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Abstract— This paper presents new results that permit the
computation of the set of states that can be robustly steered,
using state feedback, to a given target set in a finite number of
steps. It is assumed that the system is discrete-time, nonlinear,
time-invariant and subject to mixed constraints on the state
and input. A persistent disturbance, dependent on the current
state and input, acts on the system. The results in this paper
generalize previously published results that are not able to
address state-input dependent disturbances. The application
of the results to the computation of the maximal robustly
controlled invariant set is briefly discussed. It is shown how
polyhedral algebra, linear programming and computational
geometry may be employed for set computations relevant
to the analysis of linear and piecewise affine systems with
additive state disturbances. Some simple examples are given
to demonstrate that convexity of the robustly controllable sets
cannot be guaranteed even if all relevant sets are convex and
the system is linear.

Keywords: Constrained control, robust control, nonlinear
systems, piecewise affine systems, set invariance, controllability,
uncertain systems.

I. I NTRODUCTION

The problems of controllability to a target set and compu-
tation of robustly controlled invariant sets for systems subject
to constraints and persistent, unmeasured disturbances have
been the subject of study for many authors [1], [2], [3],
[4], [5], [6], [7], [8]. Though many papers have results that
can be applied to a large class of nonlinear discrete-time
systems, most authors assume that the disturbance is not
dependent on the state and input. The paper [4] appears to
be the only previously published paper that addresses state-
dependent disturbances directly. In [5] a general framework is
introduced for systems with mixed state and input constraints
subject to state-input dependent disturbances, but the specific
results obtained for the computation of the set of states
from which the system can be controlled to a target set are
restricted to the case when disturbances are independent of
the state and input. This paper extends the results of [4], [5],
[6] to the case where the disturbance is dependent on the
state and input. Furthermore, results are given for linear and
piecewise affine systems that show how polyhedral algebra,
linear programming and computational geometry may be
employed to perform the relevant set computations.

The need for a framework that can deal with state-input
dependent disturbances was briefly motivated in [5]. Distur-

bances that are dependent on the state and/or input frequently
arise in practice when trying to model systems with physical
constraints. For example, consider the nonlinear (piecewise
affine) system

x+ = Ax+Bsat(u+Euw)+Exw (1)

which is subject to a bounded disturbancew ∈ W . The
function sat(·) models physical saturation limits on the input.
Assuming that these saturation limits are symmetric and have
unit magnitude, an equivalent way of modelling (1) is to
treat it as linear system with input-dependent disturbances,
i.e. letting

x+ = Ax+Bu+BEuw+Exw, (2a)

where the control is constrained to satisfyu∈ U , where

U , {u | ||u||∞ ≤ 1} , (2b)

and the input-dependent disturbancew∈ W (u) satisfies

W (u) , {w | ‖u+Euw‖∞ ≤ 1 andw∈ W } . (2c)

State-input dependent disturbances arise in practice when
the uncertainty associated with a model is greater in some
regions of the state-input space than in other regions. For
example, a model obtained by linearizing a nonlinear model
is obviously more accurate near the point at which the model
was linearized. A state-input dependent disturbance model
permits less conservative results to be obtained than can be
obtained with a model in which the disturbance is assumed
to be independent of the state and input.

Another example where uncertainty may be modelled as a
state-input dependent disturbance arises if there is parametric
uncertainty present in the model. The reader is referred to [9],
[10] to see how reachability computations can be carried out
for this type of uncertainty.

This paper is organized as follows. Section II presents the
main results of this paper and Section III briefly discusses
how the results in Section II can be used to iteratively
compute the set of states that can be steered to a target set ina
finite number of steps, as well as how one could compute the
maximal robustly controlled invariant set. In order to validate
the results presented in this paper, Section IV presents a few
simple numerical examples. The main contributions of this
paper are summarized in Section V. The appendix contains



definitions for the continuity of set-valued maps and results
which allow one to compute the set difference of (possibly
non-convex) polygons.

