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Abstract—This paper addresses the design of a dynamic, guaranteed to remove steady-state offset in the controlled
nonlinear, time-invariant, state feedback controller that guar-  variables whenever the disturbance reaches an (unknown)

antees constraint satisfaction and offset-free control in the = cqongant value. The controller is also guaranteed to satisfy
presence of unmeasured, persistent, non-stationary, additive . .
|nput and state constraints.

disturbances. First, this objective is obtained by designing a

dynamic, linear, time-invariant, offset-free controller, and an The proofs for the results stated in this paper can be found
appropriate domain of attraction for this linear controller is in [4].
defined. Following this, the linear (unconstrained) control input Notation: Where it will not lead to confusiong (k) will

is modified by adding a perturbation term that is computed by a denote theactual value of the infinite sequenae(-) at time
robust receding horizon controller. It is shown that the domain

of attraction of the receding horizon controller contains that K While @ will be used to denote theredictionof (7 +k)
of the linear controller, and an efficient implementation of the ~at a time instank steps into the future ito = wy, = w(7) is
receding horizon controller is proposed. the value of the variable at current timeGiven a sef, .Z,
Key words: Integral control, receding horizon control, set g the set of infinite sequencey-) := {0(0),®(1),...} that
icnc\)/rz]asrli[?er:iﬁeeadsynsetlgwri]csstate feedback control, nonlinear control, take on values i, i.e.///Q — {w() ‘ w(k) €Q, Vke N}.
y ' Given a positive integeN, the Cartesian produc®@N :=
Q x---x Q andly is the identity matrix withN rows andN

I. INTRODUCTION : . N y

. . . N times
The control of systems in the presence of constraints is @alumns.

important task in many application fields because constraints

“always” arise from physical limitations and quality or safety Il. PROBLEM DESCRIPTION

reasons. Moreover, in practical applications disturbances are|n this paper we consider a discrete-time, linear, time-
usually present, and often they are not measurable and pfgvariant plant:

dictable. For example, in the chemical industries disturbances

arise from interactions between different plant units, from x" = Ax+Bu+Ed, (1a)
changes in the raw materials and in the operating conditions z=CxX, (1b)
(such as ambient temperature, humidity, etc.).

The design of control algorithms able to stabilize plant§ Which x € R" is the plant statex” is the plant successor
subject to unknown bounded disturbances in the presenceSte,u € R™ is the control input (manipulated variable)c
input and state constraints has been the subject of sevefalis @ persistent, unmeasured disturbance 28@P is the
works [1], [2], [3]. These surveys discuss how the importangontrolled variable, i.e. the variable to be controlled to the
goal of guaranteeing closed-loop stability and constrairtrigin. Affine inequality constraints are given on the state
satisfaction can be obtained. and input, i.e.

In many practical applications, especially in the process
industries, disturbances are often non-stationary. It is clear
that if an unmeasured disturbance keeps changing with timghereX := R" is the state space), := R™M is the input space,
offset-free control is not possible, whereas if the disturbancg” is a polyhedron (a closed and convex set that can be
is non-stationary (i.e. integrating), offset-free control is amescribed by a finite number of affine inequality constraints)
achievable goal. One basic objective of an effective contreind %/ is a polytope (a bounded polyhedron); the origin is
algorithm is that it guarantees offset-free control whenevejontained in the interior of2” x % .
this is possible. Assumption 1 (General)A measurement of the plant

However, none of the existing algorithms with stabilitystate is available at each sample instéAtB) is stabilizable,
guarantees can also guarantee offset-free control in the cageC,) is detectable and
of non-stationary disturbances. In this paper, a novel control
design method for constrained systems subject to unmeasured rank[l —A _B] =n+p. (3)
bounded disturbance is presented. The proposed controller is C 0
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Notice that the last condition implies that the dimension ofariable to the origin, while respecting the state and input
the controlled variable cannot exceed the dimension of eitheonstraints, i.e.
the state or the input, i.g0 < min{n,m}. lim z(k) =0 (9a)

A dynamic nonlinear, time-invariant state feedback con- ke
troller is to be designed and is to assume the followmé‘n

structure: xkye 2, ulk)ex (9b)
ot = a(xo), (4a) for all d(-) € .#, and allk € N.
u=y(x,0) (4b) 1. LINEAR CONTROLLERDESIGN

