Invariant approximations of the minimal robust with the problem of calculating a robust positively invariant (RPI)
positively invariant set approximation of the mRPI set for linear systems with bounded
state disturbanceglV shows how the results can be implemented

S.V. Rakove, E.C. Kerrigan, K.I. Kouramas and D.Q. Mayne  efficiently if the disturbance set is a polytope; an illustrative example
is also provided. Finally§V presents some conclusions. In order to

Abstract—This paper provides results on approximating the minimal keep the presentation as transparent as possible, all proofs are give

robust positively invariant (mRPI) set (also known as the (reachable sety 1N the appendix. A more detailed exposition and extension of the
of an asymptotically stable discrete-time linear time-inariant system. It  results in this paper can be found in the technical report [16].

is assumed that the disturbance is bounded, persistent anctts additively NoTATION: Let N £ {0,1,2,...} be the set of non-negative
on the state and that the constraints on the disturbance are @yhedral. integers and\,. 2 {1,2,...}. Let B (r) a {z eR"| ||z, < r}

Results are given that allow for the computation of a robust psitively . .
invariant, outer approximation of the mRPI set. Conditions are also given € @p-norm ball inR™, wherer > 0. Given two setd/ andV, such

that allow one to a priori specify the accuracy of this approximation. thatt/ ¢ R™ andV C R", the Minkowski (vector) sum is defined by
A . . .
Index Terms— Set invariance, invariant approximations, robust contrd, & ®V = futv|uveld, veVy, 1nt(Z;{) denotes the Intberlor dﬁi
linear systems. Given the sequence of seft/; C R"};_,, we denoted,_ U; =
Uy @ - ®Uy. The setMw = {w(-) | w(k) € W, Yk € N} is
the set of all infinite sequences whose elements take on values in

W C R™ (equivalently, My is the set of all maps : N — W).
Set invariance plays a fundamental role in control [1]. The focus

of this paper is on theninimal robust positively invariant (mRPI)

set also often referred to as thereachable sef2], i.e. the set of

states that can be reached from the origin under a bounded statje consider the following autonomous discrete-time linear time-

disturbance. The mRPI set is important for performance analysigariant (DLTI) system:

and synthesis of controllers for uncertain systems [1, Sects. 6]4—6.5

and for computing themaximal robust positively invariant (MRPI) at = Az +w, (1)

set [3]. Set invariance is fundamental in the synthesis of reference " Iy

governors [4], [5] and predictive controllers [6]-[9] with guarade wge.rex €R"isthe C!J”e“t state;™ is the successor sFate ande i

invariance, stability and convergence properties. The mRPI set is a%o IS an l{[‘xkngn dls'turbance. We make the St?“d'“g assumption

a suitable target set in robust time-optimal control [10]-[13] and pla)}gatA € R o lsa St”Ct_ly s_,table matrl_x (all the (_algenval_ues Aff

an integral part in a novel robust predictive control method, recenf’l’;;e strictly inside the unit disk). Ihe dlsturbe}nwels con_ta_uned_ in

proposed in [14]. a convex and compact sé¢ C R" that contains the origin. Since

Despite the wide-spread use of the mRPI set in control, there zﬁl?@ system is time-invariant, current time can alway_s bg taken to be
still a number of unresolved issues. As pointed out in [1, Sects. G_agro. We denote by (k, 2, w(-)) the solution to (1) at time instar,

6.5] and the survey paper [2], one of the more important outstandiﬂyen that Fhe initAiaI state (at tim@) is = and the infinite disturbance
problems is how to compute agxact representation of the mRrp| S€dUence iso(-) = {w(0)7w.(1), -3 .

set. To the best of our knowledge, the only results that allow for the First we recall the following well-known definition [1]:
exact computation of the mRPI set are given in [13, Thm. 3] and [15, Definition 1 (RPI set):The setQ C R" is a robust positively
Sect. 3.3], where the restrictive assumption is made that the syst@ifriant (RPI) set of (1) if Az +w € Q for all z € © and all
dynamics are nilpotent. we W, ie.ifand only if AQ W C Q.

