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Abstract— This paper is concerned with the application of
a recent result in the literature on robust optimization to the
control of linear discrete-time systems, which are subject to
unknown, persistent state disturbances and mixed constraints
on the state and input. By parameterizing the control input
sequence as an affine function of the disturbance sequence,
it is shown that a certain class of finite horizon min-max
control problems is convex and that the number of variables
and constraints grows polynomially with the problem size. It
is assumed that the constraint and the disturbance sets are
polyhedral and that the cost is a suitably-chosen quadratic,
where the disturbance is negatively weighted as inH∞ control.

I. INTRODUCTION

Consider the following discrete-time LTI system:

x+ = Ax+Bu+w, (1)

wherex ∈ R
n is the system state,x+ ∈ R

n is the successor
state,u ∈ R

m is the control input andw ∈ R
n is the distur-

bance. The actual values of the state, input and disturbance
at a time instantk are denoted byx(k), u(k) and w(k),
respectively; where it is clear from the context,x, u and
w will be used to denote the current or initial state, input
and disturbance. It is assumed that(A,B) is stabilizable and
that at each sample instant a measurement of the state is
available. The current and future values of the disturbance
are unknown and the disturbance is persistent, but contained
in a polytope (bounded polyhedron)W . Without loss of
generality and in order to simplify notation (see [1], [2] for
ways of generalizing the results in this paper), we assume
that W is a hypercube:

W := {w ∈ R
n | ‖w‖∞ ≤ η } . (2)

The system is subject to polyhedral, mixed constraints on
the state and input:

Y := {(x,u) ∈ R
n ×R

m | Cx+Du ≤ b} , (3)

where the matricesC ∈ R
s×n, D ∈ R

s×m and the vectorb ∈
R

s; s is the number of affine inequality constraints in (3).
For a given initial state, a time-varying control policy is

to be designed, which guarantees that for all disturbance
sequences of a lengthN, the state and input of the closed-
loop system is inY over the horizonk = 0, . . . ,N −1. The
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state is required to be in a target/terminal constraint setX f

at the end of the horizon (k = N), whereX f is a polyhedron
given by

X f := {x ∈ R
n | Y x ≤ z} , (4)

the matrixY ∈ R
r×n, the vectorz ∈ R

r andr is the number
of affine inequality constraints that defineX f .

NOTATION: 1 is an appropriately-size column vector of
ones. If A and B are matrices, then abs(A) is a matrix of
the absolute values of the corresponding components ofA,
B ≻ 0 denotes thatB is positive definite andA ≤ B is used
to denote component-wise inequality.

II. AN AFFINE PARAMETERIZATION OF THE
CONTROL INPUT SEQUENCE

Let N be a positive integer and the vectorsv ∈ R
mN

and w ∈ R
nN be defined as[vT

0 vT
1 · · · vT

N−1]
T and

[wT
0 wT

1 · · · wT
N−1]

T , where the vectorsvi ∈R
m andwi ∈R

n

for all i ∈ {0, . . . ,N −1}. Let W := W N := W ×·· ·×W .
We define thestrictly block lower triangular matrix M :=

[Mi, j]∈R
mN×nN , where the matricesMi, j ∈R

m×n for all i ∈
{0, . . . ,N−1} and j ∈{0, . . . ,N−1} andMi, j := 0 for all j ∈
{i, . . . ,N−1}. This constraint onM is assumed throughout
the rest of this paper. The variableψ is defined as the pair
ψ := (v,M).

Using the same affine parameterization of the control
input sequence originally proposed in [1], let the current
value of the statex define the set of admissibleψ, which
will be used to define a feedback policy, as:

ΨN(x) :=
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xi+1 = Axi +Bui +wi, x0 = x,

ui = vi +
i−1

∑
j=0

Mi, jw j,

(xi,ui) ∈ Y , xN ∈ X f ,

∀i ∈ {0, . . . ,N −1}, ∀w ∈ W
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. (5)

The above parameterization has a number of advantages
and system-theoretic properties, compared to the case if one
were to setM = 0 as in so-called “open-loop” finite horizon
control. The reader is referred to [1]–[3] for further details.

By eliminating xi and ui from (5), it is easy to find
matricesF ∈ R

q×mN , G ∈ R
q×nN , L ∈ R

q×n and a vector
c ∈ R

q, whereq := sN + r, such that one can rewriteΨN(x)
in (5) as

ΨN(x) =
{

ψ
∣

∣ Fv+(FM +G)w ≤ c+Lx, ∀w ∈ W
}

(6)

=
{

ψ
∣

∣ Fv+ηabs(FM +G)1≤ c+Lx
}

. (7)



Remark 1: Note that abs(FM + G)1 is a vector formed
from the 1-norms of the rows ofFM +G. In going from (6)
to (7) we have used the well-known fact (see, for example,
[1]–[3]) that aT w ≤ d for all w ∈ W if and only if
maxw

