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Abstract— This paper is concerned with the application
and analysis of a recent result in the literature on robust
optimization to the control of linear discrete-time systems,
which are subject to unknown state disturbances and mixed
constraints on the state and input. By parameterizing the
control input sequence as an affine function of the disturbance
sequence, it can be shown that a certain class of robust finite
horizon control problems can be solved in a computationally
tractable fashion, provided the constraint and the disturbance
sets are polytopic. The main contribution of the paper is to
show that this parameterization includes the class of affine
time-varying state feedback control laws. The paper also shows
how this parameterization can be used to efficiently synthesize
receding horizon control laws that are robustly invariant.

I. INTRODUCTION

The problem of finding a nonlinear state feedback control
law, which guarantees that a set of state and input con-
straints are satisfied for all time, despite the presence of a
persistent state disturbance, has been the subject of study
for many authors [1]–[7]. However, the problem is that
all of these solutions are computationally prohibitive (even
for problems of ‘moderate’ size) or can be shown to be
computationally intractable (the complexity of the solution
can be shown to be an exponential function of the problem
data). As a consequence, a number of researchers have
proposed compromise solutions [8]–[11], which, though not
able to guarantee the same level of performance or region
of attraction, is computationally tractable.

Recently, a new parameterization for solving so-called
robust optimizationproblems was proposed in [12] and [13].
The authors proposed that, instead of solving for a general,
nonlinear function that guarantees that the constraints inthe
optimization problem are met for all values of the uncer-
tainty, one could aim to find anaffinefunction of the uncer-
tainty. They proceeded to show that, if the uncertainty set is
a polyhedron and the constraints in the robust optimization
problem are affine, then an affine function of the uncertainty
can be found by solving a single, computationally tractable
LP. They also demonstrated, via an example, how their
results can be successfully applied to an inventory control
problem.

The same affine parameterization was later used in [14,
Chap. 7] and [15] to approximate a class of so-called
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feedbackmin-max finite horizon control problems [1], [5]–
[7]. It was shown in [14] and [15], via numerical exam-
ples, that the parameterization of [12] and [13] leads to a
significant improvement over schemes such asopen-loop
min-max model predictive control [6, Sect. 4.5] and those
proposed in [9]–[11], where a sequence ofperturbationsto
a stabilizing control law is sought.

Motivated by the very promising results reported in [12]–
[15], the aim of this paper is to make a first step towards
a detailed, theoretical understanding of the geometric and
system-theoretic properties of the parameterization pro-
posed by [12] and [13], with the goal of ultimately using this
parametrization in efficiently synthesizing robustly invariant
and stabilizing receding horizon control (RHC) laws.

This paper is organized as follows: Section II briefly
introduces the control problem that will be considered in
this paper and some standing assumptions are introduced.
Section III proceeds to review the parameterization pro-
posed in [12] and [13], within the context of finding a
solution to a certain robust finite horizon control problem.

Section IV contains the main contribution of this paper.
Theorem 1 shows that the set of states for which the
parameterization in Section III is feasible, contains the set
of states for which one can find an affine time-varying state
feedback control policy such that for all allowable values
of the disturbance, the constraints are satisfied over a finite
horizon.

Further new results are given in Section V. It is shown
that, provided the target/terminal constraint set is robustly
invariant, one can guarantee certain geometric and system-
theoretic properties of a number of control policies based
on the parameterization proposed in Section III. Theorem 2
shows that the size of the set of states for which a control
policy can be defined, increases with an increase in horizon
length. Theorem 3 shows that one can design an RHC law
that is guaranteed to be robustly invariant.

