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Abstract—This paper presents new results that permit the bances that are dependent on the state and/or input fréguent
computation of the set of states that can be robustly steered, grise in practice when trying to model systems with physical

using state feedback, to a given target set in a finite number of o ngtraints. For example, consider the nonlinear (pies@wi
steps. It is assumed that the system is discrete-time, nonlinear, __..
affine) system

time-invariant and subject to mixed constraints on the state
and input. A persistent disturbance, dependent on the current
state and input, acts on the system. The results in this paper

generalize previously published results that are not able 0 \yhich is subject to a bounded disturbansec 7. The

address state-input dependent disturbances. The application . . . L .
of the results to the computation of the maximal robustly function saf-) models physical saturation limits on the input.

controlled invariant set is briefly discussed. It is shown how Assuming that these saturation limits are symmetric ane hav
polyhedral algebra, linear programming and computational —unit magnitude, an equivalent way of modelling (1) is to
geometry may be employed for set computations relevant treat it as linear system with input-dependent disturbance
to the analysis of linear and piecewise affine systems with j o letting

additive state disturbances. Some simple examples are given
to demonstrate that convexity of the robustly controllable sets

cannot be guaranteed even if all relevant sets are convex and
the system is linear.

X" = Ax+ Bsatu+ E w) + Exw (1)

xt = Ax+ Bu+ BE\W+ Eyxw, (2a)

where the control is constrained to satisfE %, where

Keywords: Constrained control, robust control, nonlinear UA{u | |ulle <1}, (2b)
systems, piecewise affine systems, set invariance, controllability, -
uncertain systems. and the input-dependent disturbanee # (u) satisfies
I. INTRODUCTION ()2 {w | [[u+EW|e <1 andwe # }. (2c)

The problems of controllability to a target set and compu- State-input dependent disturbances arise in practice when
tation of robustly controlled invariant sets for systemijsat  the uncertainty associated with a model is greater in some
to constraints and persistent, unmeasured disturbanees heegions of the state-input space than in other regions. For
been the subject of study for many authors [1], [2], [3]example, a model obtained by linearizing a nonlinear model
[4], [5], [6], [7], [8]. Though many papers have results thais obviously more accurate near the point at which the model
can be applied to a large class of nonlinear discrete-timeas linearized. A state-input dependent disturbance model
systems, most authors assume that the disturbance is petrmits less conservative results to be obtained than can be
dependent on the state and input. The paper [4] appearsdtained with a model in which the disturbance is assumed
be the only previously published paper that addresses- state be independent of the state and input.
dependent disturbances directly. In [5] a general framkygr  Another example where uncertainty may be modelled as a
introduced for systems with mixed state and input congsainstate-input dependent disturbance arises if there is pram
subject to state-input dependent disturbances, but treifispe uncertainty present in the model. The reader is referrel]fo [
results obtained for the computation of the set of statg40] to see how reachability computations can be carried out
from which the system can be controlled to a target set afer this type of uncertainty.
restricted to the case when disturbances are independent ofrhis paper is organized as follows. Section Il presents the
the state and input. This paper extends the results of [#], [Smain results of this paper and Section Il briefly discusses
[6] to the case where the disturbance is dependent on thew the results in Section Il can be used to iteratively
state and input. Furthermore, results are given for linedr a compute the set of states that can be steered to a targetsset in
piecewise affine systems that show how polyhedral algebrinite number of steps, as well as how one could compute the
linear programming and computational geometry may bmaximal robustly controlled invariant set. In order to dalie
employed to perform the relevant set computations. the results presented in this paper, Section IV presentw a fe

The need for a framework that can deal with state-inpwtimple numerical examples. The main contributions of this
dependent disturbances was briefly motivated in [5]. Distupaper are summarized in Section V. The appendix contains



definitions for the continuity of set-valued maps and result| ™ (uw) space

which allow one to compute the set difference of (possibly 2T s

non-convex) polygons. © = Proj M =X xU /
A more detailed exposition, together with proofs for all I=o\w 7 (va.ta) a,

results stated in this paper, may be found in [11]. >
NOTATION AND DEFINITIONS: The set difference of C

