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Abstract— This paper is concerned with the application feedbackmin-max finite horizon control problems [1], [5]-
and analysis of a recent result in the literature on robust [7]. It was shown in [14] and [15], via numerical exam-
optimization to the control of linear discrete-time systems, ples, that the parameterization of [12] and [13] leads to a

which are subject to unknown state disturbances and mixed . ii ti t h h |
constraints on the state and input. By parameterizing the Significant improvement over schemes suchopgn-ioop

control input sequence as an affine function of the disturbance Min-max model predictive control [6, Sect. 4.5] and those
sequence, it can be shown that a certain class of robust finite proposed in [9]-[11], where a sequencepefturbationsto
horizon control problems can be solved in a computationally g stabilizing control law is sought.

tractable fashion, provided the constraint and the disturbance Motivated by the very promising results reported in [12]—

sets are polytopic. The main contribution of the paper is to . . . .
show that this parameterization includes the class of affine [15], the aim of this paper is to make a first step towards

time-varying state feedback control laws. The paper also shows & detailed, theoretical understanding of the geometric and
how this parameterization can be used to efficiently synthesize system-theoretic properties of the parameterization pro-

receding horizon control laws that are robustly invariant. posed by [12] and [13], with the goal of ultimately using this
parametrization in efficiently synthesizing robustly ireat
I. INTRODUCTION and stabilizing receding horizon control (RHC) laws.

o ) This paper is organized as follows: Section Il briefly
The problem of finding a nonlinear state feedback contrGhroduces the control problem that will be considered in
law, which guarantees that a set of state and input COkyis paper and some standing assumptions are introduced.
straints are satisfied for all time, despite the presence ofdxction 11 proceeds to review the parameterization pro-
persistent state disturbance, has been the subject of St%éed in [12] and [13], within the context of finding a
for many authors [1]-[7]. However, the problem is thaiso|ytion to a certain robust finite horizon control problem.
all of these solutions are com_putationally prohibitiveel®v  section IV contains the main contribution of this paper.
for problems of ‘moderate’ size) or can be shown to behegrem 1 shows that the set of states for which the
computationally intractable (the complexity of the saati parameterization in Section Il is feasible, contains the s
can be shown to be an exponential function of the problegk states for which one can find an affine time-varying state
data). As a consequence, a number of researchers hg¥gghack control policy such that for all allowable values
proposed compromise solutions [8]-{11], which, though nas the disturbance, the constraints are satisfied over @ finit
able to guarantee the same level of performance or regigRyizon.
of attraction, is computationally tractable. Further new results are given in Section V. It is shown
Recently, a new parameterization for solving so-calleghat, provided the target/terminal constraint set is rdipus
robust optimizatiorproblems was proposed in [12] and [13].invariant, one can guarantee certain geometric and system-
The authors proposed that, instead of solving for a genergheoretic properties of a number of control policies based
nonlinear function that guarantees that the constraintisén on the parameterization proposed in Section Ill. Theorem 2
optimization problem are met for all values of the uncershows that the size of the set of states for which a control
tainty, one could aim to find aaffinefunction of the uncer- policy can be defined, increases with an increase in horizon
tainty. They proceeded to show that, if the uncertainty set jength. Theorem 3 shows that one can design an RHC law
a polyhedron and the constraints in the robust optimizatiofat is guaranteed to be robustly invariant.
problem are affine, then an affine function of the uncertainty section VI discusses the computational complexity of
can be found by solving a single, computationally tractablghe parameterization reviewed in Section Ill. Most of the
LP. They also demonstrated, via an example, how thefoints discussed in Section VI can be found in [12]-[15] in
results can be successfully applied to an inventory contrghe form or another and this section is therefore mainly
problem. included for completeness. The key point to note from
The same affine parameterization was later used in [1&ection VI is that finding a solution to the finite horizon
Chap. 7] and [15] to approximate a class of so-calledontrol problems discussed in Sections Il and V is a
convex optimization problem, where the number of decision
The authors are with the Department of Engineering, Unitersf  variables and constraints is golynomial function of the
Ciggrli(dgfég’r’:‘qu‘gw&‘ks"eet' CB2 1Pz Cambridge, United 8809 1 ohlem data. In particular, it is shown that, provided the
fj nm@ng. cam ac. uk disturbance is an affine map of a hypercube, one need only
TRoyal Academy of Engineering Post-doctoral Research Fellow solve a Phase | LP of Si@(Nz), whereN is the length of