Section VI discusses the computational complexity of
the parameterization reviewed in Section III. Most of the
points discussed in Section VI can be found in [12]–[15] in
one form or another and this section is therefore mainly
included for completeness. The key point to note from
Section VI is that finding a solution to the finite horizon
control problems discussed in Sections III and V is a
convex optimization problem, where the number of decision
variables and constraints is apolynomial function of the
problem data. In particular, it is shown that, provided the
disturbance is an affine map of a hypercube, one need only
solve a Phase I LP of sizeO(N2), whereN is the length of



the control horizon.
The paper concludes in Section VII and briefly discusses

directions for further research. The reader is also referred
to [16] and [17] for extensions of the results in this
paper. Some numerical examples and results on minimum-
time control are given in [17] and [16] shows how the
parameterization discussed in this paper can be used to
efficiently solve finite horizon min-max problems, where
the cost is quadratic and the cost is negatively weighted, as
in H∞ control.

II. PROBLEM DESCRIPTION

Consider the following discrete-time LTI system:

x+ = Ax+Bu+w, (1)

wherex∈ R
n is the system state,x+ is the successor state,

u∈ R
m is the control input andw∈ R

n is the disturbance.
The actual values of the state, input and disturbance at
a time instantk are denoted byx(k), u(k) and w(k),
respectively; where it is clear from the context,x, u and
w will be used to denote the current value of the state,
input and disturbance.

It is assumed that(A,B) is stabilizable and that at each
sample instant a measurement of the state is available. It
is further assumed that the current and future values of
the disturbance are unknown and that the disturbance is
persistent, but contained in a convex and compact setW,
which contains the origin.

Since the disturbance is persistent, it is not possible to
drive the state of the system to the origin. Instead, the aim
will be to drive the state of the system to a target/terminal
constraint setXf , given by

Xf := {x∈ R
n | Yx≤ z} , (2)

where the matrixY ∈ R
r×n and the vectorz∈ R

r ; r is the
number of affine inequality constraints that defineXf . It is
assumed thatXf contains the origin in its interior.

The system is subject to mixed constraints on the state
and input:

Y := {(x,u) ∈ R
n×R

m | Cx+Du≤ b} , (3)

where the matricesC ∈ R
s×n, D ∈ R

s×m and the vector
b∈ R

s; s is the number of affine inequality constraints that
defineY . It is assumed thatY contains the origin in its
interior. An additional design goal is to guarantee that the
state and input of the closed-loop system satisfyY for all
time and for all allowable disturbance sequences.

The final standing assumption is that a state feedback
gain matrixK ∈ R

m×n is given, such thatA+BK is strictly
stable (the eigenvalues ofA+BK are strictly inside the unit
disk).

NOTATION: A⊗B is the Kronecker product of matrices
A andB. Given an integern, In is then×n identity matrix
and1n is a column vector ofn ones.

III. AN AFFINE PARAMETERIZATION OF THE
CONTROL INPUT SEQUENCE

Let N be a positive integer and the vectorsv ∈ R
mN and

w ∈ R
nN be defined as

v :=











v0

v1
...

vN−1











, w :=











w0

w1
...

wN−1











, (4)

where the vectorsvi ∈R
m andwi ∈R

n for all i ∈ {0, . . . ,N−
1}.

Let the setW := WN := W×·· ·×W.
We define thestrictly block lower triangularmatrix M :=

[Mi, j ] ∈ R
mN×nN, where the matricesMi, j ∈ R

m×n for all
i ∈ {0, . . . ,N−1} and j ∈ {0, . . . ,N−1} and Mi, j := 0 for
all j ∈ {i, . . . ,N−1}. In other words,

M :=















0 0 · · · · · · 0
M1,0 0 · · · · · · 0

...
...

.. .
...

...
MN−2,0 MN−2,1 · · · 0 0
MN−1,0 MN−1,1 · · · MN−1,N−2 0















. (5)

This constraint onM is assumed throughout the rest of this
paper.

The variableψ is defined as the pair

ψ := (v,M). (6)

Using the same affine parameterization of the control
input sequence proposed in [12], [13], we use the current
value of the statex to define the set of admissibleψ,
which will be used to define a number of different feedback
policies, as:

ΨN(x) :=











































ψ

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

v, w satisfies (4), M satisfies (5),

xi+1 = Axi +Bui +wi , x0 = x,

ui = vi +
i−1

∑
j=0

Mi, jw j ,

(xi ,ui) ∈ Y , xN ∈ Xf ,

∀i ∈ {0, . . . ,N−1}, ∀w ∈ W











































.

