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Abstract

Finite horizon optimal control of piecewise affine systems with a piecewise affine (1-norm
or ∞-norm) stage cost and terminal cost is considered. Provided the respective constraint
sets are given as the unions of polyhedra, it is shown that the partial value functions and
partial optimal control laws are piecewise affine on a polyhedral cover of the set of states that
can be steered, by an admissible control policy, to a terminal set of states in a finite number
of steps. Existing results only consider the case of systems without disturbances, or systems
with disturbances that are independent of the state and input. This paper extends these
results to the case where the disturbance is dependent on the state and input.

1 Introduction

The problems of controllability to a target set and computation of optimal control laws for systems
subject to constraints and persistent, unmeasured disturbances are well-known and have been the
subject of study for many authors [3–5,9–12,14,15]. Though the existing results are fairly general
and can be applied to a large class of nonlinear discrete-time systems, most authors assume that
the disturbance is not dependent on the state and input.

The need for a framework that can deal with state- and input-dependent disturbances was
briefly motivated in [9,13]. Disturbances that are dependent on the state and/or input frequently
arise in practice when trying to model systems with physical constraints. For example, disturb-
ances on systems with hard state and/or input constraints, modelling errors due to the lineariza-
tion of nonlinear systems, parametric model uncertainty and dynamic model uncertainty can all
be accurately modelled by disturbances that are dependent on the state and input.

In [10] it was shown how to compute the solution to a finite horizon optimal control problem
for constrained, piecewise affine systems with bounded state disturbances. However, in [10] it was
assumed that the disturbance is independent of the state and input. This paper extends these
results to the case where the disturbance is dependent on the state and input. In particular,
specific results are given for linear and piecewise affine systems that allow the use of polyhedral
algebra, parametric linear programming and computational geometry software to compute the
solution to a finite horizon optimal control problem.
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2 Notation and Definitions

Definition 1. A polyhedron is the intersection of a finite number of closed and/or open halfspaces1

and a polytope is a closed and bounded (hence compact) polyhedron. A polygon is the union of a
finite number of polyhedra and is thus not necessarily convex.

Definition 2. A family of sets P := {Pi | i ∈ I} is a (closed) polyhedral cover of a (closed) polygon
X ⊆ IRn if the index set I is finite, each Pi is a (closed) polyhedron and X = ∪i∈IPi.

We often use PX , IX and PXi to denote, respectively, a polyhedral cover of X , its associated
index set and the ith polyhedron in the cover.
Remark 1. Note that the definition of a polyhedral cover given here does not require that each
Pi have a non-empty interior, nor does it require that P := {Pi | i ∈ I} be a partition of X . Note
also that our use of the term cover is stronger than the commonly-used definition, where a cover
is a collection of sets P := {Pi | i ∈ I} such that X ⊆ ∪i∈IPi — we require equality and not the
weaker condition of inclusion.

Definition 3. A function ψ : X → IRn is said to be piecewise affine on a polyhedral cover
P := {Pi | i ∈ I} of X ⊆ IRm if it satisfies

ψ(x) = Kix+ ki, ∀x ∈ Pi, i ∈ I,

for some Ki, ki, i ∈ I.

3 Detailed Problem Formulation

In this paper, we will consider the problem of controlling nonlinear discrete-time systems in the
form:

x+ = f(x, u, w), (1)

where x is the current state (assumed to be measured), x+ is the successor state, u is the input,
and w is an unmeasured, persistent disturbance that is dependent on the current state and input:

w ∈ W(x, u) ⊂W, (2)

where W = IRp denotes the disturbance space. The state and input are required to satisfy:

(x, u) ∈ Y ⊂ X × U, (3)

where X = IRn is the state space and U = IRm is the input space. The constraint (x, u) ∈ Y
defines the state-dependent set of admissible inputs:

U(x) := {u | (x, u) ∈ Y} . (4)

3.1 Optimal Control Problem

Let π := {µ0(·), µ1(·), . . . , µN−1(·)} denote a control policy (sequence of control laws, i.e. µi :
X → U , i = 0, . . . , N − 1) over horizon N and let w := {w0, w1, . . . , wN−1} denote a sequence of
disturbances. Also, let φ(i;x, π,w) denote the solution of (1) when the initial state is x at time
0 (note that since the system is time-invariant, we can always take the current time to be zero),
the control policy is π and the disturbance sequence is w.