R"andBC R"isA\B= {x€ A | x¢ B} = ANB®, whereB° o

is the complement oB. 24 is the set of subsets . Given

a setQ C C x D, the projection ofQ onto C is defined as

Proi(Q) £ {ce C | 3d € D such that(c,d) € Q}. A poly- ﬁ

hedronis the (convex) intersection of a finite number of open 2,

and/or closed half-spaces ang@ygonis the (possibly non- 11, s w
convex) union of a finite number of polyhedra. : .

Il. THE ONE-STEPROBUSTLY CONTROLLABLE SET

(x,u) space

Section 1I-A gives the main results of the paper, which e
are then specialized in Section II-B for the case when the Fig. 1. Graphical illustration of Theorem 1
disturbance is dependent only on the state or input or when
the system does not have a control input. Section II-C shows
that the seF of states rob_ust_ly contro!lable to.the tgrg‘etsge disturbances, the successor state i€)nmay be computed.
a polygon if the system is linear, affine or piecewise affmeThe set PreQ) is defined by
the target set is a polygon and all relevant constraint sets a

polygons. PrgQ) £ {x | Jue Z (x) s.tf(x,u, 7 (x,u)) CQ}. (8)

A. General Case
. Remark 1L:If (x,u) € ¥ & xe€ 2 andu € %, then
Let X =R" denote the state spadé,—R™ the input space PreQ) 2 {xe 2 | ue % sti(xu,# (xu) CQ}
andW = RP the disturbance space. Consider the nonlinear, Let the sets. M and® be .d.efir;e;j res:pecavely.by
time-invariant, discrete-time system ' ' '

X" = f(xuw), &) A
={xu e [ f(xu7(xu)cQ}, (9a)
wherex € X is the current state (assumed to be measured), 2 {(xuw) | (x,u) €% andwe # (x,u)} (9b)
x* is the successor stateg U is the input, andve W is an A et T
P= Q)= {(x,u,w) | f(x,uw)eQ}. (9c)

unmeasured, persistent disturbance that is dependenteon th

current state and input. Theorem 1 (Main result)SupposeAl holds. The set of

we # (xu) CW. (4) states that are robustly controllable @is
The state and input are required to satisfy the constraints PrgQ) = Proj (2), (10a)

(x,u) e Z C XxU. (5)  where
The constraintx,u) € % defines the state-dependent set of % = Projx .y (M) \ Projy,y (M\ ®). (10b)
admissible inputs

W) 2{u | (xu)ed 6 Note that the seX defined in (9a) is equal to Pggj, (M) \

0 ={u ] ew } © Projy,.y (M\ ®), as stated in (10b). A graphical illustration

as well as the set of admissible states of Theorem 1 is given in Figure 1, where the %{(x,,U,)

for a point(xa,Us) € % is also shown.
A _
Z = ustxu)eFt={x|Zx#0}. (7) Theorem 2:SupposeAl holds, f : R" x R™ x RP — R"

. . . p . .
In order to have a well-defined problem, we assume tHg continuous and/’ : R" — 2%, r £ n+m, is continuous
following: and bounded on bounded setsQlfis closed, then P(€) is

AL. For all (x,u) € %, # (x,u) # 0 and# (-) is bounded on closed.
bounded sets. .