(7)
Note that the predicted value of the inputui at a time

instant i steps into the future, is an affine function of
the disturbance sequence{w0, . . . ,wi−1}; because the state
is measured at each sample instant, the values in this
disturbance sequence will be known at a time instanti
steps into the future. The strictly block lower triangular
constraint onM in (5) can therefore be seen to be acausality
constraint on ui , which ensures that the inputui is not
a function of the (as yet unknown) disturbance sequence
{wi , . . . ,wN−1}.

Given anyψ ∈ ΨN(x(0)) and the stabilizing state feed-
back gainK ∈ R

m×n, one can now define the following



time-varyingfeedback policy:

u(k) =

{

vk +∑k−1
j=0 Mi, jw( j) if k∈ {0, . . . ,N−1}

Kx(k) if k∈ {N,N+1, . . .}
(8)

Clearly, (8) is a causal feedback policy that is dependent not
only on the current state, but also on past values of the state
and input; since measurements of the state are available and
past inputs are known,w( j) in (8) is given by

w( j) = x( j +1)−Ax( j)−Bu( j), ∀ j ∈{0, . . . ,N−1}. (9)

Before proceeding to analyze the properties of (8) and
other feedback policies, let the setXψ

N denote the set of
states for which there exists an admissibleψ:

Xψ
N := {x∈ R

n | ΨN(x) 6= /0} . (10)

IV. HOW TO MATCH AN AFFINE TIME-VARYING
FEEDBACK LAW

Let the variableθ be defined as the tuple

θ := (L0,g0,L1,g1, . . . ,LN−1,gN−1) , (11)

where the matrixLi ∈ R
m×n and vectorgi ∈ R

m for all i ∈
{0, . . . ,N−1}.

Consider now the set of admissibleθ :

ΘN(x) :=































θ

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

θ satisfies (11), w satisfies (4),

xi+1 = Axi +Bui +wi , x0 = x,

ui = Lixi +gi ,

(xi ,ui) ∈ Y , xN ∈ Xf

∀i ∈ {0, . . . ,N−1}, ∀w ∈ W































(12)

The set of states for which there exist an admissibleθ is
defined as:

Xθ
N := {x∈ R

n | ΘN(x) 6= /0} . (13)

Given a stabilizing state feedback gainK ∈ R
m×n and

a θ ∈ ΘN(x(0)), one can define the following affine time-
varying (ATV) state feedback policy:

u(k) =

{

Lkx(k)+gk if k∈ {0, . . . ,N−1}

Kx(k) if k∈ {N,N+1, . . .}
(14)

The main result of this paper states that the set of
initial statesXθ

N , for which an ATV feedback policy of the
form (14) can be defined, is contained insideXψ

N , the set
of initial states for which a feedback policy of the form (8)
can be defined:

Theorem 1 (Main result). Xψ
N contains Xθ

N .

Proof. Let x∈ Xθ
N . One can easily verify that given aθ ∈

ΘN(x) andw ∈ W , it follows that for all i ∈ {1, . . . ,N},

xi = Six+
i−1

∑
j=1

Ti, j
(

Bgi−1− j +wi−1− j
)

+Bgi−1 +wi−1, (15)

whereSi := ∏i−1
j=0(A+BL j) andTi, j := ∏ j

l=1(A+BLi−l ), j =
1, . . . , i −1.