If the initial state is x, the control policy is π and the disturbance sequence is w, then the cost
VN (x, π,w) is defined as

VN (x, π,w) :=
N−1∑
i=0

`(xi, ui) + Vf (xN ), (5)

1Note that we depart slightly from convention, where a polyhedron is defined to be the intersection of a finite
number of closed halfspaces only.
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where for all i, xi := φ(i;x, π,w) and ui := µi(xi). The stage cost `(·) and the terminal cost Vf (·)
are assumed to be piecewise affine2 (`1 or `∞):

`(x, u) := ‖Qx‖p + ‖Ru‖p, p = 1,∞ (6a)
Vf (x) := ‖Px‖p, p = 1,∞ (6b)

where P , Q and R are matrices of suitable dimensions.
The optimal control problem PN (x) that we will consider is

PN (x) : V 0
N (x) := inf

π∈ΠN (x)
sup

w∈W
VN (x, π,w) (7)

where, with some abuse of notation, W := W(x, π) is the set of admissible disturbance sequences:

W(x, π) := {w | wi ∈ W(φ(i;x, π,w), µi(φ(i;x, π,w))), i = 0, 1, . . . , N − 1}. (8)

ΠN (x) is the set of admissible policies, i.e. those policies that satisfy, for all w ∈ W, the state
and control constraints (3), and the terminal constraint

φ(N ;x, π,w) ∈ Xf . (9)

Hence the set of admissible policies is

ΠN (x) := {π | (φ(i;x, π,w), µi(φ(i;x, π,w))) ∈ Y, i = 0, 1, . . . , N − 1,
φ(N ;x, π,w) ∈ Xf , ∀w ∈ W(x, π)}. (10)

We let XN denote the set of initial states for which an admissible policy exists (the domain of
V 0

N (·), the controllability set):
XN := {x | ΠN (x) 6= ∅}. (11)

The solution to PN (x), if it exists, is

π0(x) :=
{
µ0

0(x), µ
0
1(·;x), . . . , µ0

N−1(·;x)
}

:= arg inf
π∈ΠN (x)

sup
w∈W

VN (x, π,w). (12)

Finally, in order to simplify the presentation and have a well-defined problem, we make the
following standing assumptions:
A1. The system f : S → X is continuous, where S is a closed polygon with a non-empty interior.
A2. The sets Y and Xf are closed polygons and contain the origin in their interiors.
A3. The set-valued map x 7→ U(x) is continuous and bounded on bounded sets.
A4. For all (x, u) ∈ Y, the set W(x, u) 6= ∅.
A5. The set-valued map (x, u) 7→ W(x, u) is continuous and bounded on bounded sets.
A6. The solution π0(x) to PN (x) exists for all x ∈ XN .
Remark 2. It is easy to check a priori whether or not A1–A5 hold. However, it is not yet known
whether or not A1–A5 are sufficient for A6 to be satisfied, hence why this assumption is made.