{

aT w | ‖w‖∞ ≤ η
}

= η‖a‖1 ≤ d, where a is any
vector inR

nN andd is any real scalar.
It follows immediately from (7) thatψ ∈ ΨN(x) if and

only if there exists a matrixΛ ∈ R
q×nN such that

−Λ ≤ FM +G ≤ Λ andFv+ηΛ1≤ c+Lx. (8)

III. CONTRIBUTION OF THIS PAPER

Consider now the following finite horizon quadratic cost,
as encountered in the literature onH∞ control:

JN(x,γ,ψ,w) :=
N−1

∑
i=0

xT
i Qxi +uT

i Rui−γ2wT
i wi +xNPxN (9)

wherex0 = x, xi+1 = Axi +Bui +wi andui = vi +∑i−1
j=0 Mi, jw j

for all i ∈ {0, . . . ,N − 1}. The matricesP, Q and R are
positive definite andγ is a scalar.

One can eliminatexi and ui in (9) to get matricesHxx,
Hxu, Hxw, Huu, Huw, Hww of suitable dimensions such that

JN(x,γ,ψ,w) = xT Hxxx+2xT Hxuv+vT Huuv

+2xT (HxuM +Hxw)w+2vT (HuuM +Huw)w

−wT (γ2I −Hww −2MT Huw −MT HuuM)w, (10)

whereHxx andHuu are positive definite andHww is positive
semi-definite.

It is easy to show thatJN(x,γ,ψ,w) is a convex function
in ψ := (v,M). To see why this is the case, note that it is
sufficient to show thatf (ψ,w) := vT Huuv+2vT HuuMw +
wT MT HuuMw is convex inψ. Consider now the function
g(u) := uHuuu, which is convex inu. Sincef (ψ,w) = g(v+
Mw) and the fact that convexity of a function is preserved
under an affine map, it follows thatf (ψ,w) is convex in
ψ.

Since the pointwise supremum of an arbitrary, infinite set
of convex functions is convex, it follows that

VN(x,γ,ψ) := max
w∈W

JN(x,γ,ψ,w) (11)

is a convex function in ψ.
Note also thatγ can be chosen sufficiently large such that

γ2I −Hww −MT Huw −HT
uwM −MT HuuM ≻ 0. (12)

Clearly, if (12) is satisfied, thenJN(x,γ,ψ,w) is a strictly
concave function in w. This implies thatVN(x,γ,ψ) can
be computed by defining and solving atractable, strictly
convex quadratic programming (QP) problem.

Note that the number of variables and constraints in (8)
is polynomial in N, n, m, r and s. Observe also that
(12) is a quadratic matrix inequality (QMI) that, by Schur
complement, can be converted to a linear matrix inequality
(LMI) in M and γ2. This implies that, for a given initial
statex = x(0), a sufficiently largeγ and an admissibleψ
can be found by solving an LMI defined from (8) and (12).

We can now state the min-max problem that is of interest
to us. For a given initial statex = x(0) and γ, let

V ∗
N(x,γ) := min

(ψ,Λ)
{VN(x,γ,ψ) | (ψ,Λ) satisfy (8) and (12)}

Recalling from the above thatVN(x,γ,ψ) can be calcu-
lated efficiently by solving a tractable QP, it follows that
one can computeV ∗

N(x,γ) efficiently using standard tools
from convex optimization, such as cutting plane, interior-
point and bundle methods.

IV. FINITE ℓ2 GAIN

As a final, motivating point for this paper, letψ∗(x,γ) and
Λ∗(x,γ) be minimizers of the above min-max problem. Let
the initial statex = x(0) and atime-varying control policy
be given by

u(k) = v∗k(x,γ)+
k−1

∑
j=0

M∗
k, j(x,γ)w( j) (13)

for all k ∈ {0, . . . ,N−1}. Note that (13) is a causal feedback
policy that is dependent on the current state as well as
past values of the state and input; since measurements of
the state are available and past inputs are known,w( j)
in (13) is given byw( j) = x( j +1)−Ax( j)−Bu( j) for all
j ∈ {0, . . . ,N −1}.

It follows from the optimality of ψ∗(x,γ) that if the
disturbance sequence{w(0), . . . ,w(N −1)} takes on values
in W and the input sequence{u(0), . . . ,u(N−1)} is defined
as in (13), then one has the following finiteℓ2 gain
property: ∑N−1

k=0 x(k)T Q(k) + u(k)T Ru(k) + x(N)T P(N) ≤
γ2 ∑N−1

k=0 w(k)T w(k) +V ∗
N(x,γ). Furthermore,(x(k),u(k)) ∈

Y for all k ∈ {0, . . . ,N −1} andx(N) ∈ X f .
Further research may involve extending the results in this

paper toH∞ receding horizon control [4, Sect. 4.7]. The
reader is referred to [2] for some initial results on the robust
invariance of receding horizon controllers that are based on
the parameterization in (5).
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