Sinceui = Lixi + gi for all i ∈ {0, . . . ,N−1}, it follows
that

ui = LiSix+
i−1

∑
j=1

LiTi, j
(

Bgi−1− j +wi−1− j
)

+LiBgi−1 +Liwi−1 +gi . (16)

It is easy to check that (16) is equal to

ui = vi +
i−1

∑
j=0

Mi,i−1− jwi−1− j , ∀i ∈ {0, . . . ,N−1} (17)

if v0 := L0x+g0 and for all i ∈ {1, . . . ,N−1},

vi := LiSix+
i−1

∑
j=1

LiTi, jBgi−1− j +LiBgi−1 +gi (18)

and

Mi,i−1− j :=

{

Li if j = 0

LiTi, j if j ∈ {1, . . . , i −1}
(19)

It follows from the definition ofΘ(x) that for all i ∈
{0, . . . ,N−1} andw ∈W , (xi ,ui) ∈Y andxN ∈ Xf . Given
the above definitions, if(v,M) is defined as in (4) and (5),
then (v,M) ∈ ΨN(x), hencex∈ Xψ

N .

It is interesting to note that the proof of Theorem 1
implies that if, for a given initial statex(0), one can
find an ATV feedback policy of the form (14) such that
for all allowable disturbance sequences of lengthN, the
state will be inXf in exactly N steps while satisfying the
constraintsY over a horizon of lengthN, then one can find
a ψ ∈ ΨN(x(0)) in order to define a time-varying feedback
policy of the form (8), which will result inexactly the same
control input sequenceas the one that would result from
implementing (14).

We conclude this section by pointing out that, at present,
there does not exist an efficient algorithm for finding a
θ ∈ ΘN(x). However, as will be shown in Section VI,
finding aψ ∈ ΨN(x) is computationally tractable ifW is a
polytope (closed and bounded polyhedron) or the affine map
of a hypercube. As a consequence of Theorem 1, the results
in Section VI and the lack of an efficient method for finding
a θ ∈ ΘN(x), we will only consider feedback policies
that can be defined from the parameterization proposed in
Section III.

V. GEOMETRIC AND INVARIANCE PROPERTIES

For this section, we introduce the following assumption:
A1: The setXf is contained insideXK , which is given by

XK := {x∈ R
n | (x,Kx) ∈ Y } = {x | (C+DK)x≤ b} ,

(20)
andXf is robustly positively invariant [4, Def. 2.2] for the
closed-loop systemx+ = (A+BK)x+w, i.e.

(A+BK)x+w∈ Xf , ∀x∈ Xf , ∀w∈W. (21)



Remark1. Under some additional, mild technical assump-
tions, it is easy to compute anXf that satisfiesA1 if W is
a polytope. For example, [18] gives results for computing
themaximalrobustly positively invariant set inXK and [19]
gives some new results that allow one to compute a robustly
positively invariant outer approximation to theminimal
robustly positively invariant set inXK . See also [3] for
results on computing a robustly positively invariantinner
approximation to themaximalrobustly positively invariant
set in XK . For results on computing anXf of a given
complexity, which satisfiesA1, see [11].

The next result follows immediately from the above:

Proposition 1. Let A1 hold, the initial state x(0) ∈ Xψ
N

and ψ ∈ ΨN(x(0)). For all allowable infinite disturbance
sequences, the state of system(1), in closed-loop with the
feedback policy(8), enters Xf in N steps or less and is in
Xf for all k ∈ {N,N+1, . . .}. Furthermore, the constraints
in (3) are satisfied for all time and for all allowable infinite
disturbance sequences.

The following result gives a sufficient condition under
which one can guarantee that an increase in the horizon
lengthN does not result in a decrease in the size ofXψ

N :

Theorem 2 (Size ofXψ
N ). If A1 holds, then the following

set inclusion holds:

Xf ⊆ Xψ
1 ⊆ ·· · ⊆ Xψ

N−1 ⊆ Xψ
N ⊆ Xψ

N+1 ⊆ ·· · , (22)

where each Xψi is defined as in(10) with N = i.