the control horizon. I1l. AN AFFINE PARAMETERIZATION OF THE
The paper concludes in Section VII and briefly discusses CONTROL INPUT SEQUENCE
directions for further research. The reader is also'recﬂer.re Let N be a positive integer and the vectars R™ and
to [16] and [17] for extensions of the results in this nN )
: .. “weR™ be defined as
paper. Some numerical examples and results on minimum-

time control are given in [17] and [16] shows how the Vo Wo

parameterization discussed in this paper can be used to 1 W1
efficiently solve finite horizon min-max problems, where Vi=| oo |, W= (4)

the cost is quadratic and the cost is negatively weighted, as ) '

in He, control. WN-1 WN-1
where the vectorg, € R™ andw; e R" for all i € {0,... ,N—
II. PROBLEM DESCRIPTION 1.

Consider the following discrete-time LTI system: Let the set#/ :=WN =W x --- x W.
We define thestrictly block lower triangulamatrix M ;=
X" = Ax+Bu+w, (1) [Mij] € R™*MN, where the matrices; j € R™" for all

ie{0,...,.N—1} andj € {0,...,N—1} andM;; := 0 for

N L
wherex € R" is the system state;" is the successor state, all € {i....N—1}. In other words,

ue R™M is the control input anav € R" is the disturbance.

The actual values of the state, input and disturbance at 0 0 0
a time instantk are denoted byx(k), u(k) and w(k), Mio 0 0
respectively; where it is clear from the context,u and M — :' : . : : )
w will be used to denote the current value of the state, ' : . ' : xh
input and disturbance. Mn-20 Mn-21 - 0 0

It is assumed thatA,B) is stabilizable and that at each Mn-10 Mn-11 -+ Mn-in-2 O

sample instant a measurement of the state is available.{ifis constraint oM is assumed throughout the rest of this
is further assumed that the current and future values

the glisturbance are _unkn_own and that the disturbance is-l-he' variabley is defined as the pair

persistent, but contained in a convex and compactset

which contains the origin. Y= (v,M). (6)
Since the disturbance is persistent, it is not possible to

drive the state of the system to the origin. Instead, the aim Using the same affine parameterization of the control

will be to drive the state of the system to a target/termindhput sequence proposed in [12], [13], we use the current

constraint sei;, given by value of the statex to define the set of admissiblg,
. which will be used to define a number of different feedback
Xi =={xeR" | Yx<z}, (2)  policies, as:
where the matrixy € R™" and the vectoz € R"; r is the v, w satisfies (4) M satisfies (5)
number of affine meq_uallty con'st_ral'nts' th'at dgfh(ne It is Xi11 = A% +BU + Wi, X0 =X,
assumed thaXs contains the origin in its interior. -
Th_e system is subject to mixed constraints on the statquN(X) =y U = Vi + %Mi‘jwj’
and input: =
@ = {(xU) ER"xR" | Cx+Du<b},  (3) (i, u) €, X € Xr,
Vvie{0,...,.N—1}, vwe #
where the matrice€ € RS", D € R*™ and the vector @)

b € RS; sis the number of affine inequality constraints that Note that the predicted value of the inpytat a time
define%'. It is assumed thaf" contains the origin in its instanti steps into the future, is an affine function of
interior. An additional design goal is to guarantee that ththe disturbance sequendgev,...,w;_1}; because the state
state and input of the closed-loop system sat#fyfor all is measured at each sample instant, the values in this
time and for all allowable disturbance sequences. disturbance sequence will be known at a time instant
The final standing assumption is that a state feedbasteps into the future. The strictly block lower triangular
gain matrixK € R™" is given, such thaf+ BK is strictly  constraint orM in (5) can therefore be seen to beausality
stable (the eigenvalues 8f+ BK are strictly inside the unit constraint on u;, which ensures that the inpuft is not
disk). a function of the (as yet unknown) disturbance sequence
NOTATION: A® B is the Kronecker product of matrices {W;,...,Wn_1}.
A andB. Given an integen, I, is then x n identity matrix Given anyy € Wn(x(0)) and the stabilizing state feed-
and 1, is a column vector of ones. back gainK € R™", one can now define the following