Given a sefQ C .27, this section shows how the one—stepB' Special Cases
robustly controllable set (the set of states (Pxpfor which Consider first the simpler case when the disturbance con-
there exists an admissible input such that, for all allo@ablstraint set is a function ok only, i.e. the disturbancev



satisfiesw € #/(x). The definitions ofz andT in (9a) and UqcqPy and the set®,; have non-intersecting interiors. It is
(9b), respectively, and P(@) become assumed thaf(-) is continuous on the interior dfl. For all
h i RMN B RMXM E RNM*P
P20 XU R)CQ) (8 e e B EET e R and
N={(xuw) [ (xu)e#? andwe #/(x)}, (11b)  Note that ifQ:=U;c,Qj, where{Q; | j €3} is a finite
PreQ) 2 {x | Jue Z(x) stf(x,u,#(x)) CQ}. (11c) set of polyhedra, the® in (9c) is given by

Theorem 1 remains true with these changes and it covefs= | {(x.u,w) € Py | Agx+Bqu+Eqw+cqe Q; }.
the case studied in [4]. A similar modification is needed if  (j,9)€JxQ
the disturbance constraint set is a functioruainly, i.e. the

disturbancew satisfiesw € # (u). : ; . .
Remark 2:If the disturbance is independent of the staté)Othedron’ it fOIIOWS. that® is the union of a finite set
f polyhedra, henc® is a polygon.

and input, Theorem 1 provides a method for computin th@ . .
P P pLting The Appendix contains new results that allow one to com-

one-step robustly controllable set and is an alternativtheo ) X
pute the set difference between two (possibly non-convex)

method in [5], [6], [10], where it is proposed to compute o . :
the so-calledPontryagin differenceObviously, both methods polygons. The projection of the set difference is then equal
' the union of the projections of the individual polyhedra

will result in the same set. The difference between the tw f titute th ¢ diff Th acti f h
methods is that Theorem 1 relies on projection Whereé at constitute the set difierence. The projection of eac

the method in [5], [6], [10] does not. It is not easy tomdividual polyhedron can be computed via Fourier-Motzkin
determinea priori v,vhicr11 method would be more efficient. elimination [12] or via enumeration and projgction of its
The computational requirements depend very much on tigrices followed by a convex hull computation [13]; see

specifics of the problem and the computational tools that a so [14], [15] for alternative pr_OJectlon methods.
available. We can now state the following result:

Next, consider the case whdris a function of(x,w) only, __'heorem 3 (Piecewise affine systemSyippose assump-
i.e. the system has no input In this case, the constraint 0N Al holds. If the system is given by (14) arid and

(x,u) € % is replaced by € 2" c X and assumptioAl is Q are polygons, then the robustly controllable set(Rje as
’ given in (8) and (10a), is a polygon.

Since {(x,u,w) € Py | Agx+Bqu+Eqw+cy€Q;} is a

fﬁlza?:%dr % XE 2, #W(x)#0 and #(-) is bounded on Remark 3:Clearly, Theorem 3 holds if the system is linear
bounded set. or affine (i.e.Q has cardinality 1). It is interesting to observe
Also, in this case the definitions of, M and ® in (hat even ifQ and I are both convex sets antl(-) is
Theorem 1, and P{@) are replaced by linear, there is no guarantee that ®¢ is convex. This is
demonstrated in Section IV via a numerical example.
s2{xeZ | f(x,w)eQ, Ywe #(X)}, (12a) _
N I1l. THEI-STEPROBUSTLY CONTROLLABLE SET AND
MN={w) [ xe Z andwe #(X) }, (12b) ROBUSTLY CONTROLLED INVARIANT SETS
o2 £74Q) 2 {(xw) | f(xw)€Q}, (12c)

Consider the general case (Section II-A). For any intéger
and let X; denote tha-step (robustly controllable) sé¢b Q, i.e. X
PrgQ) £ {xe 2 | f(x, #(x)) CQ}. (12d) s the set of states that can be steered, by a time-varyite sta
) L feedback control law, to the target (tin i steps, for all
Thus, PréQ) is now the set of admissible states such thal,yaple disturbance sequences while satisfying, ainag,
the successor state lies @ for all w € #/(x). In this case, the constrain{x,u) € %. As is well-known [5], [6], [7], the
the conclusion of Theorem 1 becomes sequence of set§X;}? , may be calculated recursively as

PreQ) = = = Projy (M) \ Projy (M\ ®). (13) follows:
This special case requires less computational effort since Xi+1 = Pre(X), (15a)
operations are performed in lower dimensional spaces and Xo = Q. (15b)

only two projection operations are needed.