Proof. The proof is by induction. Letx ∈ Xψ
N , (v,M) ∈

ΨN(x) andw ∈ W . It is easy to verify that

xN = ANx+
N−1

∑
i=0

(

AiBvN−1−i+

(

Ai +
i−1

∑
j=0

A jBMN−1− j,N−1−i

)

wN−1−i

)

. (23)

Let

vN := KANx+
N−1

∑
i=0

KAiBvN−1−i (24)

and for all i ∈ {0, . . . ,N−1}, let

MN,N−1−i := KAi +
i−1

∑
j=0

KA jBMN−1− j,N−1−i . (25)

From these definitions, one can check that the terminal
control law

uN := vN +
N−1

∑
j=0

MN, jw j = vN +
N−1

∑
i=0

MN,N−1−iwN−1−i

= KxN.

From the definition ofΨN(x), recall thatxN ∈ Xf . Note
also that that sinceXf ⊆ XK , it follows that (xN,uN) ∈ Y .

SinceXf is robustly positively invariant for the closed-loop
systemx+ = (A+BK)x+w, it follows that

xN+1 = AxN +BuN +wN ∈ Xf , ∀wN ∈W. (26)

By putting all of the above together and letting the vector
v ∈ R

m(N+1) be defined as

v :=

[

v
vN

]

(27)

and the matrixM ∈ R
m(N+1)×n(N+1) be defined as

M :=

[

M 0
0 0

]

+

[

0 0 · · · 0 0
MN,0 MN,1 · · · MN,N−1 0

]

, (28)

it follows from the definition ofΨN+1(x) that (v,M) ∈
ΨN+1(x), hence x ∈ Xψ

N+1. The proof is completed by
verifying, in a similar manner, thatXf ⊆ Xψ

1 ⊆ Xψ
2 .

We now consider what happens whenΨN(x) is used
to design atime-invariant receding horizon control law.
Consider theset-valuedreceding horizon control (RHC) law
κN : Xψ

N → 2R
m

(2R
m

is the set of all subsets ofRm), which
is defined by considering only the first portion of av for
which there exists anM such that(v,M) ∈ ΨN(x):

κN(x) := {u∈ R
m | ∃(v,M) ∈ ΨN(x) s.t. u = [Im 0]v} .

(29)
The following result implies that if the initial state is in

Xψ
N , then all trajectories of (1) in closed-loop with the RHC

policy u∈ κN(x) will remain in Xψ
N for all time and for all

allowable disturbance sequences:

Theorem 3 (Robust invariance of RHC laws). If A1
holds, then the set XψN is robustly positively invariant for
system(1) in closed-loop with the RHC law(29), i.e. if
x∈ Xψ

N , then

Ax+Bu+w∈ Xψ
N , ∀u∈ κN(x), ∀w∈W. (30)

Furthermore, the constraints(3) are satisfied for all time
and for all allowable infinite disturbance sequences.

Proof. The method of proof very closely parallels that of
Theorem 2 and the same definitions are assumed. However,
rather than showing that an appended version of(v,M)
is admissible, one proceeds by showing that a “shifted”
version of(v,M) is admissible at the next time instant. For
this purpose, we introduce the following variables:

ṽ :=











v1 +M1,0w
...

vN−1 +MN−1,0w
vN +MN,0w











(31)

and

M̃ :=















0 0 · · · · · · 0
M2,1 0 · · · · · · 0

...
...

.. .
...

...
MN−1,1 MN−1,2 · · · 0 0
MN,1 MN,2 · · · MN,N−1 0















. (32)



Using similar arguments as in proving Theorem 2, but
taking care with notation, one can now show that ifx∈Xψ

N ,
u∈ κN(x) andw∈W, then(ṽ,M̃)∈ΨN(Ax+Bu+w), hence
Ax+Bu+w∈ Xψ

N .