3.2 Piecewise Affine Systems

In the sequel, we will consider the system f : S → X with the closed polyhedral cover

PS :=
{
PSi | i ∈ IS

}
(13)

and the piecewise affine description:

f(x, u, w) := Aix+Biu+Giw + gi, ∀(x, u, w) ∈ PSi , i ∈ IS , (14)

where for all i ∈ IS , the matrices Ai ∈ IRn×n, Bi ∈ IRn×m, Gi ∈ IRn×p and vector gi ∈ IRn. For
convenience, we also define the functions fi : PSi → X, i ∈ IS , as

fi(x, u, w) := Aix+Biu+Giw + gi. (15)
2The results in this paper easily extend to more general, piecewise affine stage costs and terminal costs, such as

`(x, u) := minξ∈Ξ ‖Q(x− ξ)‖p + ‖R(u−Kx)‖p, where p ∈ {1,∞}, Ξ is a closed polygon and K is a feedback gain.
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Remark 3. Clearly, if IS has cardinality 1, then f(·) is affine (linear if gi = 0). Note also that,
since f(·) is assumed to be continuous, it follows that if i 6= j and PSi ∩ PSj 6= ∅, then

fi(x, u, w) = fj(x, u, w), ∀(x, u, w) ∈ PSi ∩ PSj . (16)

To enable us to apply the results in [10] and [13], we make the following additional standing
assumptions:
A7. The system f : S → X is piecewise affine on a closed polyhedral cover of the polygon S.
A8. Γ := {(x, u, w) | w ∈ W(x, u)} is a closed polygon.

4 Dynamic Programming Solution

Dynamic programming provides a recursive procedure for computing sequentially the partial return
functions V 0

j (·) (defined in (7) with N = j), the associated set-valued control laws κj(·) as well
as their domains (here j denotes ‘time-to-go’ so that κj(·) = µ0

N−j(·) if j ∈ {1, . . . , N − 1} and
κN (·) = µ0

0(·)). The domain of V 0
j (·) and κj(·) is Xj , the set of states that can be robustly steered

to the terminal set Xf in j steps or less.

Remark 4. Standard optimal control implements the time-varying policy π0
N (x) = {κN (x), κN−1(·),

. . . , κ1(·)} (u ∈ κN−i(x) at event (x, i), i.e. at state x, time i), whereas receding horizon control
uses the time-invariant control law κN (·) (u ∈ κN (x) at state x).

The solution to PN (x) may be obtained as follows. For all j ∈ IN+ := {1, 2, . . .}, j denotes
“time-to-go” and problem Pj(x), the partial return function V 0

j (·) and the controllability set Xj

are defined as:

V 0
j (x) = inf

u∈U(x)
sup

w∈W(x,u)

{`(x, u) + V 0
j−1(f(x, u, w)) | f(x, u,W(x, u)) ⊆ Xj−1}, ∀x ∈ Xj (17a)

κj(x) = arg inf
u∈U(x)

sup
w∈W(x,u)

{`(x, u) + V 0
j−1(f(x, u, w)) | f(x, u,W(x, u)) ⊆ Xj−1}, ∀x ∈ Xj (17b)

Xj = {x | ∃u ∈ U(x) s.t. f(x, u,W(x, u)) ⊆ Xj−1} (17c)

with boundary conditions
V 0

0 (x) = Vf (x), X0 = Xf . (17d)

The conditions f(x, u,W(x, u)) ⊆ Xj−1 and u ∈ U(x) in (17) may be expressed as

(x, u) ∈ Σj := {(x, u) ∈ Y | f(x, u, w) ∈ Xj−1 for all w ∈ W(x, u)}, (18)

in which case Xj can be interpreted as the projection of the set Σj onto X, i.e.

Xj = {x | ∃u such that (x, u) ∈ Σj} . (19)

In order to analyze PN (x), it is convenient to introduce the functions J0
j (·), j = 1, 2, . . . , N−1,

defined by
J0

j (x, u) := sup
w∈W(x,u)

V 0
j−1(f(x, u, w)). (20)

Note that we are interested in values of the functions J0
j (·), j = 1, 2, . . . , N − 1, and the sets

Σj , j = 1, 2, . . . , N − 1. The recursion equations (17a)–(17c) may therefore be rewritten as

J0
j−1(x, u) = sup

w

{
V 0

j−1(f(x, u, w)) | w ∈ W(x, u)
}
, ∀(x, u) ∈ Σj (21a)