For the more general case, where the dynamics are not nilpotenfGiven a setX, the solution satisfies(k,z, w(-)) € X at all
it is only possible to compute aapproximationto the mRPI set time instantsk € N and for all allowable disturbance sequences
and the reader is referred to [1, Sects. 6.4-6.5] and [2] for aweviév(-) € Mw if and only if there exists an RPI sét that is contained
of methods on how this can be achieved. However, though thd8eX and the initial state is in €2 [1].
methods allow for the approximation of the mRPI set, they do not Definition 2 (Minimal RPI set):The minimal robust positively in-
allow for the computation of aimvariant approximation to the mRPI variant (mRPI) set; of (1) is the RPI set irR™ that is contained
set. Since reference governors, predictive controllers and time-aiptiri? every closed RPI set of (1).
controllers use invariant sets, it is important that the approximation!t is possible to show [3, Sect. IV] that the mRPI dé{, exists,
of the mRPI set be invariant. The approximation methods reviewéunique, compact and contains the origin and that the zero initial
in [1, Sects. 6.4-6.5] and [2] are clearly inadequate for our perpogondition response of (1) is bounded By, i.e. ¢(k,0,w(:)) € Fu
Hence, the aim of this paper is to provide a solution to this problefar all w(-) € Mw and allk € N. It follows, from linearity and
by providing a number of new results that allow for the computatioaSymptotic stability of (1), thaF’ is the limit set of all trajectories
of a robust positively invarianapproximation of the mRPI set. We of (1).
also give results that allow one to specHypriori an upper bound In order to quantify a “good” approximation, we introduce:
on the error of this approximation. Definition 3 g-approximations):Given a scalae > 0 and a set

This paper is organized as follow§ll is concerned with def- @ C R", the set® C R" is an outer e-approximationof Q if
initions, existing results and the problem formulaticiill deals 2 C ® C Q @ B;(e) and it is aninner c-approximationof € if
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such thatF; is an innere-approximation off.,. Clearly, the mRPI computation ofs°(a)) anda®(s) is easy ifi¥ is a polytope given by

set F is given by a set of affine inequality constraints (S&l&). Our next result is:
_ N Theorem 2 (Limiting behavior of the RPI approximatiof):0 &
Foo = EPO AW. ©) ine(w), then

(i) F(a°(s),s) = Fs ass — oo and
2(ii) F(a,s°(a)) = Foo asa \ 0.

Theorem 1 provides a way for the computation of an RPI,
outer approximation of, and Theorem 2 establishes the limiting

It is generally impossible to obtain an explicit characterizatior'of
using (3) [2]. However, as noted in [15, Sect. 3.3] and [3, Ren, 4.
if there exist an integes € N, and a scalarx € [0, 1) such that
A® = al, thenFy = (1 — o) ' Fs. It follows [13, Thm. 3] that if ¢ : oo © ’ )
A is nilpotent with indexs (A° = 0), then Fio = F.. If A is strictly behaylor of th_ls_appro>_(|mat|0'n. Howevgr, for a given pair s) that
stable, but not nilpotent, then there does not exist a fipituch safisfies (4), it is not immediately obvious whether or @, 5)

that F; = F. As a consequence, none of the sets in the sequeﬁ%e‘?1 ggod approxw.n.anon of the mRPI ,SEI”' Given a palr(a7s). .
{F, | s €N} are RPI sets and it is impossible to compute an RI:,Tatlsfylng the conditions of Theorem 1, it can be shown (along similar
innser approximation of the mRPI sét. lihes as in the proof of Theorem 3 in Appendix Il) that if

e>a(l— 04)71 max ||z||, = a(l — 04)7l min {'y } F, C IB%;('y)}
Ill. A PPROXIMATIONS OF THEMINIMAL ROBUST POSITIVELY veFs v @)
INVARIANT SET then Fio C F(a,s) C Foo @ B?(e). In other words,F(«, s) is an
In this section, we address the problem of computing an BRer RPI, outers-approximation ofF,, if ¢ satisfies (7).
approximation of the mRPI sdt.. when A is not nilpotent. We also  Though this observation allows one to determiaeposteriori
address the problem of computing an RPI, out@pproximation of whether or notF'(a, s) is a good approximation aof..., it is perhaps
the mRPI setF, for a givene > 0. more useful to have a result that allows one to deternairiori
Before proceeding, we make a clear distinction between the resuitsv larges and/or how smalk need to be in order foF'(, s) to
reported in the recent conference paper [17] and this paper. B¥ a sufficiently accurate approximation &f,. The following result
applying the standard algorithm of [3], the authors of [17] propose &stablishes that this is possible:
compute thenaximalrobust positively invariant set (MRPI) contained Theorem 3 (Error bound)if 0 € int(W), then for alle > 0,
in (1+¢)Fs, for a givens > 0 ands € N. This set, if non-empty, is there exist amv € [0,1) and an associated integerc N, such
an RPI, outer approximation of the mRPI det,. For a givere > 0, that (4) and
the algorithm is based on incrementing the integemtil the MRPI a(l—a) 'F, C By (c) (8)
set contained irf1 +¢) F; is non-empty. This recursive calculation is
necessary, since the authors clearly state in [17, Rem. 6] that theyh@id. Furthermore, if (4) and (8) are satisfied, thefw, s) is an RPI,
not have a criterion for tha priori determination of the integersuch ~outere-approximation of the mRPI sét..
that the MRPI set contained il +¢) F is non-empty. In contrast to ~ Remark 1:Note that (7) and (8) are equivalentf is a polytope
this method, we propose to compute an RPI, outer approximationasfdp = oo, then it is not necessary to compufg in order to check
the mRPI seff,, by first computing a sufficiently large, computing Whether (8) holds (se@lV).
F, and scaling the latter by a suitable amount. The proposed methodt is straightforward to develop a conceptual algorithm based on
does not rely on the computation of MRPI sets and thus is simpleheorem 3. Note that (4) provides a lower bound @rsuch that
and probably more efficient than the procedure reported in [17]. Ofi{«, s) is guaranteed to be RPI and contdi,. In addition, the