Remark 2. In this paper, we do not consider the im-
portant problem of how to synthesize an RHC law such
that the closed-loop system is robustly stable and robust
convergence toXf is guaranteed. However, it is hopefully
clear from the proofs of Theorems 2 and 3 that we can
always choose the so-called ‘terminal control law’ (as
used in the RHC literature) to beu = Kx. Hence, one
can use well-known results, surveyed in [5] and [6], to
synthesize robustly stabilizing RHC controllers, using the
parameterization discussed in this paper. For example, the
reader is referred to [16] for some initial results on how the
parameterization in this paper may be used to efficiently
solve finite horizonH∞ problems. Alternatively, the results
in this paper and those in [14] and [15] may be extended and
combined with the results in [20] to efficiently synthesize
min-max RHC laws with robust stability guarantees. The
results in [10] may also be generalized to allow one to
efficiently compute RHC laws with input-to-state stability
(ISS) guarantees, if some so-called ‘nominal/expected cost’
is minimized, rather than a worst-case cost.

VI. COMPUTING AN ADMISSIBLE ψ
It is straightforward to find matricesF ∈ R

q×mN, G ∈
R

q×nN, H ∈ R
q×n and a vectorc∈ R

q, whereq := sN+ r,
such that one can rewriteΨN(x) in (7) as

ΨN(x) =

{

ψ

∣

∣

∣

∣

∣

M satisfies (5),

Fv+(FM +G)w ≤ c+Hx, ∀w ∈ W

}

.

(33)
It is well-known (see, e.g. [1]–[5], [8]–[15], [18]) that

one can eliminate the quantifier in (33) by noting that

ΨN(x) =

{

ψ

∣

∣

∣

∣

∣

M satisfies (5),

Fv+ max
w∈W

(FM +G)w ≤ c+Hx

}

, (34)

where the maximization in maxw∈W (FM + G)w is row-
wise. It follows immediately thatΨN(x) is a convex set.

If W is a polytope (closed and bounded polyhedron) given
by a finite set of affine inequalities, then it is easy to check
whether a givenψ is in ΨN(x) by solving theq LPs that
define maxw∈W (FM + G)w and checking the constraints
in (34). Conversely, one can find a pairψ ∈ ΨN(x) in
a computationally tractable way by solving Phase I of a
single LP by writing down the dual of each of the LPs
defining maxw∈W (FM +G)w. The reader is referred to [12,
Thm. 3.2] and [13, Thm 4.2] for details as to how this can
be done.

However, in this paper we will not consider the general
case whenW is an arbitrary polytope. Instead, we will
consider the special case whenW is known to be the affine
map of a hypercube. This is because, in many practical
applications,W is nearly always assumed to be the affine

map of a hypercube (for example, when upper and lower
bounds on the components of the disturbance are known and
the disturbance acts on the state in an affine manner). This
observation leads to a significant reduction in computational
effort, compared to the case of treatingW as an arbitrary
polytope.

To see why this is the case, note that ifW is the affine
translation of a hypercube, i.e. if

W := {Ed+ f | ‖d‖∞ ≤ η } (35)

where the matrixE ∈ R
n×l , the vectorsf ∈ R

n, d ∈ R
l and

η is a positive scalar, then

W := {Jd+g | ‖d‖∞ ≤ η } , (36)

where the matrixJ := IN⊗E, the vectorsg := 1N⊗ f , d∈R
t

and the integert := lN. It follows that

max
w∈W

(FM +G)w = max
d

{(FM +G)(Jd+g) | ‖d‖∞ ≤ η }

(37a)

= max
d

{(FMJ+GJ)d+(FM +G)g | ‖d‖∞ ≤ η } (37b)

= max
d

{(FMJ+GJ)d | ‖d‖∞ ≤ η }+(FM +G)g (37c)

= ηabs(FMJ+GJ)1t +(FM +G)g, (37d)

where the components of the matrix abs(FMJ + GJ) are
the absolute values of the corresponding components of the
matrix FMJ+GJ. Hence,

ΨN(x) =











ψ

∣

∣

∣

∣

∣

∣

∣

M satisfies (5),

Fv+ηabs(FMJ+GJ)1t

+(FM +G)g≤ c+Hx











. (38)

Remark3. Note that abs(FMJ+GJ)1t is a vector formed
from the 1-norms of the rows ofFMJ + GJ. In going
from (37c) to (37d) we have used the well-known fact that
maxd

{

aTd | ‖d‖∞ ≤ η
}

= η‖a‖1 for any vectora ∈ R
t

and scalarη (see, for example, [10, Prop. 2] or [14,
Thm. 3.1]).

