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Abstract— This paper provides a solution to the problem of Definition 1: Q c R" is a robustly positively invariant
computing a robustly positively invariant outer approximation  (RPI) set of (1) ifAx+we Q for all xe Q and allw e W.
of the minimal robustly positively invariant set for a discrete- Definition 2: The minimal robustly positively invariant

time, linear, time-invariant system. It is assumed that the . . . . .
disturbance is additive and persistent, but bounded. (MRPI) setF, of (1) is the set inR" that is contained in

Keywords: Set invariance, constrained control, robust con- €very closed RPI set of (1).
trol, linear systems. It is possible to show [3, Sect. V] that the mRPI $&t

exists, is compact, contains the origin in its interior and i
given by F = @ o AW. SinceF, is a Minkowski sum of
Set invariance plays a fundamental role in the control ghfinitely many terms, it is generally impossible to obtain
constrained systems; see for instance [1], [2]. An impdrtaryn explicit characterization of it. However, as noted in [3,
problem is how to compute theinimal robustly positively Rem. 4.2], it is possible to show that if there exist an intege
invariant (MRPI) set for a given discrete-time LTI systens ¢ N, and a scalara € [0,1) such thatA® = al, then
with additive state disturbances [3, Sect. IV]. The mRPI set, — (1—a)! @is;&AiW. It therefore follows trivially [4,
is used as a target set in robust time-optimal control [4hé&  Thm. 3] that if A is nilpotent with indexs (AS = 0), then
design of robust predictive controllers [5] and in undergta F,, = @S AW.
ing the properties of theaximalrobustly positively invariant  |n this paper, we relax the assumption that there exists an
set [3], [6]. The only results that allow one to compute thg e N, and a scalaor € [0,1) such thatAS = al. Since we
mMRPI set exactly are given in [3, Rem. 4.2] and [4, Thm. 3]gan no longer computE,, exactly, we address the problem
where it is assumed that the system dynamics are nilpotegt. computing an RPI sef (a,s) that contains the mRPI set
This paper presents new results that allow one to compugg e conclude with some remarks on computational issues

a robustly positively invariant, outer approximation oth if W is a polytope given by a finite set of affine inequalities.
mMRPI set. A more detailed exposition and all proofs for the

I. INTRODUCTION AND NOTATION

results stated in this paper can be found in [7]. I1l. MAIN RESULTS

The set of strictly positive integers is denoted Ky £ Proposition 1: [6] If the integers e N, and scalara €
{1,2,...}. [M||p and||v||p are thep-norms of the matribM [0, 1) satisfy
and vectow, respectively. Theo-norm ball inR" (hypercube) AW C aW, @)

of sizer > 0 is defined a8 (r) 2 {X € R" | ||X||o <Tr}. The

i'th standard basis vecta € R" in the Euclidean space hasthen
one as the’th component and zero as all other components.

If P andQ are subsets aR", then the Minkowski (vector)

sum isP&Q =2 {p+q | peP, qe Q}. The setdf ;R is

F(a,s) 2 (1—0{)‘1SéBlAiW
i=0

the Minkowski sum of the setsP;,..., R} is a convex, compact, RPI set of (1) containifg
Clearly,F (ao,s) C F(a1,s) < dp < a; for a givens. Note
Il. PROBLEM FORMULATION also that ifA is not nilpotent, therF (a,s) C F(a,s;) <

Consider the discrete-time, linear, time-invariant syste Sy < . for a given a. These observations motivate the
N following discussion, which explains how one can obtain a
X" =AXtW, (1) better approximation of the mRPI g&t, given an initial pair

wherex € R" is the current statex™ is the successor state, (a,s).
w € W is an unknown, additive and persistent disturbance. Let

The standing assumptions are that the mafix R™" is L(a) 2 inf {s | AW C aW} (3a)
strictly stable (the spectral radiggA) < 1) and that the set seN, - ’

W is a convex, compact subset R' containing the origin a(s)2 inf {a | AW CaW} (3b)
in its interior. ael0,1)



be the smallest values afand a such that (2) holds for a
given a ands, respectively. Clearlya®(s) — 0 ass — .
Note thats’(a) — o as a — 0 if and only if A is not
nilpotent. However, since\ is strictly stable and/V is a
compact set containing the origin in its interior, the infimu
in (3a) is guaranteed to exist and be containel infor any
choice ofa € (0,1). The infimum in (3b) is also guaranteed
to exist and be contained i9,1) if s is sufficiently large.