V 0
j (x) = inf

u

{
`(x, u) + J0

j−1(x, u) | (x, u) ∈ Σj

}
, ∀x ∈ Xj (21b)

κj(x) = arg inf
u

{
`(x, u) + J0

j−1(x, u) | (x, u) ∈ Σj

}
, ∀x ∈ Xj (21c)

Σj = {(x, u) ∈ Y | f(x, u,W(x, u)) ⊆ Xj−1} (21d)
Xj = {x | ∃u s.t. (x, u) ∈ Σj} (21e)
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4.1 Prototype Problems

For each j, the dynamic programming recursion requires the solution of two optimization prob-
lems (21a) and (21b). These problems are instances of the two prototype problems Psup and Pinf

defined below.

Psup(z) : J0(z) := sup
w
{J(z, w) | (z, w) ∈ Γ} , ∀z ∈ Z (22a)

Pinf(x) : V 0(x) := inf
u
{V (x, u) | (x, u) ∈ Z} , ∀x ∈ X (22b)

where

z := (x, u), (23a)
Γ := {(z, w) | w ∈ W(z)} , (23b)
Z := {z ∈ Y | f(z,W(z)) ⊆ Ω} , (23c)
X := {x | ∃u such that (x, u) ∈ Z} . (23d)

Thus, if we identify J0(z) with J0
j−1(z), J(z, w) with V 0

j−1(f(z, w)) and Ω with Xj−1, problem
Psup(z) is identical to problem (21a). Similarly, if we identify V 0(x) with V 0

j (x), V (x, u) with
`(x, u) + J0

j−1(x, u) and X with Xj , problem Pinf(x) is identical with (21b). The solution to
Pinf(x), if it exists, is defined as

κ(x) := arg inf
u

{V (x, u) | (x, u) ∈ Z} , ∀x ∈ X . (24)

With the above, we can identify κ(x) with κj(x).

5 Solving The Prototype Problems Psup and Pinf

This section contains results that allow the computation of expressions for the functions J0(·),
V 0(·) and κ(·). As will be seen, it can easily be shown that these functions are piecewise affine and
can be computed, as in [10], by solving a number of suitably-defined parametric piecewise affine
programs (pPAPs).

5.1 Solution to a Parametric Piecewise Affine Program

In [10], the authors proposed that the solution to a pPAP can be found by comparing the solutions
to a finite number of suitably-defined parametric linear programs (pLPs). It was later shown
in [1], via a numerical example, that this approach can be considerably more efficient compared
to computing the solution to a pPAP via parametric mixed-integer linear programming (pMILP),
as originally proposed in [2]. In this section, we recall the relevant results from [10] for solving a
pPAP.

First, we recall a basic result on the nature of the solution to a pLP, where the cost is a
linear/affine function of the decision variable y and parameter θ and the constraints on the decision
variables and parameters are given by a polytope. The reader is referred to [7] for details of a
geometric algorithm for computing the solution to a pLP.

Proposition 1 (Solution to a pLP). If

Ψ0(θ) := inf
y
{l′θ +m′y + n | (θ, y) ∈ C} , ∀θ ∈ Θ (25a)

y0(θ) := arg inf
y

{l′θ +m′y + n | (θ, y) ∈ C} , ∀θ ∈ Θ (25b)

where (l,m, n) ∈ IRnθ × IRny × IR, C is a (closed) polyhedron and the (closed) polyhedron

Θ := {θ | ∃y such that (θ, y) ∈ C} , (26)
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then Ψ0 : Θ → IR is a convex, piecewise affine function on a (closed) polyhedral cover of Θ.
Furthermore, provided y0(θ) exists for all θ ∈ Θ, then there exists a continuous, piecewise affine
function3 υ : Θ → IRny on a (closed) polyhedral cover of Θ such that υ(θ) ∈ y0(θ) for all θ ∈ Θ.