A more detailed exposition, together with proofs for all
results stated in this paper, may be found in [11].

NOTATION AND DEFINITIONS: The set difference ofA⊂
R

n andB⊂R
n is A\B, {x∈ A | x /∈ B}= A∩Bc, whereBc

is the complement ofB. 2A is the set of subsets ofA. Given
a setΩ ⊂ C×D, the projection ofΩ onto C is defined as
ProjC(Ω) , {c∈C | ∃d ∈ D such that(c,d) ∈ Ω}. A poly-
hedronis the (convex) intersection of a finite number of open
and/or closed half-spaces and apolygonis the (possibly non-
convex) union of a finite number of polyhedra.

II. T HE ONE-STEPROBUSTLY CONTROLLABLE SET

Section II-A gives the main results of the paper, which
are then specialized in Section II-B for the case when the
disturbance is dependent only on the state or input or when
the system does not have a control input. Section II-C shows
that the set of states robustly controllable to the target set is
a polygon if the system is linear, affine or piecewise affine,
the target set is a polygon and all relevant constraint sets are
polygons.

A. General Case

Let X = R
n denote the state space,U = R

m the input space
andW = R

p the disturbance space. Consider the nonlinear,
time-invariant, discrete-time system

x+ = f (x,u,w), (3)

wherex∈ X is the current state (assumed to be measured),
x+ is the successor state,u∈U is the input, andw∈W is an
unmeasured, persistent disturbance that is dependent on the
current state and input:

w∈ W (x,u) ⊂W. (4)

The state and input are required to satisfy the constraints

(x,u) ∈ Y ⊂ X×U. (5)

The constraint(x,u) ∈ Y defines the state-dependent set of
admissible inputs

U (x) , {u | (x,u) ∈ Y } (6)

as well as the set of admissible states

X , {x | ∃u s.t.(x,u) ∈ Y } = {x | U (x) 6= /0} . (7)

In order to have a well-defined problem, we assume the
following:
A1. For all (x,u) ∈Y , W (x,u) 6= /0 andW (·) is bounded on
bounded sets.

Given a setΩ ⊆ X , this section shows how the one-step
robustly controllable set (the set of states Pre(Ω) for which
there exists an admissible input such that, for all allowable
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Fig. 1. Graphical illustration of Theorem 1

disturbances, the successor state is inΩ) may be computed.
The set Pre(Ω) is defined by

Pre(Ω) , {x | ∃u∈ U (x) s.t.f (x,u,W (x,u)) ⊆ Ω} . (8)

Remark 1: If (x,u) ∈ Y ⇔ x ∈ X andu ∈ U , then
Pre(Ω) , {x∈ X | ∃u∈ U s.t.f (x,u,W (x,u)) ⊆ Ω}.

Let the setsΣ, Π andΦ be defined, respectively, by

Σ , {(x,u) ∈ Y | f (x,u,W (x,u)) ⊆ Ω} , (9a)

Π , {(x,u,w) | (x,u) ∈ Y andw∈ W (x,u)} , (9b)

Φ , f−1(Ω) , {(x,u,w) | f (x,u,w) ∈ Ω} . (9c)

Theorem 1 (Main result):SupposeA1 holds. The set of
states that are robustly controllable toΩ is

Pre(Ω) = ProjX (Σ) , (10a)

where

Σ = ProjX×U (Π)\ProjX×U (Π\Φ) . (10b)

Note that the setΣ defined in (9a) is equal to ProjX×U (Π)\
ProjX×U (Π\Φ), as stated in (10b). A graphical illustration
of Theorem 1 is given in Figure 1, where the setW (xa,ua)
for a point (xa,ua) ∈ Y is also shown.

Theorem 2:SupposeA1 holds, f : R
n ×R

m×R
p → R

n

is continuous andW : R
r → 2R

p
, r , n+ m, is continuous

and bounded on bounded sets. IfΩ is closed, then Pre(Ω) is
closed.