Before giving the next result, recall that a sef is
robustly controlled invariantf and only if for anyx € .,
there exists au € % (x) such thatf(x,u,w) € .7 for all
Consider the system defined in (3) with w e #(x,u), i.e. . is robustly controlled invariant if and

2 : only if ¥ C Prg.¥) [3], [10]. Recall also that thenaximal
PO W) = Agxt Byu+ Baw+ G If (o u,w) € Py (14) robustly controﬁed)invariant s€l, in 2 is the union of all
The sets{P; | g € Q}, whereQ has finite cardinality, are robustly controlled invariant sets contained.4.
polyhedra and constitute a polyhedral partitioripfi.e. [ £ Theorem 4:SupposeAl holds:

C. Linear and Piecewise Affinef(-) with Additive State
Disturbances



(x,w) space

(i) If the system is piecewise affine (defined by (14)) and
if the setsQ and 1 are polygons, then eadkstep set

5

X, i€{0,1,...}, is a polygon. o
(i) If Xj € Xj41 for somej € {0,1,...}, then each seX, al

ie{j,j+1,...}, is robustly controlled invariant. 7 b
(ii) If the set Q is robustly controlled invariant, then each 2

setX, i € {0,1,...}, is robustly controlled invariant. 1

(iv) If Q= 2 andX; = Xj;1 for somej € {0,1,...}, then
each setX, i € {j,j+1,...}, is equal to the maximal
robustly controlled invariant sé., contained in%Z". 1

Remark 4:Note that, ifQ # 2" and Q is robustly con-
trolled invariant, then the maximal robustly controllalsiet |

X 10 Q (Xeo = U2 Xi, Where Xy £ Q) is, in general,not -af |

equal to the maximal robustly controlled invariant €gtin !

Z (Co =N2oXi, whereXo 2 2). ‘ |

Remark 5:As in Section II-B, if the system has no - = - - L L m L -

input u, i.e. if f is a function only of(x,w), then with “a

the appropriate modifications to definitions, Theorem 4 stil

holds, but with ‘robustly controlled invariant’ replacedtiv

‘robustly positively invariant’.

Fig. 2. Graph of#

IV. NUMERICAL EXAMPLES () space

u

In order to illustrate our results we consider the following
scalar system:
Xt =X+u+w, (16)

which is subject to the constraints

A
(XU €2 xU, 17) ‘\‘
where the state constrain® £ {xeR | -5<x<20}and ‘| % \

the input constraint® = {uc R | -2 <u<2}. The state-
dependent disturbance satisfies: =

We ¥ (X) < (x,w) €AE AU, (18)

where the (convex) setd; and A, are shown in Figure 2.
The (robustly controlled invariant) target set X = Q =

{x | 0.6 <x<0.6}. = > E ; ; : ;
The sequence of-step sets is computed by using the
results of Theorem 1 and some of the sets afe:= Fig. 3. Setss; fori=1,2,3,4

{x | -0.7<x<0.7}, X = {x]-09<x<09}, X3 =
{x | -13<x<13}, X4 = {x | —2.0468< x < 2.0468},

Xg = {x| —45793<x< 45793}, Xo =
{x | —5<x<5.1131}, Xjp = {x|-5<x<56123}, Wwhere the setA andZ are shown in Figure 4. If the target set
. Xs9 = {x|-5<x<122759}, Xso = I1SXo=Q={x|-25<x<25}, the one-step set ¥ =