A. The Augmented System

In order to address the problem we make use of the
following auxiliary system to define the controller state

where o € R! is the controller stateg™ is the controller
successor statey : R" x R — R! is the controller state
dynamics map angt: R" x R' — R™ is the controller output

map dynamics:
The plant dynamics (1a), together with the controller (4), K" = Ax+Bu+ (oT+x—>“<), (10a)
forms a closed-loop system dt =d+x—=x. (10b)
Er=1(&.d), ) The system (10) corresponds to using a dead-beat observer

where for the following system:

X o1+ o

e 3] ©® °_[A [, B

o d ~lo tf|dT|o]"™
is the closed-loop system state and the closed-loop dynamics R
are given by x=[l 0] H ,

F(E,d) = {Ax+ By(x, 0)] i [E] d. (7) in which it is clear thatd € R", which has been added to
a(x,0) 0 remove any offset, is an integrating (step) disturbance acting

Let (p(k é d( )) be the solution to (5) at timk when the on the statx & R". Note that the dimensions dfandd need

augmented state i§ at time O (note that since the systemnot be the same in order to guarantee offset-free control.
is time-invariant, the current time can always be regarded asBY combining the plant dynamics (1a) and the auxiliary
zero) and the disturbance sequence(i$ := {d(k)}{",. By ~System (10), we obtain the following augmented system:
definition,¢(0,&j,d(-)) = é'. With a slight abuse of notation, EY = o€+ But&d, 11)
we also define the following:

in which

§(k) :==9(k,&,d(-)), (8a) X A 0O O B E

()=[ 0] p(k,&,d(-)), @b) &:=|X|, o= I+A —I ||, #:=|B|,&:=|0
ok:=1[0 I]o(k&.d()), (8¢) d = 0 f)
( ) =o(k &,d()), (8d) We also define the controller statec R, with | := 2n,

=[C; 0]o(k&.d(-)). (8€)  to be the states of the auxiliary system (10), i.e.

In general, since the disturbance is persistent and unknown L )”S 13
it is impossible to drive the controlled variable to the origin. = 1d|- (13)

However, we consider the following restriction on the dlsturB Unconstrained Offset-free Controller Design

bance:
Assumption 2 (Disturbance)At each time instant, the When a non-zero persistent disturbance affects a system,

current and future disturbances are unknown. The distyff?€ ©rigin of the state and input needs to be shifted in order
bance sequencey(-) takes on values in a polytop@ C R' to cancel the effect of such a disturbance on the controlled

containing the origin and asymptotically reaches an unknom}(?riable [5]1 [6]. To this aim, at. each sample instant we
steady-state value, i.d(k) € Z for all k€ N and there exists use the estimate of the future disturbance and compute the

ade 2 such that lig__ d(k) = d steady-state targéx, u) such that one can drive the controlled

Under the above assumptions we present a novel meth)ﬁarlable to the origin. When the dimension of the input is
for designing a dynamic, nonlinear, time-invariant stat&du@l o the dimension |°fdth$ czntt)rolled variabfe ¢ p)
feedback controller (4) that, for any allowable d|sturbancg1e$e targets are uniquely defined by:
sequence (any infinite disturbance sequence that satisfies As- [I-A —-B d+ =11 £, (14)
sumption 2), accomplishes the goal of driving the controlled C 0| |ufl 0 0 O



Notice that this corresponds to finding the pairu) such that  and substituting (16) into (18) it follows that
C,x=0 andx= Ax+Bu-+d™, i.e. the state and input that . A

cancel the effect of the disturbance. If, instead, there are extra U= Maa(X—X+d) +K(x—My3(x—X+d)) (222)
degrees of freedomm(> p) these targets are non-unique. = (K+TMx—TX+ rd (22b)
Howeyer, one can addre_ss both cases [6] by sc_>|ving_ the = XE. (22c)
following equality-constrained quadratic program, in which
Re R™M is a positive definite matrix: After substituting (22) into (11), one can write an expres-
1 o sion for the augmented system (11) under the linear control
(X (&),T" (&) := argminEJT a, (15a) u=.#¢ as

= £ =of JE+&d. (23)

subject to

Let w(k,&,d(-)) be the solution of the closed-loop sys-
[I —A —B] ﬁ _ [I —I I}é (15b) tem (23) at timek, given the statef at time 0 and the
C; 0| |u 0 0 O~ disturbance sequencX-).
As a consequence of the above, we introduce the following

For a given augmented staté, one can think of standing assumption:

— Z . .
(T] (glgj’lk’; (6) a}stthde rée\iv_ongfm_*arourlg Wh'(?h :he. sl?/stem Assumption 3 (Stabilizing gainjThe matrixK € R™" is
shoulid be reguiated. Soing K (é)’u.(é)). IS trvial: chosen such that+ BK is strictly stable 7" is given by (19)
Lemma 1 (Target calculation)The minimizer of the . . i
lit trained drati 15) is i .tP]Mth I given by (21) ande/,, .= o/ + B.H .
(raeqsuaelc}[/-tcoo{]hserzll?eme%l:: d rsatgefr:é)%;ar?ve(n g IS fInear Wit e following result states that if the control is given by
P 9 9 y u= &, then the value of the controlled variable for (23)
X(E)| (Mg —Myg Mg 16 is guaranteed to converge to the origin, given any allowable
u (&) 5 (16) infinite disturbance sequence:

Lemma 3 (Offset-free control)f Assumptions 1-3 hold,
nxn mxn
wher_e Mg € R and My, € R are the relevant block then the closed-loop system (23) satisfies
matrix components of

rl23 —|_|23 I_|23

I_Ill rIlZ rIlS I_|l4

I-|21 I_|22 I_|23 I-|24

for all £ ¢ R%" and alld(-) € .#,,.
Mg M3y Mg T3y 7

Mgy Mgy Myg Ty C. The Maximal Constraint-Admissible Robustly Positively
0 0 —I+AT —CT -1 Invariant Set
0 R B 0 17) We now consider the problem of computing the maximal
I-A -B 0 0 constraint-admissible robustly positively invariant set in the
(O 0 0 space of the augmented stdte= [x" X" d']T.

Let the constraint-admissible sef be defined as
and [M,; MM,,] hasm-n columns.

We now consider what would happen if one were to choose - {g eR¥M|xe 2 and ¥ Ecw } ) (25)
a gain matrixK such thatA+ BK is strictly stable and let
the control input in the augmented system (11) be given byhemaximal constraint-admissible robustly positively invari-
ant set 0, for the closed-loop system (23) is defined as
u=u () +Kx=x(§)). (18)  all initial states in= for which the evolution of the system

Before proceeding, we need the following result: remains in= for all allowable infinite disturbance sequences:

Lemma 2 (Stability):Suppose that Assumption 1 holds O = {5 cz | w(k & d(-) € 2, V() € .4, VKGN}.

and K € R™" js such thatA+ BK is strictly stable. If</ (26)
and # are given by (12)]° € R™" is any constant matrix  assuymption 4 (Invariant set)The set@., as defined in
and (26) is non-empty, contains the origin in its interior and is
H = [K‘*‘r - F] J (19) finitely determined (described by a finite number of affine
then inequality constraints).
Ay =l + BH (20) Since (23) is linear and time-invariant aadis given by
- a finite number of affine inequality constraints, is easily
is strictly stable. computed by solving a finite humber of LPs [7].
By defining The following result states that, provided the augmented

M=y — KMy, (21) state is in0, at time O, then the evolution of the augmented



system under the linear control= ¢ is such that offset- asv:=[v] --- V{_;]" andd:=[d] --- d ,]", wherey,

free control is guaranteed and the state and input constraifit8' andd, € R" for all k€ {0,...,N—1}.

are satisfied for all allowable disturbance sequences: With a slight abuse of notation, lef, := x(k &,v,d)
Proposition 1 (Linear controller):Suppose that Assump- denote the solution to (31) for akl € {0,...,N}, given the

tions 1-4 hold. The solution of the closed-loop system (23ugmented stat&, a sequence of control perturbationand

satisfies (24) and a sequence of disturbancds The corresponding predicted

lant state and input are similarly defined as
In Oly(kEd() e 2 andrykéde)er, @) © P d
=|ln O] x(k d ke {0,...,N 32
for all & € O, all d(-) € .4, and allk € N. X (o OJx(k&v.d),  vke{0...N}, (32a)
Because of the assumptions in Propositign 1, itis impor- Y= A x(k S, v,d)+v, Vke{0,... ,N-1}. (32b)
tant to initialize the controller state := [X" d']T correctly The set of admissible input perturbationg() is the set

such thatf := X oT]" € O at time 0. A sensible way 10 ¢ input perturbations of lengtN such that for all allowable
initialize the controller state is to compute the minimizer ofyisturbances of lengtN, the input constraint@ are satisfied
the following quadratic program, given the initial plant statg, e the horizork=0.....N — 1. the state constraint¢” are
x(0): satisfied over the horizok=1,...,N—1 and the augmented
- : . . T - state at the end of the horizon is i, (hence the predicted
(%(0),d(0)) = arg(r;]c}?{(x(O) =% (X(0) —R)+ plant state at the end of the horizon is alsa4n):

d'd| Ecbn}. (28) E=E, &N € On

We can now also defink, to be the set of plant states for (&) ={ve RMN % €2, k=1...N-1, . (33)
which there exists a controller state such that the augmented u €%, k=0,....N-1
state is iNC.: for all d e 2N