B. Special Cases

Consider first the simpler case when the disturbance con-
straint set is a function ofx only, i.e. the disturbancew



satisfiesw∈ W (x). The definitions ofΣ and Π in (9a) and
(9b), respectively, and Pre(Ω) become

Σ , {(x,u) ∈ Y | f (x,u,W (x)) ⊆ Ω} , (11a)

Π , {(x,u,w) | (x,u) ∈ Y andw∈ W (x)} , (11b)

Pre(Ω) , {x | ∃u∈ U (x) s.t.f (x,u,W (x)) ⊆ Ω} . (11c)

Theorem 1 remains true with these changes and it covers
the case studied in [4]. A similar modification is needed if
the disturbance constraint set is a function ofu only, i.e. the
disturbancew satisfiesw∈ W (u).

Remark 2: If the disturbance is independent of the state
and input, Theorem 1 provides a method for computing the
one-step robustly controllable set and is an alternative tothe
method in [5], [6], [10], where it is proposed to compute
the so-calledPontryagin difference. Obviously, both methods
will result in the same set. The difference between the two
methods is that Theorem 1 relies on projection whereas
the method in [5], [6], [10] does not. It is not easy to
determinea priori which method would be more efficient.
The computational requirements depend very much on the
specifics of the problem and the computational tools that are
available.

Next, consider the case whenf is a function of(x,w) only,
i.e. the system has no inputu. In this case, the constraint
(x,u) ∈ Y is replaced byx∈ X ⊂ X and assumptionA1 is
replaced by:
A1’: For all x ∈ X , W (x) 6= /0 and W (·) is bounded on
bounded set.

Also, in this case the definitions ofΣ, Π and Φ in
Theorem 1, and Pre(Ω) are replaced by

Σ , {x∈ X | f (x,w) ∈ Ω, ∀w∈ W (x)} , (12a)

Π , {(x,w) | x∈ X andw∈ W (x)} , (12b)

Φ , f−1(Ω) , {(x,w) | f (x,w) ∈ Ω} , (12c)

and
Pre(Ω) , {x∈ X | f (x,W (x)) ⊆ Ω} . (12d)

Thus, Pre(Ω) is now the set of admissible states such that
the successor state lies inΩ for all w∈ W (x). In this case,
the conclusion of Theorem 1 becomes

Pre(Ω) = Σ = ProjX (Π)\ProjX (Π\Φ) . (13)

This special case requires less computational effort since
operations are performed in lower dimensional spaces and
only two projection operations are needed.

C. Linear and Piecewise Affinef (·) with Additive State
Disturbances

Consider the system defined in (3) with

f (x,u,w) , Aqx+Bqu+Eqw+cq if (x,u,w) ∈ Pq. (14)

The sets{Pq | q ∈ Q}, where Q has finite cardinality, are
polyhedra and constitute a polyhedral partition ofΠ, i.e.Π ,

⋃

q∈QPq and the setsPq have non-intersecting interiors. It is
assumed thatf (·) is continuous on the interior ofΠ. For all
q∈ Q, the matricesAq ∈ R

n×n, Bq ∈ R
n×m, Eq ∈ R

n×p and
vectorcq ∈ R

n.
Note that ifΩ :=

⋃

j∈J Ω j , where
{

Ω j | j ∈ J
}

is a finite
set of polyhedra, thenΦ in (9c) is given by

Φ =
⋃

( j,q)∈J×Q

{

(x,u,w) ∈ Pq
∣

∣ Aqx+Bqu+Eqw+cq ∈ Ω j
}

.

Since
{

(x,u,w) ∈ Pq
∣

∣ Aqx+Bqu+Eqw+cq ∈ Ω j
}

is a
polyhedron, it follows thatΦ is the union of a finite set
of polyhedra, henceΦ is a polygon.