first result is: conditions (7) and (8) give an upper bound @rsuch thatF'(«, s)
Theorem 1 (RPI set): [18] If 0 € int(W), then there exists a is guaranteed to be an outerapproximation off... The reader is
finite integers € Ny and a scalar € [0, 1) that satisfies referred to Algorithm 1 in§IV for more details.
s A whole collection of RPI, outet-approximations of the mRPI set
AW C oW. ) F+ can be computed; the complexity 6% «, s) is highly dependent
If (4) is satisfied, then on the eigenstructure ol and the description of¥/. However, for
a given error bound, it is usually a good idea to find the smallest
Fla,s) 2 (1—-a)7'F, (®)  value of the integers for which there exists am € [0,1) such

that (4) and (8) hold. This is because, for a givena lower value
and Foo C F(a, s). of s generally results in a lower complexity for the description of

It is easy to develop and implement an algorithm based dile, s). _In contrast, for a given, the value ofa does not affect the
Theorem 1. IfiV is a polytope, standard “off-the-shelf” optimizationcomplexIty OfF(,O",S),' ) o ) )
and computational geometry software may be used {Sée Remark 2 (Origin is in the relative interior df"): The results in
Clearly F(a, s), as defined above, is an RPI, outer approximatio}tu“s _sectlon c_an be extended to _the_mor_e general cas_e when the
of the mRPI setF... However, the former could be a very poorJnterlor of W is empty, but thaelative interior of W contains the

approximation of the latter. We therefore proceed to address {i9Iin (see [16]).

question as to whether, in the limik;(«, s) tends to the true mRPI

set F if we chooses sufficiently large and/or choose sufficiently IV. EFFICIENT COMPUTATION IF W IS A POLYTOPE
small. For this purpose, let

is a convex, compact, RPI set of (1). Furthermdre; int(F(a, s))

This section presents results that allow for the efficient computation

s°(a) 2 min{s e N; | A°W C aW}, (6a) of a priori upper bounds for the conditions presented in (4) and (8)
o/ N A . s to hold. In particular, results are given that allow one to test whether

o’(s) S minfa €R | AW C oW} (6b) or not Fs is contained in a given polyhedral without having to

be the smallest values gfand « such that (4) holds for a given computeF; explicitly. The interested reader is referred to [1], [3]

and s, respectively. The minimum in (6a) exists for any choice o&nd [16] for information on the methods used to derive the results in

a € (0,1) anda®(s) € [0,1) only if s is sufficiently large. The this section.



The support functior[3] of a setW ¢ R™, evaluated at € R™, Algorithm 1 Computation of an RPI, outer-approximation of the

is defined as MRPI setF,,
hw (a) £ sup a”w. (9) Require: A, ande > 0
wew Ensure: F(a,s) such thatF, C F(a,s) C Foo & BL (€)

If W is a polytope (bounded and closed polyhedron), then(a) 1: Choose any € N (ideally, sets < 0).
is finite. Furthermore, ifi¥ is described by a finite set of affine 2: repeat
inequality constraints, therkw (a) can be computed by solving 3: Increments by one.
a linear program (LP). Testing whether (4) and (8) hold can be: Computea®(s) as in (11) and set < a°(s).
implemented by evaluating the support function 16f at a finte 5: ComputeM (s) as in (13).
number of points [3], or by solving a single Phase | LP [1, Lem. 4.1].6: until o <e/(e + M(s))
The setF, (and henceF(«, s)) is easily computed using standard 7: Compute F; as the Minkowski sum (2) and scale it to give
computational geometry software for computing the Minkowski sum F(«a,s) £ (1 — a) ™' FL.
of polytopes, such as [19] and [20].
Remark 3:If W £ {Ed+c | ||d||ec <7}, Where E € R™*"

n T T
andc € R”, thenhw (a) = 7| E"all1 + a”c. . . Our illustrative example is a double integrator:
In order to be as general as possible, we will consider the case
whenW is in the formW £ {w € R™ | ffw < g;, i € I}, where ot = {1 1}x+{1}u+w (15)
fi € R™, g; € R andZ is a finite index set. Following a standard 01 1

procedure [3] it is possible to show that with the additive disturbancéV = {w € R® | [|w|l <1} and