Xo:={x€R" | 3o € R" such that{ € 0, } .  (29) Note that 7y (&) is defined by aninfinite number of
: . . constraints. Obtaining an equivalent expression #Q(&)
Clearly, (28) is feasible if and only &(0) & X,. in terms of afinite number of affine inequality constraints
IV. RECEDING HORIZON CONTROLLER DESIGN is straightforward and a result that allows one to do this

The setX, is the set of initial plant states for which the efficiently is given in Section IV-B.

controlled variable will be driven to the origin by the linear In OFdef o define _the receding hO”_ZOT‘ controller, we need
controlu= _#'&. This section presents an efficient approac o define an _assomated FHOCP. Similar to [9], [10].’ we
for computing a nonlinear controller, which enlarges the Se?hoose to defin@y (&), the FHOCP to be solved for a given
of initial plant states for which the controlled variable can>’ as

ultimately be driven to the origin. This will be achieved by  p(&): J(&):=min{Jy(v) |ve (&)}, (34a)
using ideas from model predictive control for constrained v

systems [2], [3], [8]- where the cost function to be minimized is defined as

A. Definition and Properties of the Receding Horizon . NZ1 o
Controller (V) = kZO kW, (34b)

Similar to the ide_a proposed in_ [9], [10] of‘pre-_s_tabiliz_ing’ in which W is a positive definite matrix. The minimizer of
the plant, let the linear control in (22) be modified with aPN(&) is similarly defined:

perturbation term as follows:

V(E) = {V§(E),... VN :=arg min Jy(v) (34c
u— HE v, @y VO 6E) Vi a(©)) iarg min Jy(v) (340
wherev € R™ is the input perturbation. The solution to theWe assume here that the minimizer Bf () exists; this
finite horizon optimal control problem (FHOCP), defined beassumption is justified in Section IV-B.
low, is a finite sequence of input perturbations that guaranteesAs is standard in receding horizon control [2], [3], [8],
robust constraint satisfaction over the horizon and optimizder a given states, we only keep the first elemen(&)
some cost function. Under the control (30) the augmentesf the solution to the FHOCP. Using this receding horizon
state dynamics (11) become principle, we define our controller in (4) by substituting

Et = E+BV+Ed. (31) u= & +vy(&) (35)

Before proceeding, let the horizon lendthbe a positive into the equation for the augmented system (11) and compar-
integer and the block vectovrse R™ andd € R™ be defined ing it with the expression for the closed-loop dynamics (7).



In other words, the controller state dynamics map in (4a) i®llowing, given the initial plant state(0):

given by R

X(0),d(0),v*(£(0))) :=arg min {J(v)+
CNI4A o1 By B (%(0),d(0),v"(£(0))) g(mv){N()
(X(X, G) = | —1 | <§+ 0 (g + 0 \f(jk)(g) (36a) n T/ T

A(R=x)T(R—x)+d"d) |ve % (&) andx=x(0)},

and the controller output map in (4b) is (40)

Y%, 6) 1= HE +V5(E). (36b) whereA is a strictly positive scalar.
It is important to be able to determine all the plant statet%b”?:nc'em Implementation of the Receding Horizon Con-

for which one can guarantee that probleéfy(§) has a _
solution. The set of plant statesy for which one can  Recall that2’, % and 0., are polyhedral sets given
initialize the controller state such that the set of admissibl@y @ finite number of affine inequality constraints. As a

input perturbations’s(£) is non-empty (and?y(£) has a consequence, it is easy to obtain an equivalent expression
solution) is given by for the set of admissible input perturbatiorg(&) as

XN — {XE @ | EIGe]RZ” such thaff/N(é);é(D} (37) "//N(é)Z{VERmN|FVSb+Gd+H§ for all dE@N(}4,1)

As will be shown belowXY is the set of plant states in where the matrices € R*>™N, G € RN H ¢ RN
Z for which the controlled variable will be driven to the and the vectorb € RY depend on the augmented system
origin by the controller (4), ifa andy are given by (36). dynamics (31). It is also easy to show that the number of

We can now give our first main result; constraintsg = O(N).