The Appendix contains new results that allow one to com-
pute the set difference between two (possibly non-convex)
polygons. The projection of the set difference is then equal
to the union of the projections of the individual polyhedra
that constitute the set difference. The projection of each
individual polyhedron can be computed via Fourier-Motzkin
elimination [12] or via enumeration and projection of its
vertices, followed by a convex hull computation [13]; see
also [14], [15] for alternative projection methods.

We can now state the following result:
Theorem 3 (Piecewise affine systems):Suppose assump-

tion A1 holds. If the system is given by (14) andΠ and
Ω are polygons, then the robustly controllable set Pre(Ω), as
given in (8) and (10a), is a polygon.

Remark 3:Clearly, Theorem 3 holds if the system is linear
or affine (i.e.Q has cardinality 1). It is interesting to observe
that, even if Ω and Π are both convex sets andf (·) is
linear, there is no guarantee that Pre(Ω) is convex. This is
demonstrated in Section IV via a numerical example.

III. T HE i-STEPROBUSTLY CONTROLLABLE SET AND

ROBUSTLY CONTROLLED INVARIANT SETS

Consider the general case (Section II-A). For any integeri,
let Xi denote thei-step (robustly controllable) setto Ω, i.e.Xi

is the set of states that can be steered, by a time-varying state
feedback control law, to the target setΩ in i steps, for all
allowable disturbance sequences while satisfying, at all times,
the constraint(x,u) ∈ Y . As is well-known [5], [6], [7], the
sequence of sets{Xi}

∞
i=0 may be calculated recursively as

follows:

Xi+1 = Pre(Xi), (15a)

X0 = Ω. (15b)

Before giving the next result, recall that a setS is
robustly controlled invariantif and only if for any x ∈ S ,
there exists au ∈ U (x) such that f (x,u,w) ∈ S for all
w ∈ W (x,u), i.e. S is robustly controlled invariant if and
only if S ⊆ Pre(S ) [3], [10]. Recall also that themaximal
robustly controlled invariant setC∞ in X is the union of all
robustly controlled invariant sets contained inX .

Theorem 4:SupposeA1 holds:



(i) If the system is piecewise affine (defined by (14)) and
if the setsΩ and Π are polygons, then eachi-step set
Xi , i ∈ {0,1, . . .}, is a polygon.

(ii) If Xj ⊆ Xj+1 for some j ∈ {0,1, . . .}, then each setXi ,
i ∈ { j, j +1, . . .}, is robustly controlled invariant.

(iii) If the set Ω is robustly controlled invariant, then each
setXi , i ∈ {0,1, . . .}, is robustly controlled invariant.

(iv) If Ω , X and Xj = Xj+1 for some j ∈ {0,1, . . .}, then
each setXi , i ∈ { j, j + 1, . . .}, is equal to the maximal
robustly controlled invariant setC∞ contained inX .

Remark 4:Note that, if Ω 6= X and Ω is robustly con-
trolled invariant, then the maximal robustly controllableset
X∞ to Ω (X∞ =

⋃∞
i=0Xi , whereX0 , Ω) is, in general,not

equal to the maximal robustly controlled invariant setC∞ in
X (C∞ =

⋂∞
i=0Xi , whereX0 , X ).

Remark 5:As in Section II-B, if the system has no
input u, i.e. if f is a function only of (x,w), then with
the appropriate modifications to definitions, Theorem 4 still
holds, but with ‘robustly controlled invariant’ replaced with
‘robustly positively invariant’.

IV. N UMERICAL EXAMPLES

In order to illustrate our results we consider the following
scalar system:

x+ = x+u+w, (16)

which is subject to the constraints

(x,u) ∈ X ×U , (17)

where the state constraintsX , {x∈ R | −5≤ x≤ 20} and
the input constraintsU , {u∈ R | −2≤ u≤ 2}. The state-
dependent disturbance satisfies:

w∈ W (x) ⇔ (x,w) ∈ ∆ , ∆1∪∆2, (18)

where the (convex) sets∆1 and ∆2 are shown in Figure 2.
The (robustly controlled invariant) target set isX0 = Ω =
{x | −0.6≤ x≤ 0.6}.