We now recall the following result, which characterizes the solution to a pPAP, where the cost
is a piecewise affine function of the decision variables y and parameters θ and polyhedral covers are
given for the constraints on the decision variables and parameters. Since the proof is constructive,
it is also recalled below.

Proposition 2 (Solution to a pPAP [10]). Let Ψ : D → IR, where D is a (closed) polygon, be
a piecewise affine function of the form

Ψ(θ, y) := l′iθ +m′
iy + ni, ∀(θ, y) ∈ PD

i , i ∈ ID, (27)

where PD :=
{
PD

i | i ∈ ID
}

is a (closed) polyhedral cover of D and (li,mi, ni) ∈ IRnθ × IRny × IR
for all i ∈ ID.

If PC :=
{
PC

i | i ∈ IC
}

is a (closed) polyhedral cover of the (closed) polygon C,

Ψ0(θ) := inf
y
{Ψ(θ, y) | (θ, y) ∈ C} , ∀θ ∈ Θ (28)

y0(θ) := arg inf
y

{Ψ(θ, y) | (θ, y) ∈ C} , ∀θ ∈ Θ (29)

where
Θ := {θ | ∃y such that (θ, y) ∈ C ∩D} , (30)

then Θ is a (closed) polygon and Ψ0 : Θ → IR is piecewise affine on a polyhedral cover of Θ.
Furthermore, provided y0(θ) exists for all θ ∈ Θ, then there exists a function υ : Θ → IRny that is
piecewise affine on a polyhedral cover of Θ such that υ(θ) ∈ y0(θ) for all θ ∈ Θ.

Proof. For each (i, j) ∈ IC ×ID, let Θi,j be the orthogonal projection of the (closed) polyhedron
PC

i ∩ PD
j onto the θ-space, i.e.

Θi,j :=
{
θ | ∃y such that (θ, y) ∈ PC

i ∩ PD
j

}
, ∀(i, j) ∈ IC × ID. (31)

If PC
i ∩ PD

j is non-empty, then Θi,j is a (closed) polyhedron, hence Θ = ∪i,jΘi,j is a (closed)
polygon.

From Proposition 1 it follows that the function Ψ0
i,j : Θi,j → IR, defined as

Ψ0
i,j(θ) := inf

y

{
l′jθ +m′

jy + nj | (θ, y) ∈ PC
i ∩ PD

j

}
, ∀θ ∈ Θi,j (32)

is a convex, piecewise affine function on a (closed) polyhedral cover of Θi,j .
Consider now the index set

K(θ) :=
{
(i, j) ∈ IC × ID | θ ∈ Θi,j

}
(33)

and note that for all θ ∈ Θ,

Ψ0(θ) = inf
y,i

{
Ψ(θ, y) | (θ, y) ∈ PC

i ∩D, i ∈ IC
}

(34a)

= inf
y,i,j

{
l′jθ +m′

jy + nj | (θ, y) ∈ PC
i ∩ PD

j , (i, j) ∈ IC × ID
}

(34b)

= inf
i,j

{
Ψ0

i,j(θ) | (i, j) ∈ K(θ)
}
. (34c)

Since Ψ0(·) is the pointwise-infimum of a finite set of functions {Ψ0
i,j(·)}, where each Ψ0

i,j(·) is
piecewise affine over a polyhedral cover of its domain Θi,j , it follows that Ψ0(·) is piecewise affine
on a polyhedral cover of Θ.

The claim that there exists a piecewise affine function υ : Θ → IRny such that υ(θ) ∈ y0(θ) for
all θ ∈ Θ, follows from Proposition 1 and the above.

3Note that, in general, y0(θ) is set-valued for all θ ∈ Θ.
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Remark 5. We would once again like to emphasize that, unlike the proof of [2, Lem. 1], the above
result does not require the introduction of integer variables and finding the solution to a pMILP.
The result in (34) is based on comparing the solutions to the finite number of pLPs defined by (32).
Given the solution to each of the pLPs in (34), an explicit piecewise affine representation for Ψ0(·)
can easily be computed by solving a number of suitably-defined LPs (see, for example, [8, App. A]).
Alternatively, one could use so-called order-region functions [6] to represent Ψ0(·).

