k, X, w(-)) denote the solution to (6) at
Corollary 1 (Uncertainty set is a hypercube). If W is given time instank and letMy denote the set of infinite disturbance
by (4)andCn (x) is defined ir(1b), then one need only computesequences taking values\i.

the1-norms of each of the rows &in order to generate thg
affine inequalities ir{3), i.e.

From Propositions 1 and 2 it follows that:

Itis assumed that the state is measured at each time instant, that
f (0, 0) = O butthatf (0, W) # {0}; in otherwords, the originis
Cn(X) = {v eRY |Lv<b+ Mx— ,7|s|1} . (5) anequilibriumforthe undisturbed system, butitis notacommon
fixed point for allw € W. For systems of this type, a useful
Note that S|1is a column vector formed by stacking theorms  notion of stability is input-to-state stability [9, 10, 16, 21]. We
of the rows ofSon top of each other. therefore introduce the following definition, which is a slight

Remarkd. Proposition 2 and Corollary 1 can be stated withotgodification of the one in [10], in order to haveregional
loss of generality. IfW is nota hypercube, but a hyper-rectangl@éfinition of input-to-state stability:

given byasyn_nmetrlc_upperandIo_vverboundso.nthecomponqgginition 1 (ISS). System (6) is(regionally) input-to-state
of w, then it is possible to redefin® b and W in (1b) via @ gap1e(1SS) inasetc ¢ R™ containing the origin in its interior
suitable mapping. Similarly, it is trivial extending the resul , X £-function 8 and aX-functiony exist such that, for
to the more general case whéa# is the affine mapping of a all x € X and allw(-) € Mw, the solution of (6) satisfies
hypercube and the mapping is known, i.eWifis the translation bk X, w() € X and

f

of a scaled, rotated and/or projected hypercube. For example, i
W= {TW+y | IW|e < n}, then mir, {a'w |[we W} =
ming {a'(TW +y) ] IWlleo <n}=—nlTallz+ay. gk, x, wNI < B UIXILK) + v sup . lw@I') (7)

t€{0,....k—
Once (1) has been converted into an equivalent finite-
dimensional optimization problem by replacing (1b) with (3P" &l k € N.
or (5), one can compute a solution in a number of standard wagt9bally ISS.

One way is: giverx, computeVy (x) andv*(x) using off-the- pemarks, It can be seen from (7) that the ISS property im-
shelf LP or QP solvers. Alternatively, one can obtain expliGijies that the origin is an asymptotically stable fixed point of
expressions for the _functlor\q"\‘,() andv*(-) using parametric he undisturbed systemik + 1) = f(x(k), 0) with region of
programming techniques [2, 6]. attractionX. Note also that ISS implies that all trajectories
Lemma 1. If Assumption 1 holds andb)is replaced with(3) of (6) are bounded for all bounded disturbance sequences and
or (5), then the value functioXy; : X}, — R is Lipschitz con- that (6) is “converging-disturbance converging-state”, i.e. every
tinuous onXY,. Furthermore, ifH andY are positive definite, trajectory¢(k, X, w(-)) — 0 if w(k) — 0 ask — oo. Fur-
then the minimizing functiow* : X, — RY is also Lipschitz thermore, the bound on the state trajectory is proportional to the
continuous onxY, . bounds on the disturbance and initial condition. See also [10]
N . .
and the extensive literature on ISS [11, 21] for more results and

Proof. Immediate from the results in [2, 6], where it is showinterpretations of input-to-state stability.

thatVy (-) is a convex, piecewise quadratic (piecewise affine jf . . )
cis non-zero an, G andY are zero) function and(-) is a In order to be self-contained, we present the following result:

continuous, piecewise affine functiorcit= 0 andH andY are | emma 2. Let X contain the origin in its interior and be a
positive definite. Note that, contrary to [8], [2, 6] do not requirgypustly positively invariant set for systd8), i.e. f (x, w) € X
that the solution of the dual of (1), with (1b) replaced by (3br all x € X and allw € W. If there existKo-functionsas,
or (5), be unique. O «y, a3, a X-functiono and a continuous functiol : X —

If X = R", then we say that system (6) is



IR>o, such that, for allx € X and allw € W the following The goalis to design a time-invariant, state feedback, receding

holds: horizon control (RHC) policy = «n(X) such that the closed-
loop system (6) withf (X, w) := AX+ Bxn(X) + Ew is ISS
(X)) = V(x) = a2(lIXID), (82)  and the following mixed constraints on the state and input are
V(f(x,w)) = V(X) < —az(IXI) +o(lwl), (8b) satisfied for all disturbance sequenags) € Mw:
then systeni6) is ISS inX. Cx(k) + Du(k) < g, Yk € N, (11)
Proof. See [10, Lem. 3.5]. 0 WwhereC € R®*", D € R®™, g € R® ands is the number of

o _ constraints. Note that if the constraints are not mixed, but are
Remark6. A V(-) that satisfies (8) is often referred to as aBnly simple upper and lower bounds on the state and input, then
ISS-Lyapunov function s=2(m+n).