If ΨN(x) is given as in (38), then it is easy to
checkwhether a given pairψ is in ΨN(x) by computing
abs(FMJ + GJ)1t and checking whether the constraints
in (38) are satisfied. However, we will now make an impor-
tant observation that allows one tocomputea ψ ∈ ΨN(x),
given the current statex. It follows immediately from (38)
that

ΨN(x) =











ψ

∣

∣

∣

∣

∣

∣

∣

M satisfies (5), ∃Λ ∈ R
q×t such that

Fv+ηΛ1t +(FM +G)g≤ c+Hx,

abs(FMJ+GJ) ≤ Λ











=











ψ

∣

∣

∣

∣

∣

∣

∣

M satisfies (5), ∃Λ ∈ R
q×t such that

Fv+ηΛ1t +(FM +G)g≤ c+Hx,

−Λ ≤ FMJ+GJ≤ Λ











,

where the matrix and vector inequalities are component-
wise.



Remark4. Note thatΨN(x) is the projection of the poly-
hedron

CN(x) :=











(ψ,Λ)

∣

∣

∣

∣

∣

∣

∣

M satisfies (5),

Fv+ηΛ1t +(FM +G)g≤ c+Hx,

−Λ ≤ FMJ+GJ≤ Λ











(40)
onto a subspace, henceΨN(x) is also a polyhedron.

The key point to note here is the following: if the number
of constraints in (3) iss = O(m+ n) and l = O(m+ n)
in (35) (this is nearly always the case in practice), then
the dimension ofCN(x) is bounded byO((m+ n)2N2 +
r(m+n)N) and the number of constraints that defineCN(x)
in (40) is also bounded byO((m+n)2N2+r(m+n)N). This
implies that the problem of finding a pair(v,M) ∈ ΨN(x)
is computationally tractable.

For example, finding aψ ∈ ΨN(x) is easily done by
solving the following Phase I LP, in whichγ is a scalar:

(ψ∗(x),Λ∗(x),γ∗(x)) := arg inf
(ψ,Λ,γ)

γ (41a)

subject to (5) and

Fv+ηΛ1t +(FM +G)g≤ c+Hx+1qγ, (41b)

−Λ ≤ FMJ+GJ≤ Λ. (41c)

Clearly,ΨN(x) is non-empty andψ∗(x)∈ΨN(x) if and only
if γ∗(x) ≤ 0.

It is easy to find an initial feasible point to (41) by
choosing anyM that satisfies (5), followed by choosing
a Λ sufficiently large enough to satisfy (41c) and finally,
choosing anyv and a sufficiently largeγ such that (41b)
is satisfied. Once initialized with a feasible point, the LP
solver can proceed with minimizing the cost untilγ ≤ 0.
The reader is referred to [17] for a discussion on how to
efficiently translate (41) into a form suitable to be passed
to a standard LP solver.

VII. CONCLUSIONS AND FURTHER RESEARCH

Though the affine parameterization defined in Section III
was shown to be useful for efficiently implementing control
laws with guaranteed system-theoretic properties such as
robust invariance and robust convergence to a target set,
there are still a number of issues that need to be addressed.

It was proven in Section IV that the set of states,
for which the parameterization in Section III is feasible,
contains the set of states for which an affine time-varying
policy exists. It still remains to be determined whether there
exist examples for which the inclusion in Theorem 1 is strict
or whether it is always satisfied with equality.

Section V showed that the parameterization in Section III
can be used to construct receding horizon control laws such
that the region of feasibility is robustly invariant for the
closed-loop system. The focus of current research is in
extending these results to guaranteeing robust convergence
and stability of the target set, as well as ensuring offset-free
control if the disturbance tends to a non-zero limit.
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