We now proceed to show how Proposition 2 can be applied in order to solve the prototype
problems Pinf and Psup, which were defined in Section 4.1.

5.2 The Maximization Subproblem Psup

This section is concerned with solving the problem

Psup(z) : J0(z) := sup
w
{J(z, w) | (z, w) ∈ Γ} , ∀z ∈ Z, (35)

where

z := (x, u), (36a)
Γ := {(z, w) | w ∈ W(z)} , (36b)
Z := {z ∈ Y | f(z,W(z)) ⊆ Ω} , (36c)

J(z, w) := V 0(f(z, w)). (36d)

Note that we need to compute Z before proceeding. We recall the following4, which follows
immediately from the main results in [13]:

Proposition 3. Consider problem Psup. If A1–A8 hold and Ω is a (closed) polygon, then Z is a
(closed) polygon.

Let PS , PΓ and PΩ be polyhedral covers for the polygons S, Γ and Ω, respectively. Also, let
V 0(·) be piecewise affine over the polyhedral cover PΩ of Ω, i.e.

V 0(x) := a′ix+ bi, ∀x ∈ PΩ
i , i ∈ IΩ (37)

where ai ∈ IRn and bi ∈ IR for all i ∈ IΩ.
We would now like to define the function Ψ : D → IR so that we can apply Proposition 2 in order

to characterize the solution to problem Psup. Clearly, if Ψ(θ, y) := −J(θ, y) with the parameter
θ := z and decision variable y := w, then J0(z) = −Ψ0(z). Note also that D := f−1(Ω).

Hence, for each (i, j) ∈ IΩ × IS , we define the set

Di,j :=
{
(z, w) ∈ PSj | fj(z, w) ∈ PΩ

i

}
(38)

so that PD :=
{
Di,j 6= ∅ | (i, j) ∈ IΩ × IS

}
is a polyhedral cover of D. It then follows that J(·)

is piecewise affine over D with

J(z, w) = a′ifj(z, w) + bi, ∀(z, w) ∈ Di,j , (i, j) ∈ IΩ × IS . (39)

By letting C := {(z, w) ∈ Γ | z ∈ Z} and noting that C ⊆ D and Θ = Z, the next result
follows immediately from Propositions 2 and 3:

Corollary 1. Consider problem Psup. If A1–A8 hold and V 0(·) is a piecewise affine function
over a polyhedral cover of the (closed) polygon Ω, then J0(·) is a piecewise affine function over a
polyhedral cover of the (closed) polygon Z.

4In order to keep the presentation in this paper short, the reader is referred to [13] for a constructive proof.
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5.3 The Minimization Subproblem Pinf

This section is concerned with solving the problem

Pinf(x) : V 0(x) := inf
u
{V (x, u) | (x, u) ∈ Z} , ∀x ∈ X , (40a)

X := {x | ∃u such that (x, u) ∈ Z} , (40b)

V (x, u) := `(x, u) + J0(x, u). (40c)

where J0(·) is piecewise affine over a polyhedral cover PZ of the polygon Z, i.e.

J0(x, u) := c′ix+ d′iu+ ei, ∀(x, u) ∈ PZi , i ∈ IΩ (41)

where ci ∈ IRn, di ∈ IRm and ei ∈ IR for all i ∈ IZ .
We would now like to define the function Ψ : D → IR so that we can apply Proposition 2 in

order to characterize the solution to problem Pinf .
First, note that D := Z and consider the case when p = 1. Following a well-known procedure,

we get that

V 0(x) := inf
u
{V (x, u) | (x, u) ∈ Z} = inf

u

{
`(x, u) + J0(x, u) | (x, u) ∈ Z

}
(42a)

= inf
u

{
‖Qx‖1 + ‖Ru‖1 + J0(x, u) | (x, u) ∈ Z

}
(42b)