{x | -5<x<123099}. The setX. of all states that {x | —-3.75<x< —0.8333}U{x | 0.8333<x<3.75}.
can be steered to the target set, while satisfying state Even if Q is a robustly controlled invariant set, the
and control constraints, for all allowable disturbanceonvexity of eachi-step set cannot be guaranteed. This
sequences, iSX, = {X | -5 <x<127999}. The setsZ; can be illustrated by considering the example above with
for i =1,2,3,4 are also shown in Figure 3. Z ={x]| -5<x<4}, we #(x) & (x,w) € A, the set

To illustrate the fact that thestep sets can be non-convexA shown in Figure 5, and the robustly controlled in-
evenif.2’, %, Q and the graph o#/(x) are convex, consider variant target seXo = Q = {x | —25<x<25}. In this
the same example. This time the state-dependent distiebamase, the one-step robustly controlled invariant seXjis=
satisfies: {x | =3.75<x<25}U{x | 3.5455<x<4}. The setx is

we ¥ (X) & (X,W) €A, (19) also shown in Figure 5.



(x,w) space

w ar be used to recursively compute thetep set, i.e. the set of
states which can be robustly steered to a given target set in
i steps, as well as the maximal robustly controlled invariant
set. Finally, some simple examples were given which show
that, even if the system is linear, the respective condtsaits

are convex and the target set is robustly controlled inmgria
convexity of thei-step sets cannot be guaranteed.
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(x,u) space
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VII. APPENDIX

x Set-valued Functions

Fig. 4. Graph of# (top) and the sek (bottom) The definitions of inner and outer semi-continuity em-
ployed below are due to Rockafellar and Wets [16];
() space for Definitions 1-3 see [17]. In what followsB3(z,p) =

w s {z|lzl <p}.
2r Definition 1: A set-valued mapF : R" — 28" is outer
1 semi-continuous (0.s.c.) atif F(2) is closed and, for every
or compact setS such thatF(2) N S= 0, there exists @ >0
i such thatF(z2)NS=0 for all ze B(Z p). A set-valued map
-2f F:R" — 28 is o.s.c. if it is 0.s.c. at everge R'.
T T S B — Definition 2: A set-valued mapF : R" — 28" is inner
X semi-continuous (i.s.c.) a&if F(2) is closed and, for every
(xu) space open setS such thatF(2) N S# 0, there exists g > 0

2f such thatF (z2) NS+ 0 for all ze B(Z, p). A set-valued map
b
ol
i
-3 -2 -1 0 1 2

F:R — 2% isi.s.c. if itis i.s.c. at everge R".
Definition 3: A set-valued majF : R" — 2&" is continuous
if it is both o.s.c. and i.s.c.

| Set Difference of Polygons
SR R ) In the following, Ny = {1,2,...,n}.
The first result, which is adapted from [18, Thm. 3], allows
Fig. 5. Graph of# (top) and the seE (bottom) one to compute the set difference of two polyhedra:

Proposition 1 (Set difference for polyhedralet A C R"
andB2 {xe R" | dx<di, i =1,...,r } be non-empty poly-
V. CONCLUSIONS hedra, where all the; € R" andd; € R. If

The main result of this paper (Theorem 1) showed how S £ {xcA |cix>di}, and (20a)
one can obtal_n P(@), the set of states that can be robt_JstIy S2{xeA ‘ dx>di, c’jxg dj, VieNi 1}, (20b)
steered td), via the computation of a sequence of set differ-
ences and projections. It was then shown in Theorem 3 thatfdr i = 2,...,r, thenA\B=J{_; S is a polygon. Further-

Q and the relevant constraint sets are polygons (i.e. they amore, {S #0 | i € N; } is a partition ofA\ B.

given by the unions of finite sets of convex polyhedra) and In practice, computation can be reduced by checking
the system is linear or piecewise affine, then(Reis also a whetherANB is empty or whethe’A C B before actually
polygon and can be computed using standard computatior@mputing A\ B; if ANB =0, thenA\B=A and if AC
geometry software. In particular, new results were given iB, then A\ B = 0. Using an extended version of Farkas’
Appendix which allow one to compute the set difference fotemma [3, Lem. 4.1], [10, Lem. 3.1] checking whether one
(possibly non-convex) polygons by solving a finite numbepolyhedron is contained in another amounts to solving a
of LPs. It was then shown in Section Ill how Precan single linear program (LP). Alternatively, one can solve a



finite number of smaller LPs to check for set inclusion [10, [5] E.C. Kerrigan, J. Lygeros, and J.M. Maciejowski. A

Prop. 3.4].