By a process of iteration, one can use the above definitiomehether the sef(a,

and results to compute a pafo,s) such thatF(a,s) is
a sufficiently good RPI, outer approximation &%,. For
example, by starting witls =1, one can incremerg until
there exists aro € [0,1) such that (2) holds. If necessary,
one can increass until F(s,a(s)) is sufficiently small.

where fi ¢ R", gi € R and.# is a finite index set. It is easy
to show that (2) holds if and only Hy ((AS)T f;) < ag; for all

i € .Z. This observation implies thaf(a) anda®(s) can be
computed efficiently by solving a finite humber of suitably-
defined LPs. For example, recall tivdtcontains the origin in
its interior if and only ifg; > 0 for all i € .#. It then follows
that a®(s) = maxc.» hw((A°)" fi) /gi.

In a similar fashion as above, it is also easy to check
s) (and henceF.) is contained in a
given polyhedrorX £ gx eR" cJTx <dj, je 7 } where
ci € R", dj e R and # is a finite index set,with-
out having to compute (&,s) explicitly. This is because
the inclusionF(a,s) C X holds if and only if hy ((1—

a) YHA? ... ASYT¢)) < djforall je #, where® 2Ws£

Altgrnatively, one can take an irA1itiaI value for, compute \y ...« w. Proceeding in a similar fashion, it is possible
s* =s°(a), proceed to compute” = a°(s") and test whether {5 show thatn®(a,s) 2 miny=o{n | F(a,s) CBu(n)} =

F(a*,s") is small enough. It is clear that this iteration
results ink., C F(a*,s") CF(a,s") C F(a,s). If F(a*,s")

maXe1. mhy (£(1—a) HA? ... AS1Tq) is the size of

the smallesteo-norm ball (hypercube) containing(a,s),

is not small enough, then this procedure could be restart(ﬁgncenom s) can be computed by solvingi.Ps.

by decreasinga. Of course, any other iteration can be \ye conclude this paper by referring back to Proposition 2.
implemented until a fixed point is reached or a sufficiently; ;g easy to show [8, Prop. 2] tha, (i) = B fi[l1, hence

small F(a,s) has been obtained.

Because of the iterative nature of computing a suitablgy solving 21 LPs, sincefout =

F(a,s) and the fact that°(a) may be large, it is desirable
to have upper bounds a?(a) and the volume of(a,s)
that are easy to compute:

Proposition 2: Let B, £ maxs-o{B | B=(8) CW} and
Bout= Ming=o{B | W C Bw(B) }. LetAbe diagonizable with

Bin = mMinic.~ gi/| fil|1. Note also that one can compyBeyt
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A=VAV~1 whereA is a diagonal matrix of the eigenvaluesdation.

of A, andp(A) € (0,1). If se N, anda € (0,1) satisfy

2 In[aBin/ (Boul |V [l [V =]/ I p(A), (4)

thenF(a,s) is a convex, compact, RPI set of (1) containinqz]

F». Furthermore, the sét(a,s) is contained in theo-norm
ball (hypercubeB(n), where

N £ Bout IV [V leo(1 = p(A)°)/[(1— &) (1~ p(A))].

Clearly, anys satisfying (4) is a (possibly conservative)
upper bound fors’(a) and n could be used to obtain a
(possibly conservative) upper bound on the sizé(f,s).

IV. COMPUTATIONAL RESULTS IFW IS A POLYTOPE

Before proceeding, recall that tlsipport function3] of
a setZ C R™, evaluated ab € R™, is hz(a) £ sup.,a'z
Clearly, if Z is a polytope given by a finite set of affine
inequalities, therhz(a) is finite and can be computed by
solving an LP. Recall also that W is a polytope, then

testing whether (2) holds can be implemented by evaluating

the support function ofV at a finite number of points [2],

8
[3]. The setF(a,s) can then be computed using standarc[l ]

algorithms for computing the Minkowski sum of polytopes.
This section therefore considers the case when th&Vset
is a polytope given byv £ {weR" | flw<g, ic .7},
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