= inf
u,α,β

{
1′α+ 1′β + J0(x, u) | −α ≤ Qx ≤ α, −β ≤ Ru ≤ β, (x, u) ∈ Z

}
(42c)

= inf
u,α,β

{Ψ(θ, y) | −α ≤ Qx ≤ α, −β ≤ Ru ≤ β, (x, u) ∈ Z, θ := x, y := (u, α, β)} (42d)

where
Ψ(θ, y) := 1′α+ 1′β + J0(x, u), θ := x, y := (u, α, β), (43)

α ∈ IRn, β ∈ IRm and 1 is a column vector of ones of appropriate length. Clearly, V 0(x) = Ψ0(x).
If p = ∞, then we proceed in a similar fashion by noting that

V 0(x) := inf
u
{V (x, u) | (x, u) ∈ Z} = inf

u

{
`(x, u) + J0(x, u) | (x, u) ∈ Z

}
(44a)

= inf
u

{
‖Qx‖∞ + ‖Ru‖∞ + J0(x, u) | (x, u) ∈ Z

}
(44b)

= inf
u,α,β

{
α+ β + J0(x, u) | −1α ≤ Qx ≤ 1α, −1β ≤ Ru ≤ 1β, (x, u) ∈ Z

}
(44c)

= inf
u,α,β

{Ψ(θ, y) | −α ≤ Qx ≤ α, −β ≤ Ru ≤ β, (x, u) ∈ Z, θ := x, y := (u, α, β)} (44d)

where
Ψ(θ, y) := α+ β + J0(x, u), θ := x, y := (u, α, β) (45)

α ∈ IR and β ∈ IR. Again, it follows that V 0(x) = Ψ0(x).
By letting

C :=

{
{(x, u, α, β) | −α ≤ Qx ≤ α, −β ≤ Ru ≤ β, (x, u) ∈ Z} if p = 1
{(x, u, α, β) | −1α ≤ Qx ≤ 1α, −1β ≤ Ru ≤ 1β, (x, u) ∈ Z} if p = ∞

(46)

and noting that Θ = X , the next result follows immediately from Propositions 2 and 3:

Corollary 2. Consider problem Pinf with the stage cost `(·) given by (6a). If A1–A8 hold and
J0(·) is a piecewise affine function over a polyhedral cover of the (closed) polygon Z, then X is a
(closed) polygon and V 0(·) is a piecewise affine function over a polyhedral cover of X . Furthermore,
there exists a function υ : X → U that is piecewise affine on a polyhedral cover of X such that
υ(x) ∈ κ(x) for all x ∈ X .
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5.4 The Optimal Control Problems Pj, j = 1, . . . , N

By combining Corollaries 1 and 2, we can now state our main result, which follows by induction:

Theorem 1. Consider the problems Pj, j = 1, . . . , N , with the stage cost `(·) and terminal cost
Vf (·) given by (6). If A1–A8 hold, then, for each j ∈ {1, . . . , N}, the sets Σj and Xj are closed
polygons and the value functions J0

j−1(·) and V 0
j (·) are piecewise affine on, respectively, polyhedral

covers of Σj and Xj. Furthermore, for each j ∈ {1, . . . , N}, there exists a function υj : Xj → U
that is piecewise affine on a polyhedral cover of Xj such that υj(x) ∈ κj(x) for all x ∈ Xj.

Remark 6. Note that, in order to initialize the DP recursion, one may have to compute an explicit,
piecewise affine expression for V 0

0 (x) := ‖Px‖p if p = 1 or p = ∞.

6 Conclusions

This paper has extended previous results on optimal control of constrained piecewise affine systems
by permitting the disturbance constraint set to be dependent on the state and input; previous work
dealt with the case when the disturbance constaint set was constant. It was shown that that the
value function and optimal control law are piecewise affine on the so-called N -step controllability
set, which is a closed polygon.

References
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