OnceA\ B has been computed, the memory requirements
can be reduced by removing all emgyand removing any
redundant inequalities describing the non-enfptyChecking

geometric approach to reachability computations for
constrained discrete-time systems.  Rroc. 15th
IFAC World Congress on Automatic Contr@arcelona,
Spain, July 2002.

whether a polyhedron is non-empty can be done by solving 6] E.C. Kerrigan and D.Q. Mayne. Optimal control of

single LP. Removing redundant inequalities can be done by
solving a finite number of LPs [10, App. B]. As a result, it
is a good idea to determine first whether &ris non-empty

constrained, piecewise affine systems with bounded dis-
turbances. IrProc. 41st IEEE Conference on Decision
and Contro] Las Vegas, Nevada, USA, December 2002.

or not before removing redundant inequalities. [7] D.Q. Mayne. Control of constrained dynamic systems.

The second result shows how the set difference of a
polygon and a polyhedron may be computed:

European Journal of Control7:87—99, 2001. Survey
paper.

Proposition 2 (Set difference of polygon and polyhedron):[8] R. Vidal, S. Schaffert, O. Shakernia, J. Lygeros, and

Let C £ U}, Cj be a polygon, where all thg;, j € Np, are

non-empty polyhedra. IA is a non-empty polyhedron, then

p
C\A={J(C\A) (21)
j=1
is a polygon.
Note that if {C; | j € Np} is a partition ofC and C\
A#0, then{C;\A#0 | jeNp} is a partition ofC\ A if
Proposition 1 is used to compute each poly@oRA, j € Np.

The last result shows how the set difference of two

polygons may be computed:

Proposition 3 (Set difference of polygond)et the sets
C £ UP_,Cj andD £ (J,_, Dk be polygons, where all the

Cj, j € Np, andDy, k € Ng, are non-empty polyhedra. If

Eo2C, (22a)
Ex £ Ek—l\Dka ke Nq7 (22b)

thenC\ D = Eq is a polygon.

Note that each polygoBy_1\ Dy, k € Ng, can be computed

using Proposition 2. It follows that ifC;j | jeNp} is a
partition of C and C\ D # 0, then the sets that defirig,

S. Sastry. Decidable and semi-decidable controller
synthesis for classes of discrete time hybrid systems. In
Proc. 40th IEEE Conference on Decision and Control
Orlando, Florida, USA, December 2001.

F. Blanchini. Ultimate boundedness control for un-
certain discrete-time systems via set-induced Lyapunov
functions. IEEE Trans. Automatic ContrpB9(2):428—
433, 1994.

E.C. Kerrigan. Robust Constraint Satisfaction: In-
variant Sets and Predictive Control PhD the-
sis, Department of Engineering, University of Cam-
bridge, 2000. Downloadable from http://www-
control.eng.cam.ac.uk/eck21/.

S.V. Rakove, E.C. Kerrigan, and D.Q. Mayne. Reach-
ability computations for constrained discrete-time sys-
tems with state- and input-dependent disturbances.
Technical Report EEE/C&P/SVR/8-a/2003, Imperial
College London, August 2003.

S.S. Keerthi and E.G. Gilbert.  Computation of
minimum-time feedback control laws for discrete-time
systems with state-control constraintdEEE Trans.
Automatic Contrgl AC-32:432—-435, 1987.

form a partition ofC\ D if Propositions 1 and 2 were used[13] S.M. Veres. Geometric Bounding Toolbox (GBT 7.2)

to compute all theky, k € Ng.
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