The sequence ofi-step sets is computed by using the
results of Theorem 1 and some of the sets are:X1 =
{x | −0.7≤ x≤ 0.7}, X2 = {x | −0.9≤ x≤ 0.9}, X3 =
{x | −1.3≤ x≤ 1.3}, X4 = {x | −2.0468≤ x≤ 2.0468},
. . . , X8 = {x | −4.5793≤ x≤ 4.5793}, X9 =
{x | −5≤ x≤ 5.1131}, X10 = {x | −5≤ x≤ 5.6123},
. . . , X49 = {x | −5≤ x≤ 12.2759}, X50 =
{x | −5≤ x≤ 12.3099}. The set X∞ of all states that
can be steered to the target set, while satisfying state
and control constraints, for all allowable disturbance
sequences, is:X∞ = {x | −5≤ x≤ 12.7999}. The setsΣi

for i = 1,2,3,4 are also shown in Figure 3.
To illustrate the fact that thei-step sets can be non-convex

even ifX , U , Ω and the graph ofW (x) are convex, consider
the same example. This time the state-dependent disturbance
satisfies:

w∈ W (x) ⇔ (x,w) ∈ ∆, (19)
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where the sets∆ andΣ are shown in Figure 4. If the target set
is X0 = Ω = {x | −2.5≤ x≤ 2.5}, the one-step set isX1 =
{x | −3.75≤ x≤−0.8333}∪{x | 0.8333≤ x≤ 3.75}.

Even if Ω is a robustly controlled invariant set, the
convexity of eachi-step set cannot be guaranteed. This
can be illustrated by considering the example above with
X = {x | −5≤ x≤ 4}, w ∈ W (x) ⇔ (x,w) ∈ ∆, the set
∆ shown in Figure 5, and the robustly controlled in-
variant target setX0 = Ω = {x | −2.5≤ x≤ 2.5}. In this
case, the one-step robustly controlled invariant set isX1 =
{x | −3.75≤ x≤ 2.5}∪{x | 3.5455≤ x≤ 4}. The setΣ is
also shown in Figure 5.
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V. CONCLUSIONS

The main result of this paper (Theorem 1) showed how
one can obtain Pre(Ω), the set of states that can be robustly
steered toΩ, via the computation of a sequence of set differ-
ences and projections. It was then shown in Theorem 3 that if
Ω and the relevant constraint sets are polygons (i.e. they are
given by the unions of finite sets of convex polyhedra) and
the system is linear or piecewise affine, then Pre(Ω) is also a
polygon and can be computed using standard computational
geometry software. In particular, new results were given in
Appendix which allow one to compute the set difference for
(possibly non-convex) polygons by solving a finite number
of LPs. It was then shown in Section III how Pre(·) can

be used to recursively compute thei-step set, i.e. the set of
states which can be robustly steered to a given target set in
i steps, as well as the maximal robustly controlled invariant
set. Finally, some simple examples were given which show
that, even if the system is linear, the respective constraint sets
are convex and the target set is robustly controlled invariant,
convexity of thei-step sets cannot be guaranteed.
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VII. A PPENDIX

Set-valued Functions

The definitions of inner and outer semi-continuity em-
ployed below are due to Rockafellar and Wets [16];
for Definitions 1–3 see [17]. In what follows,B(z,ρ) ,

{z | ‖z‖ ≤ ρ }.
Definition 1: A set-valued mapF : R

r → 2R
n

is outer
semi-continuous (o.s.c.) at ˆz if F(ẑ) is closed and, for every
compact setS such thatF(ẑ)∩S= /0, there exists aρ > 0
such thatF(z)∩S= /0 for all z∈ B(ẑ,ρ). A set-valued map
F : R

r → 2R
n

is o.s.c. if it is o.s.c. at everyz∈ R
r .