We conclude this section with the following result, which, té\ssumption 3. The setZ := {(x,u) | Cx+ Du < g} is non-
the best of our knowledge, is new: empty, compact and contains the origin in its interior.

Lemma 3. Let X contain the origin in its interior and be a
robustly positively invariant set for systdf), i.e. f (X, w) € X
forallx e Xandallw e W. If f : X x W — RR"is Lipschitz
continuous o x W and there exisf . -functionsx1, ap and
a3 and a functionV : XX — Rxg that is Lipschitz continuous
on X such that, for allx € X the following holds:

We follow the same useful idea as in [1, 7, 14, 15] of pre-
stabilizing (10) with a linear state feedback gain and optimizing
over a sequence of perturbations to this control law. A gain
K € R™"M js chosen such that the eigenvalues\of BK are
strictly inside the unit disk and

ar(IX) < V() < a(Ix]), (9a) ulk) = Kx® +v(, (12)
V(f(x,0) — VX)) < —as(]X]), (9b) wherev € R™Mis the input perturbation, is substituted into (10)
. . ) . to getthe system
thenV (-) is an ISS-Lyapunov function and systéhis ISS in
X. x(k+ 1) = Axx(k) + Bu(k) + Ew(k), (13)

Proof. Since ||V (f(x, w)) — V(f(x,0)| < Ly fx, w) — whereAk := A+ BK. With aslig_ht abuse of earl_ier nptation,
f(x,0)| < LyLg¢|lw|, whereLy and L¢ are the Lips- !eFfi)(k,x,v,_w) denote the solution of (13) at time if t’\tle
chitz constants o¥/(-) and f (-), respectively, it follows that initial state isx at time 0 andv := [vp --- vy_4]" € R "
V(f(x, w)) — V(X) = V(f(X,0) — V(X) + V(f(x,w)) — andw :=[wq --- wy_4]" € RN are, respectively, sequences
V(f(x,0)) < —az(|x|])+LvL¢|wl. The proofis completed of input perturbations and disturbances over the horizea

by lettingo (z) := Ly L¢zin Lemma 2. o O0....,N-1ie.

Remark7. Note that, ifX in Lemmas 2 and 3 is compact, then k=1

ok i . .
the condition thatv, «» andas be of classk., can be relaxed ¢ (K. X, V, W) := Ay x + Z Ak (Buk-1-i + Ewk-1-i) (14)

to the condition that they only be of clags. i=0
Remark8. Lemma 3 can be interpreted as a discrete-time arfar allk € {1, ..., N} with ¢ (0, X, v, w) := Xx.
logue of [11, Lem. 4.6]. If the conditions of Lemma 3 are N times

satisfied, then the origin is also an exponentially stable fixEd

etw:= WN :=Wx...xW, t:= Nr,d:= Nmand
po'f‘t of the und_|sturbed systertk + 1) - Fxda, 0y \.Nlt.h a the robust finite horizon optimal control problem (RFHOCP)
region of attractior. Many robust stability results, similar to

those in [10], can be derived based on this fact [11, 20]. be defined as:

N-1
* —— H / / /
4 ISS Receding Horizon Control NGO = kZ:O X QxR Ay P, (152)
Consider the LTI discrete-time system whereQ € R™M, R ¢ R™M andP € RN are positive
x(k+ 1) = Ax(K) + Bu(k) + Ew(k), (10) definite, xk := ¢ (K, x,Vv,0), ux := Kok, x,Vv,0) + vk for

allk € {0,..., N — 1} andxn := ¢(N, x,v,0). The set of
where the matrices € R™", B € R™™ andE € R"™", the robustly feasible input perturbation sequences of letth
statex € IR", the control inputu € R™ and the disturbance
weR". Co(k,x,v,w) + Duk < g,

uk = Kok, X, v, w) + vy,

Assumption 2. The pair(A, B) is stabilizable and measure- ey (x) := {v ¢ RY
ments of the state are available. The disturbance is unknown, k=0,...,N—-1,
persistent, but only takes on values in a polytdWec R’ d(N,X,v,w) € X5, Vwe W

containing the origin. (15b)



The terminal constraint set; c R" is given byp affine in- The above assumption allows us to state our first main result:

equality constraints, and will be defined below. The minimizerrheorem 1. If Assumptions 2—4 hold, then the set of statis

in (152) is for which a robustly feasible input perturbation sequence exists
VE(X) == [0§(X) - vl 0T is non-empty, contains the origin in its interior and is robustly

N_1 (150) positively invariant set for the closed-loop systéli), i.e.
i=arg_min D X Q¢ + U R + Xy PXn. AX+ Bkn(X) + Ew € XY, ¥x € XY, Vw e W.  (20)
k=0

VeCN (X

Furthermore, an increase in the horizon lengtldoes not result
Remark9. Note that thecostin (15a) and (15c) assumes thajn 3 decrease in the size o, i.e.