Theorem 1 (Domain of RHC)Suppose that Assumptions The following result, which is a restatement of [11,
1-4 hold. The sequence of set¥,,X{,...,X¥}, whereX, Prop. 1], allows one to efficiently compute an equivalent
is defined in (29) and eack’, i € {1,...,N}, is defined as expression for#} (&) in terms of a finite number of affine
in (37) with N =i, contains the origin in their interiors and inequality constraints:

satisfies the set inclusion Proposition 2 (Expression fo¥y(§)): If (&) is given
as in (41), then
X CX{ S SXN1 S XN (38 N
Theorem 1 is very important because it shows that, under W) ={veR™ |Fv<c+HE}, (42a)

the above assumptions, an increase in the horizon length d?/veﬁere
not decrease the size of the set of plant states for which the

controlled variable can be driven to the origin. €= b+vecd2ngjﬂ Gd (42b)
Before giving our second main result, we need the follow- _ . .
ing: and vecmin_, Gd := [min,_ nG;d --- miny_ Gqd]T;

Lemma 4 (Perturbation sequenceSuppose that Gi Cdlenoltes thethbrow of G.t db \vina LPs. H
Assumptions 1-4 hold. If the controller (4) is defined, early, ¢ can be computed Dy Soving LS. HOWEVeT,

: g ;
by (36) and 74 (£(0)) is non-empty, then the evolution itis very useful to note that iy := {d € R" | .Hd.”‘” =n} .
of the closed-loop system (5) is such thag(£(K)) is then one does not need to solve any LPs. This is because it is
non-empty and easy to show [11] that = b— n|G|1, where the components
. of the matrix|G| are the absolute values of the correspondin
im Ve (£ (K)) — 0 39 f th ix|G| he absol I f th ponding
bl 0(6(K)) =0. (39) components ofs and1:=[1 --- 1]T is a column vector of

ones of suitable dimension.
for all d(-) € “ and allke N. . Given all of the above, it is now clear that the minimizer to
We can now state our second main result:

h f | and : isfaction): Py (&) exists if and only if#y (&) # 0 and that the minimizer
Theorem 2 (Offset removal and constraint satis action): js"the solution to the following finite-dimensional strictly
Suppose that Assumptions 1-4 hold and that

thg ; .
onvex quadratic program (QP):
controller (4) is defined by (36). One can choose the d prog QP)

initial controller state ¢(0) such thatPy(£(0)) has a Vi(€) =argmin{Jy(v) | Fv<c+HE}. (43)
solution and the evolution of the closed-loop system (5) v
satisfies (9) for alld(-) € .#,, and allk € N if and only if There are essentially two ways in which one can compute
the initial plant statex(0) € Xy. v5(&) (and hence the control input) for a givén

As in Section IlI-C, we need to initialize the controller « As is standard in conventional model predictive con-
state correctly such th@t(£(0)) has a solution. A sensible trol [2], [3], [8], given the current value fof, one can

method for simultaneously obtaining an optimal initial con-  computev;(&) on-line by solving the QP defined in (43)
troller state and input perturbation sequence is to solve the using standard QP solution methods.



« The QP in (43) is a so-calleparametricQP, since the complexity since the number of decision variables and con-
constraints (and hence the solution) of the QP in (43) argraints increases only linearly with an increase in the horizon
dependent on thparameteré. This observation allows length.
one to compute the explicit expression fQC-) off-lin.e V1. ACKNOWLEDGEMENTS
using recent results presented in [12]. The results in [12] _ _ . _ .
can be used to show that(-) is a piecewise affine Eric Kerrigan is a Royal Academy _of Engineering Post-
function of & and is defined over a polyhedral partition,dOCtoral Research Fellow and would like to thank the Royal

i.e. the domain of(-) is the union of a finite number Academy of Engineering, UK, for supporting this research.

of polyhedra andvy(-) is affine in each polyhedron. VIl. REFERENCES

Computing v§(¢) on-line amounts to looking up the

polyhedron that contains the current value {€fand

substituting€ into the corresponding affine function.

We conclude this section by pointing out that, because 01[2]

the above, (40) is also a finite-dimensional strictly convex
QP.
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