Definition 2: A set-valued mapF : R
r → 2R

n
is inner

semi-continuous (i.s.c.) at ˆz if F(ẑ) is closed and, for every
open setS such thatF(ẑ) ∩ S 6= /0, there exists aρ > 0
such thatF(z)∩S 6= /0 for all z∈ B(ẑ,ρ). A set-valued map
F : R

r → 2R
n

is i.s.c. if it is i.s.c. at everyz∈ R
r .

Definition 3: A set-valued mapF : R
r → 2R

n
is continuous

if it is both o.s.c. and i.s.c.

Set Difference of Polygons

In the following, Nn , {1,2, . . . ,n}.
The first result, which is adapted from [18, Thm. 3], allows

one to compute the set difference of two polyhedra:
Proposition 1 (Set difference for polyhedra):Let A ⊂ R

n

andB, {x∈ R
n | c′ix≤ di , i = 1, . . . , r } be non-empty poly-

hedra, where all theci ∈ R
n anddi ∈ R. If

S1 ,
{

x∈ A
∣

∣ c′1x > d1
}

, and (20a)

Si ,
{

x∈ A
∣

∣ c′ix > di , c′jx≤ d j , ∀ j ∈ Ni−1
}

, (20b)

for i = 2, . . . , r, then A\B =
⋃r

i=1Si is a polygon. Further-
more,{Si 6= /0 | i ∈ Nr } is a partition ofA\B.

In practice, computation can be reduced by checking
whetherA∩B is empty or whetherA ⊆ B before actually
computingA\B; if A∩B = /0, then A\B = A and if A ⊆
B, then A\ B = /0. Using an extended version of Farkas’
Lemma [3, Lem. 4.1], [10, Lem. 3.1] checking whether one
polyhedron is contained in another amounts to solving a
single linear program (LP). Alternatively, one can solve a



finite number of smaller LPs to check for set inclusion [10,
Prop. 3.4].

OnceA\B has been computed, the memory requirements
can be reduced by removing all emptySi and removing any
redundant inequalities describing the non-emptySi . Checking
whether a polyhedron is non-empty can be done by solving a
single LP. Removing redundant inequalities can be done by
solving a finite number of LPs [10, App. B]. As a result, it
is a good idea to determine first whether anSi is non-empty
or not before removing redundant inequalities.

The second result shows how the set difference of a
polygon and a polyhedron may be computed:

Proposition 2 (Set difference of polygon and polyhedron):
Let C ,

⋃p
j=1Cj be a polygon, where all theCj , j ∈ Np, are

non-empty polyhedra. IfA is a non-empty polyhedron, then

C\A =
p

⋃

j=1

(Cj \A) (21)

is a polygon.
Note that if

{

Cj
∣

∣ j ∈ Np
}

is a partition ofC and C\
A 6= /0, then

{

Cj \A 6= /0
∣

∣ j ∈ Np
}

is a partition ofC\A if
Proposition 1 is used to compute each polygonCj \A, j ∈Np.

The last result shows how the set difference of two
polygons may be computed:

Proposition 3 (Set difference of polygons):Let the sets
C ,

⋃p
j=1Cj and D ,

⋃q
k=1Dk be polygons, where all the

Cj , j ∈ Np, andDk, k∈ Nq, are non-empty polyhedra. If

E0 , C, (22a)

Ek , Ek−1\Dk, k∈ Nq, (22b)

thenC\D = Eq is a polygon.
Note that each polygonEk−1\Dk, k∈Nq, can be computed

using Proposition 2. It follows that if
{

Cj
∣

∣ j ∈ Np
}

is a
partition of C and C\D 6= /0, then the sets that defineEq

form a partition ofC\D if Propositions 1 and 2 were used
to compute all theEk, k∈ Nq.
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