time-varyingfeedback policy: Sinceu; = Lijx + g for all i € {0,...,N—1}, it follows

o that
" {vﬁz'j‘:glvli,jw(]) if ke {0,...,N—1} @)
= . i—1
Kx(k) if ke {N,N+1,...} U = LiSx+ ZLiTi,J' (Bgflfj +Wiflfj)
Clearly, (8) is a causal feedback policy that is dependent no =
only on the current state, but also on past values of the state +LiBg-1+Lwi_1+g. (16)
and input; since measurements of the state are available and. . .
past inputs are knowmw(j) in (8) is given by qt is easy to check that (16) is equal to
. . . . . I_l
w(j)=x(j+1)—Ax(j)—Bu(j), Vje{0,...,N—1}. (9) ui:viJrZJMi’i*l*jWi*l*j’ vie{o,...,N—1} (17)
. . =
Before proceeding to analyze the properties of (8) and
other feedback policies, let the sxﬁ denote the set of if vp:=Lox+go and for alli € {1,...,N—1},

states for which there exists an admissitple i1
x'illl — {XE R" ‘ LPN(X) 7& 0} (10) Vi == LiSx+ Jle—i-l—i?ng—l—j + LiBg—1+gi (18)
IV. HOW TO MATCH AN AFFINE TIME-VARYING and
FEEDBACK LAW . T
Mo Li if j=0 19
Let the variabled be defined as the tuple b=l LT if je{l...,i-1} (19)

6 :=(Lo,90,L1,91,---,Ln-1,On-1) , 11) It follows from the definition of©(x) that for alli €
where the matrix; € R™" and vectorg; € R™ for all i e~ 10:---,N—1} andw € 77, (x,u)) € # andxy € X;. Given
{0,...,N—1}. the above definitions, ifv,M) is gefmed as in (4) and (5),

Consider now the set of admissibfe then (v,M) € Wn(x), hencex & Xy .
0 satisfies (11) w satisfies (4)
Xip1 =A% + Bl +W, Xo=X, It is interesting to note that the proof of Theorem 1
. . implies that if, for a given initial statex(0), one can
On(x) = ® Ui =Lx+gi, o (12) find an ATV feedback policy of the form (14) such that
(%, Ui) € 7, xn € Xy for all allowable disturbance sequences of lendththe
vie{0,....N—1}, vwe # state will be inX; in exactlyN steps while satisfying the

constraints?” over a horizon of lengtiN, then one can find
ay € Wn(x(0)) in order to define a time-varying feedback
policy of the form (8), which will result irexactly the same
X3 :={xeR" | On(X) #£0}. (13) control input sequencas the one that would result from
implementing (14).

We conclude this section by pointing out that, at present,
there does not exist an efficient algorithm for finding a
6 € On(x). However, as will be shown in Section VI,

. Lx(K)+g¢ if ke {0,...,N—1} 14 finding ay € Wn(X) is computationally tractable W i_s a
(k) = Kx(K) if ke (N,N+1,...} (14) polytope (closed and bounded polyhedron) or the affine map
of a hypercube. As a consequence of Theorem 1, the results

The main result of this paper states that the set df Section VI and the lack of an efficient method for finding
initial statesx,ﬂ, for which an ATV feedback policy of the a 6 € ©y(x), we will only consider feedback policies
form (14) can be defined, is contained insM&, the set that can be defined from the parameterization proposed in
of initial states for which a feedback policy of the form (8)Section Ill.
can be defined:

The set of states for which there exist an admissibles
defined as:

Given a stabilizing state feedback gaihe R™" and
a 8 € O©N(x(0)), one can define the following affine time-
varying (ATV) state feedback policy:

V. GEOMETRIC AND INVARIANCE PROPERTIES

For this section, we introduce the following assumption:
Proof. Let x € Xﬁ. One can easily verify that given@<c  A1: The setX; is contained insidé, which is given by

On(x) andw € 7, it follows that for alli € {1,...,N},
. Xk :={xeR" | (x,Kx) e #} ={x | (C+DK)x<b},
_ < T LW , (20)
X = SX+ ng'" (BG-1-j+Wi1j) +BG 1+ W 1, (15) and Xz is robustly positively invariant [4, Def. 2.2] for the
closed-loop system™ = (A+BK)x+w, i.e.

