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Abstract— This paper is concerned with the application of state is required to be in a target/terminal constrainiXget

a recent result in the literature on robust optimization to the  at the end of the horizork& N), whereXs is a polyhedron
control of linear discrete-time systems, which are subject to given by

unknown, persistent state disturbances and mixed constraints
on the state and input. By parameterizing the control input

sequence as an affine function of the disturbance sequence, . rxn r .
it is shown that a certain class of finite horizon min-max the matrixy € R™", the vectorze R" andr is the number

control problems is convex and that the number of variables Of affine inequality constraints that defide.

and constraints grows polynomially with the problem size. It NOTATION: 1 is an appropriately-size column vector of

is assumed that the constraint and the disturbance sets are gnes. IfA and B are matrices, then abs) is a matrix of

polyhedral and that the cost is a suitably-chosen quadratic, he gpsolute values of the corresponding componenss of

where the disturbance is negatively weighted as ikl control. B 0 denotes tha is positive definite and\ < B is used
to denote component-wise inequality.

Xi:={xeR" | Yx<z}, 4)

. INTRODUCTION
Il. AN AFFINE PARAMETERIZATION OF THE

Consider the following discrete-time LTI system: CONTROL INPUT SEQUENCE
X" = Ax+Bu+w, (1) Let N be a positive integer and the vectorse R™
and w € R™ be defined asvj v] --- v{_,]T and

wherex € R" is the system states” € R" is the successor
state,u € R™ is the control input andv e R" is the distur-
bance. The actual values of the state, input and disturba
at a time instantk are denoted bw(k), u(k) and w(k),
respectively; where it is clear from the context,u and

w will be used to denote the current or initial state, inpu . ’ -
b i,...,N—1}. This constraint oM is assumed throughout

and disturbance. It is assumed tlAtB) is stabilizable and : . . . ;
that at each sample instant a measurement of the statetqg rest of this paper. The variabjeis defined as the pair

available. The current and future values of the disturbanclg . .(V’ M). ' o
are unknown and the disturbance is persistent, but comtaine Using the same "?‘f“”e parameter!zatlon of the control
in a polytope (bounded polyhedroiy. Without loss of Input sequence ongmglly proposed in [1.]’ !et the gurrent
generality and in order to simplify notation (see [1], [2] fo va_llue of the state _deflne the set of gdmlss!bl«ﬁ, which

o . : will be used to define a feedback policy, as:
ways of generalizing the results in this paper), we assume
thatW is a hypercube: Xi+1 = A% + BU + Wi, Xo =X,
) n i—1
W= {WeR" | [Wla<n}. @ y L
The system is subject to polyhedral, mixed constraints on NV 1=
the state and input; (X, u) € ¥, Xn € Xt,
vie{0,...,.N—1}, vwe #

Wl wi - wj ;]T, where the vectors; € R™ andw; € R"
Jorallie{o,....,N—1}. Let =WN =W ... xW.

eWe define thestrictly block lower triangular matrix M :=

[Mi ;] € R™>*N "where the matricebl; j € R™" for all i €

io,...,N—l}andje{O,...,N—l} andM; j:=0forall j €

®)

W ={(x,u) eR"xR™ | Cx+Du<b}, 3)
. on o~m The above parameterization has a humber of advantages
where the matrice€ € R*", D € R>"™ and the vectobec 54 system-theoretic properties, compared to the caseif on
RS, sis the number of affine inequality constraints in (3). yere to seM = 0 as in so-called “open-loop” finite horizon

For a given initial state, a time-varying control policy iSconirol. The reader is referred to [1]-[3] for further déai
to be designed, which guarantees that for all disturbanceBy eliminating x and u; from (5), it is easy to find

sequences of a lengtd, the state and input of the closed- o iricesE c ROXMN G ¢ RN | ¢ RIXN and a vector

loop system is irn?Z over the horizork=0,...,N—1. The c e RY, whereq:= sN+r, such that one can rewritéy (x)
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Remark 1: Note that ab&M +G)1 is a vector formed  We can now state the min-max problem that is of interest
from the 1-norms of the rows &fM +G. In going from (6) to us. For a given initial state=x(0) andy, let
to (7) we have used the well-known fact (see, for example,, ) . .
[1-[3]) that a’w < d for all w e # if and only if Vhi0xy) = min (WG, @) | (@A) satisty (8) and (12)
maxy {a'w | [w[le <n} = nlall1 < d, wherea is any '
vector inR™ andd is any real scalar.

It follows immediately from (7) thaty € Wy(x) if and
only if there exists a matrixA € R%*™ such that

Recalling from the above thafy(x,y, ) can be calcu-
lated efficiently by solving a tractable QP, it follows that
one can comput&y(x,y) efficiently using standard tools
from convex optimization, such as cutting plane, interior-
~N<FM+G<AandFv+nAl<c+Lx (8) point and bundle methods.

1. CONTRIBUTION OF THIS PAPER IV. FINITE ¢2 GAIN
Consider now the following finite horizon quadratic cost, As a final, motivating point for this paper, lgt*(x, y) and
as encountered in the literature bla, control: N*(x,y) be minimizers of the above min-max problem. Let
N—1 the initial statex = x(0) and atime-varying control policy
NG Y, W) = on,-TQxiJruiTRui —yV’wWiwi +xyPxy (9)  be given by
i= k—1
wherexo =X, %11 = AX; +BU; +W andu; = Vi + 3 _5 M jw; u(k) = vi(x,y) + Z)Mfé.j (% y)w(j) (13)
for all i € {0,...,N—1}. The matricesP, Q and R are 1=
positive definite and/ is a scalar. forallke {0,...,N—1}. Note that (13) is a causal feedback

One can eliminateq and u; in (9) to get matricedHx, policy that is dependent on the current state as well as
Hxu, Hxw, Huu, Huw, Huww Of suitable dimensions such thatpast values of the state and input; since measurements of
the state are available and past inputs are knowi(j,
I (X, ¥ W) = X" Hiox+ 2T Hv + VT Hugv in (13) is given byw(j) = x(j +1) — Ax(j) — Bu(j) fgf(aﬂ
+2XT (HuM + Hy )W+ 20T (HyuM + Huw )W je{o,....N—1}.
— W' (VI — Haw — 2M THyw — MTHy M)w,  (10) It follows from the optimality of ¢/*(x,y) that if the
disturbance sequendev(0),...,w(N —1)} takes on values
whereH, andHy, are positive definite anblww is positive iy W and the input sequendel(0),...,u(N—1)} is defined
semi-definite. as in (13), then one has the following finit® gain
Itis easy to show thaln(X, ¥, /,w) is a convex function property: ZE:OlX(k)TQ(k) + u(k)TRu(k) + x(N)TP(N) <
in Y := (v,M). To see why this is the case, note that it isyz thlfolW(k)fW(k) + V(% y). Furthermore,(x(k),u(k)) €
sufficient to show thaff (¢, w) := VT HuwV+2vT HuuMwW + 2 For all ke {0,...,N—1} andx(N) € Xs.
W'MTH,uMw is convex iny. Consider now the function  pyriher research may involve extending the results in this
g(u) := uHyyu, whichis convex inu. Sincef (¢/,w) =g(V+  paper toH,, receding horizon control [4, Sect. 4.7]. The
Mw) and the fact that convexity of a function is preserveqeader is referred to [2] for some initial results on the stbu
under an affine map, it follows thaft(y,w) is convex in  jnvariance of receding horizon controllers that are based o

v o ) o the parameterization in (5).
Since the pointwise supremum of an arbitrary, infinite set
of convex functions is convex, it follows that V. ACKNOWLEDGEMENTS
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