the disturbance sequence is zero. However, it is still required

that all theconstraintsin (15b) be satisfied for all finite dis- Xi S X1 S S Xy € XN (21)
turbance sequences € 'W. The motivation often given for

not including the disturbance in the cost is that, in practice, thgoof. Proving (20) follows the standard procedure [7, 15, 19]
model is usually a good estimate of the true plant; minimizir@f showing that theshifted perturbation sequence(x) :=

the worst-case cost over all disturbance sequences may resultix)’ --- v§_;(x)" 01" is a feasible perturbation sequence
an unnecessarily conservative control action. As will be show@ntained inen (Ax + Brn(x) + Ew) if x € X andw € W.
below, one can still define a receding horizon controller thBfoving (21)is done by induction and follows similar arguments
makes the closed-loop system ISS, despite not having includ&dn proving (20), but showing instead that tigpendecper-

the disturbance in the cost function of the RFHOCP. turbation sequence(x) := [vg(X)" vy (X)" - v§_1(X)" O
is a feasible perturbation sequence containe@\n.1(AX +
It is straightforward, by substituting (14) and tipeaffine in-  Biy(x) + Ew) if x € X}, andw € W. O

equalities defining ¢ into (15), to deriveaid, G,Y, L, M, S
bandcsuch thatthe RFHOCP (15) is equivalent to the UPQP (the next assumption allows us to use the value fund#gn)
with H andY being positive definite and= 0. One can then as an ISS-Lyapunov function for (17):

efficiently compute equivalent expressions g (x) as in (3)

and (5), where the number of affine inequality constraints’ sum_ption 5. The feedback gai and po_sitive definite ma-
©) q y %?( P is chosen such thaE (x) := x’Px is a control Lya-

punov function inX ¢ for the undisturbedclosed-loop system
Before proceeding, note that the set of states for which a solutjiqik + 1) = (A + BK)x(k), i.e.
to the RFHOCP (15) exists is the compactsgtdefined in (2) , ,
(assumingXy, is non-empty). The receding horizon control law F((A+BK)x)—F(x) < =X (Q+K'RK)x, Vx € Xt. (22)
kN XYy — R™ can now be defined in the usual manner [1%emarkl1. Clearly, aK and P that satisfy (22) are easily ob-
by the first componentin the minimizer (15c) of the RFHOCRained by solving the unconstrained infinite horizon LQR prob-
lem with weightsQ andR, i.e. K = —(R+ B'PB)"1B'PA

N (O = Kx +u5(x), vx € XY (16)  andP = (A+ BK)YP(A+ BK) + K'RK + Q. Alternatively,

if Ais strictly stable, then one can 9¢t= 0 and letP be the

Since the contrall = «n (x) adopts a receding horizon policy.gq|,tion of the Lyapunov equatid® = AP A+ Q.
additional assumptions on the RFHOCP are needed in order to

guarantee that the closed-loop system We can now state our final, main result:

X(k+1) = AX(k) + Brn(X(K)) + Ew(k) (17) Theorem 2. If Assumptions 2-5 hold and the receding horizon
control policyu = kN (X) is given by(16), then the closed-loop
is ISS in X}, and that the constraints (11) are satisfied for allystem(17)is ISS inX}, and the constraintl1) are satisfied
time and for all disturbance sequences. for all time and for all disturbance sequences$) € M.

Assumption 4. The terminal constraint sets in (15b) is a )
(non-empty) polytope containing the origin in its interiomas  ©-/00F- Let T(X, w) := AX + Bin(X) + Ew. Recall from

bustly positively invariantor thedisturbedclosed-loop system heorem 1 thaiy, is robustly positively invariant, hence the
x(k+ 1) = (A+ BK)X(K) + Ew(K), i.e. constraints are satisfied for all time and al{-) € Mw. It

follows from Lemma 1 tha¥§; andv are Lipschitz continuous
(A+BK)X+ Ew € X¢, VX € Xi,Yw € W, (18) onX{, hencef is Lipschitz continuous oX}; x W. SinceVy; is
_ o a continuous, positive definite function anet0nt (XY, ), there
andXy is contained inside the set exist X -functionsa; andaz such that (9a) holds fov [11,
o n Lem. 4.3]. Using standard arguments [18, 19] one can show
Xk = {X €RTIC+DIOx= g} ' (19) thatVy; is a Lyapunov function for thendisturbectlosed-loop
Remarkl0. For methods of computing X that satisfies (18), systemx(k+1) = Ax(k)+ Bin (x(k)), hencev| satisfies (9b)
see [12]. In particular, [12] shows how one can compXte with a3(2) := Amin(Q)Z2. It follows from Lemma 3 that (17)
such that it is thenaximalpositively invariant set contained inis ISS. Note that sincX}, is compact, it is sufficient to require
XK. a1 andas to be of classk, rather thanK . O



Remarkl2. Similar results to Theorem 2 have been obtained3] A. Ben-Tal, A. Nemirovski. “Robust convex optimization”,
for the receding horizon control of linear discrete-time sys- Mathematics of Operations Resear2B:4, pp. 769805, (1998).
tems [9] and nonlinear discrete-time systems [16]. The resul{g] A.Ben-Tal, A. Nemirovski. “Robust solutions of uncertain linear
presented in this paper and the techniques used for proving them programs” Operations Research Lette5:1, pp. 1-13, (1999).
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