Theorem 1 (Main result). Xfif’ contains X.

whereS :='_L(A+BL;) andT; ; := j_ A+BLi ), =
1,...,i—1.r|]70( 1) &ndTiy = [li—g (A+BL-1) (AFBK)X+WeX;, WXeXr, YweW.  (21)



Remarkl. Under some additional, mild technical assumpSinceX; is robustly positively invariant for the closed-loop
tions, it is easy to compute a¥x that satisfieAl if W is  systemx’™ = (A+BK)x+w, it follows that

a polytope. For example, [18] gives results for computing
the maximalrobustly positively invariant set iXx and [19]
gives some new results that allow one to compute a robustly By putting all of the above together and letting the vector
positively invariant outer approximation to theminimal v e R™MN+1) pe defined as
robustly positively invariant set irkx. See also [3] for [

XN+l = Axy +Buy +Wy € Xf,  Vwy €W, (26)

results on computing a robustly positively invarianher V=

approximation to thanaximalrobustly positively invariant o

set in Xk. For results on computing aX: of a given and the matrixV € R™N+Uxn(N+1) phe defined as

complexity, which satisfief\l, see [11]. — [M 0 0 0o .- 0 0 (28)
The next result follows immediately from the above: 0 0 0|’

| (27)

VN

Mno Mni - Mnn-z

Proposition 1. Let Al hold, the initial state f0) € X,{f' it follows from the definition of Wy 1(x) that (V,M) €
and @ € Wy(x(0)). For all allowable infinite disturbance Wn1(X), hencex € X¥,,. The proof is completed by
sequences, the state of systél) in closed-loop with the verifying, in a similar manner, thaXs C Xl"’ - XZ‘”. O
feedback policy8), enters X in N steps or less and is in
Xs for all k € {N,N+1,...}. Furthermore, the constraints
in (3) are satisfied for all time and for all allowable infinite
disturbance sequences.

We now consider what happens whéy(x) is used
to design atime-invariant receding horizon control law.
Consider theset-valuedeceding horizon control (RHC) law
Kn Xy — 28" (2R is the set of all subsets &™), which

The following result gives a sufficient condition underis defined by considering only the first portion ofvafor
which one can guarantee that an increase in the horizavhich there exists aiM such that(v,M) € Wy(x):

lengthN does not result in a decrease in the smé(,{ﬁf. Kn(x) = {U€ R™ | 3(v,M) € Wn(X) S.t.u=[lm OV}

Theorem 2 (Size ofX,‘\f’). If A1 holds, then the following (29)
set inclusion holds: The following result implies that if the initial state is in
X,ff’, then all trajectories of (1) in closed-loop with the RHC

Xpexf cooxfoxexi, (22)  policy u e kn(x) will remain in X for all time and for all

. . . . . allowable disturbance sequences:
where each # is defined as if(10) with N=1. W ISt au

Theorem 3 (Robust invariance of RHC laws). If Al
holds, then the set,(’f( is robustly positively invariant for
system(1) in closed-loop with the RHC law29), i.e. if

Proof. The proof is by induction. Lek € X, (v,M) €
Wn(x) andw e 7. It is easy to verify that

y N-1 xex,ﬁ’, then
— | .
XN = ATX+ Zj (ABW-1-i+ Ax+Butwe XY, Vueky(x), YweW.  (30)
1=
i i1 Furthermore, the constraint§3) are satisfied for all time
A+ Z)AJBMNflfi,Nfl—i Wn-1-i |- (23)  and for all allowable infinite disturbance sequences.
=

Proof. The method of proof very closely parallels that of
N—1 Theorem 2 and the same definitions are assumed. However,
Wy = KANX + Z)KAtiNflfi (24) rather than showing that an appended version(\oM)
i= is admissible, one proceeds by showing that a “shifted”
version of(v,M) is admissible at the next time instant. For
this purpose, we introduce the following variables:

Let

and for alli € {0,...,N—1}, let

S Al Vi 4+ M1 oW
Man-1-i = KA + Z)KAJBMN—l—j,N—l—L (25) 10
= U:= : (31)
From these definitions, one can check that the terminal VN-1+MnN-1,0W
control law VN + Mn,ow
N—1 N-1 and
Un =N+ % MN,jWj = W + Z) MNN-1-iWN-1-i 0 0 .. ... 0
< 1= = Ma.1 0 .. .. 0
B M:=| : : . (32
From the definition of¥n(x), recall thatxy € X;. Note Mn-11 Mno12 - 0 0
also that that sinc&; C X, it follows that (Xn,un) € #. Mn 1 My2z -+ Mnn-1 O



Using similar arguments as in proving Theorem 2, butap of a hypercube (for example, when upper and lower
taking care with notation, one can now show thateia‘X,i,”, bounds on the components of the disturbance are known and
ue kn(X) andwe W, then(¥,M) € Wy (Ax+Bu+w), hence the disturbance acts on the state in an affine manner). This
AxX+Bu+we X,i,” [0  observation leads to a significant reduction in computation

. . . effort, compared to the case of treatid§ as an arbitrar
Remark 2. In this paper, we do not consider the im- P g y

portant problem of how to synthesize an RHC law sucRO.Ilégospeeé why this is the case, note thaWifis the affine
that the closed-loop system is robustly stable and rObquF%mslation of a hypercube, i.e. if

convergence ts is guaranteed. However, it is hopefully T

clear from the proofs of Theorems 2 and 3 that we can W:={Ed+f | |[d|e<n} (35)
always choose the so-called ‘terminal control law’ (as

used in the RHC literature) to ba = Kx. Hence, one Where the matriE € R, the vectorsf € R", d e R' and
can use well-known results, surveyed in [5] and [6], td] is & positive scalar, then

synthesize robustly stabilizing RHC controllers, using th .

parameterization discussed in this paper. For example, the 7i={3d+g | dle<n}, (36)
reader is referred to [16] for some initial results on how thgyhere the matri¥ := Iy @ E, the vectorg:= 1y ® f, d € Rt
parameterization in this paper may be used to efficientlind the integet := IN. It follows that

solve finite horizorH., problems. Alternatively, the results

in this paper and those in [14] and [15] may be extended andvfpeg}(FM +G)w = mdax{(FM +G)(Jd+9) | ||d]je <n}
combined with the results in [20] to efficiently synthesize (37a)
min-max RHC laws with robust stability guarantees. The
results in [10] may also be generalized to allow one to :mdax{(FMJ+GJ)d+(FM +6)g | [ldlle <0} (370)

efficiently compute RHC laws with input-to-state stability = max{(FMJ+GJ)d | ||d||« <n}+(FM+G)g (37¢)
(ISS) guarantees, if some so-called ‘nominal/expectet cos d
is minimized, rather than a worst-case cost. =nabsFMI+GI)L +(FM +G)g, (37d)

VI. COMPUTING AN ADMISSIBLE i where the components of the matrix_ a1 + GJ) are
the absolute values of the corresponding components of the

: : : H gxmN
It is straightforward to find matrice§ € R , Ge matrix EMJ+ GJ. Hence,

RN 'H ¢ R" and a vectorc € RY, whereq :=sN+r,

such that one can rewrité'y(x) in (7) as M satisfies (5)
W) M satisfies (5) WnX)=q @ | Fv+nabdFMI+GI)L o (38)
NI=A Y Fv+ (FM +G)w < c+Hx, Ywe % +(FM +G)g < c+Hx

_ 33) Remark3. Note that abg"MJ+GJ)1; is a vector formed
It is well-known (see, e.g. [1]-[5], [8]-{15], [18]) that from the 1-norms of the rows oFMJ+ GJ. In going
one can eliminate the quantifier in (33) by noting that  from (37c) to (37d) we have used the well-known fact that