AW C aW +— hw((As)Tfi) <agi, VieZ  (10) u = —[1.17 1.03]z. The setsF;, for s = 1,2,...,10, for the

xample are shown in Figure 1 together with the/S€t.9-107°, 10)

r which it was required that = 5 - 107° (see (8)); it is clear
that the sequencgF.} is a monotonically non-decreasing sequence
and it converges td., and thatF(1.9 - 10°,10) is a sufficiently
good approximation off.., i.e. F(1.9 - 107°,10) satisfies that

This observation allows for efficient checking of whether or not (
is satisfied. Hence, it permits the efficient computatiostix) and
a®(s). For example, recall thati” contains the origin in its interior
if and only if g; > 0 for all : € Z. It follows that

a’(s) = max hw (AT £)/gi. (11) Foo C F(1.9-107°,10) C Foo @B, (5-107°).
It is also possible to check whether the g&tis contained in a . ‘ « space
given polyhedronX £ {z € R" | chx < dj, j € J}, where
c; € R", d; € RandJ is a finite index setwithout computingF s
explicitly: r 2
s—1
F,CX <= > hw((A)¢)<d;, Vied. (12) 1 "
1=0
Thus, F(a,s) C X & F, C (1—-a)X & Y5  hw((A)"¢)) < of {F)i
(1 - Oz)dj, VjeJ.
One can also use the support function to compugegiori an error Ll
bound on the approximatioR («, s) if the co-norm is used to define
the error bound, i.ep = oo in (8). Proceeding in a similar fashion L
as above, it is possible to show that '\
M(s) £ min{y | Fs CBL(7)} 4 ‘ ‘ ‘ | FU9107%10)
Y -15 -1 -0.5 0 05 1 15
s—1 s—1
—  max hw ((ADTe;), hw(—(AH7Te;) b, Fig. 1. Approximations off.: SetsFs and F'(a, s)
max }{Z w(A)Ter), 3 hw(—(A)Tey)
13)

wheree; is the ;™ standard basis vector R". If o € (0,1), then (8) V. CONCLUSIONS

is equivalent toF, C o~ '(1 — a) By (). Hence, ifp = oo in (8),

) ] ¢ ) ' The reported novel results complement existing results and permit
straightforward algebraic manipulation yields

the efficient computation of an RPI, outer approximation of the
a(l—a) 'F, CBL(e) < a<e/(c+ M(s)). (14) mi.nir‘nal robust positively invariaqt set and allow one to speeify
) ) ~ priori the accuracy of the approximation. The presented results can
Clearly, (11) is an easily-computed lower bound and (14) is & exploited in the design of robust reference governors, predictive
easily-computed upper bound ansuch thatt"(a; s) is an RPI, outer controllers and time-optimal controllers for constrained, linear dis-

e-approximation of the mRPI sdf... We are now in a position to ¢rete time systems subject to additive, but bounded disturbances.
put together a prototype algorithm for computing an RPI, outer

approximation ofF', if the co-norm is used to bound the error. These
steps are outlined in Algorithm 1. In order to reduce computational
effort, note that in step 5 of Algorithm 1 it is not necessary to compute
2 hw (AN e;) and Y572 hw (—(A%)Te;) at each iteration.  Existence of ans € Ny and ana € [0,1) that satisfies (4)
These sums would have been computed at previous iterations. fllows from the fact that the origin is in thaterior of W and that
that is needed is to update these sums by computing and addihgs strictly stable. Convexity and compactnessifa, s) follows
hw ((A*~HTe;) andhw (— (A1) Te;), respectively. directly from the fact that, (and henceF(a, s)) is the Minkowski

APPENDIX I
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sum of a finite set of convex, compact sets. &, j, k) =
(1-a) ' @i, A'W. It follows that

AG(a,0,s—1)d W =G(a,1,8) @ W (16a)
=(1-a) "AWaeGal,s-1)aW (16b)
Cl—a)'aWaeWeG(a,1,s—1) (16c)
=[1-a) ta+1JWaG(a,1,s—1) (16d)

=(1-a)'WaeG(a,1,s—1) = G(a,0,s —1).  (16€)

In going from (16b) to (16c) we have used the fact that Q =
P& R C Q® R for arbitrary setsP C R", @ C R™ and R C R".
Since F(«, s) = G(a,0,s — 1), it follows that AF («,s) @ W C
F(a, s) holds, henceF(«, s) is RPI. It follows trivially from the
definition of the mRPI set thaf'(«, s) containsF... Note also that
0 € int(Fs) if 0 € int(W).

APPENDIXII
PROOF OFTHEOREM 2

F(a,s) = (1—04)71F5 = (1+a(1—a)71)F5 = F5®a(1—a)71Fs.
SinceF; C Foo C F(a,s) C Fo®By(e) C Foo @B (), it follows
that F'(«a, s) is an RPI, outee-approximation of the mRPI sdf..
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