M satisfies (5) maxg {a'd | [|d|l. <1} = nlal|y for any vectora e R'
Wy (X) = {Lp }, (34) and scalarn (see, for example, [10, Prop. 2] or [14,
Fv+vr\r1€a;}((FM +G)w < c+Hx Thm. 3.1]).
where the maximization in max, (FM + G)w is row- If Wn(x) is given as in (38), then it is easy to

wise. It follows immediately thaWy(x) is a convex set. ~ checkwhether a given paiy is in Wn(x) by computing

If W is a polytope (closed and bounded polyhedron) giveAbSFMJ + GJ)1; and checking whether the constraints
by a finite set of affine inequalities, then it is easy to checit (38) are satisfied. However, we will now make an impor-
whether a givenyp is in Wy(x) by solving theq LPs that tant observation that allows one tmmputea ¢ € Wn(x),
define maycy (FM +G)w and checking the constraints given the current state. It follows immediately from (38)
in (34). Conversely, one can find a pajr € Wy(x) in that
a computationally tractable way by solving Phase | of a M satisfies (5) 3A € R%! such that

single LP by writing down the dual of each of the LPs . <
defining maxy,c» (FM 4+ G)w. The reader is referred to [12, N =W FV+nAL+(FM+G)gs c+Hx,

Thm. 3.2] and [13, Thm 4.2] for details as to how this can abgFMJ+GJ) <A
be done. M satisfies (5) IA € R%! such that
However, in this paper we will not consider the general =y FV+nNAL+(FM +G)g<c+HX, %,

case whenW is an arbitrary polytope. Instead, we will
consider the special case whehis known to be the affine
map of a hypercube. This is because, in many practicathere the matrix and vector inequalities are component-
applications W is nearly always assumed to be the affinavise.

—-AN<FMJ+GI<A



Remark4. Note thatWy(x) is the projection of the poly-
hedron

(1

M satisfies (5)

enX) =< (Y,N) | Fv+nAL+ (FM+G)g < c+Hx,
“A<FEMJI+GI<A [l
(40) 3

onto a subspace, hendéy(x) is also a polyhedron.

The key point to note here is the following: if the number 4]
of constraints in (3) iss= O(m+n) and | = O(m+ n)
in (35) (this is nearly always the case in practice), thenl®]
the dimension oféy(x) is bounded byO((m+ n)?N2 +

6
r(m+n)N) and the number of constraints that defifig(x) o
in (40) is also bounded b®((m+-n)2N24r(m+n)N). This .
implies that the problem of finding a pafw,M) € Wn(X) Y
is computationally tractable.
For example, finding ap € Wy(x) is easily done by [8
solving the following Phase | LP, in whicl is a scalar:
(" (%), A" (%), ¥ (x)) := arginf y (41) [9]
(WAY)
subject to (5) and [10]
Fv+nAl +(FM +G)g < c+Hx+1gy, (41b)
—AN<FMJ+GI<A. (41c) [11]

Clearly, Wn(x) is non-empty andy*(x) € Wn(x) if and only

if y*(x) <O. [12]
It is easy to find an initial feasible point to (41) by

choosing anyM that satisfies (5), followed by choosing

a A\ sufficiently large enough to satisfy (41c) and finaIIy,[13]

choosing any and a sufficiently larges such that (41b)

is satisfied. Once initialized with a feasible point, the LP

solver can proceed with minimizing the cost untiK 0. (14

The reader is referred to [17] for a discussion on how to

efficiently translate (41) into a form suitable to be passed

to a standard LP solver. 191

VII. CONCLUSIONS AND FURTHER RESEARCH [16]

Though the affine parameterization defined in Section Il
was shown to be useful for efficiently implementing controL:\m
laws with guaranteed system-theoretic properties such as
robust invariance and robust convergence to a target set,
there are still a number of issues that need to be addressed.

It was proven in Section IV that the set of states,
for which the parameterization in Section Il is feasible,
contains the set of states for which an affine time-varying®l
policy exists. It still remains to be determined whetheré¢he
exist examples for which the inclusion in Theorem 1 is strict
or whether it is always satisfied with equality. (19]

Section V showed that the parameterization in Section Il
can be used to construct receding horizon control laws such
that the region of feasibility is robustly invariant for the
closed-loop system. The focus of current research is
extending these results to guaranteeing robust convezgenc
and stability of the target set, as well as ensuring offess-f
control if the disturbance tends to a non-zero limit.
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