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Abstract— In order to deal with the computational burden
of optimal control, it is common practice to reduce the degrees
of freedom by fixing the input or its derivatives to be constant
over several time-steps. This policy is referred to as “move
blocking”.

This paper will address two issues. First, a survey of various
move blocking strategies is presented and the shortcomings
of these blocking policies, such as the lack of stability and
constraint satisfaction guarantees, will be illustrated. Second,
a novel move blocking scheme, “Moving Window Blocking”
(MWB), will be presented. In MWB, the blocking strategy
is time-dependent such that the scheme yields stability and
feasibility guarantees for the closed-loop system. Finally, the
results of a large case-study are presented that illustrate the
advantages and drawbacks of the various control strategies
discussed in this paper.
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I. INTRODUCTION

In the literature, numerous variations of discrete-time,
finite horizon constrained optimal control have been pre-
sented, e.g. [1], [7]. In most implementations, the optimal
sequence of inputs is computed at each time-step and
subsequently only the first element of the sequence is
applied. This policy is referred to as Receding Horizon
Control (RHC) or Model Predictive Control (MPC). One
of the major open issues of MPC is the computational
complexity, which becomes prohibitive for large systems
or systems with fast dynamics. In the standard problem
formulation, the degrees of freedom of an RHC problem
correspond to the number of inputs m multiplied with
the prediction horizon N . The degrees of freedom are the
dominating factor for complexity, regardless of whether the
optimization problem is solved on-line, or the equivalent
feedback solution is derived off-line [2], [4]. In order to
deal with this issue, it is common practice to reduce the
degrees of freedom by fixing the input or its derivatives to
be constant over several time-steps (e.g. [8], [9]). Although
this alleviates the computational restrictions, the resulting
control policies do not guarantee stability or constraint
satisfaction.

In this paper, we first review various move-blocking
strategies and discuss some of their disadvantages. Fol-
lowing this, we introduce a novel blocking strategy that
provides guarantees on stability as well as constraint satis-
faction. The various schemes are compared in a large case-
study that is presented in the final section before concluding.

∗ Automatic Control Laboratory, Swiss Federal Institute of Technology
(ETH), CH-8092 Zurich, Switzerland

† Royal Academy of Engineering Post-doctoral Research Fellow, De-
partment of Engineering, University of Cambridge, UK

Corresponding Author: Email: cagienard@control.ee.ethz.ch

II. STANDARD PROBLEM FORMULATION

In this section we will give a brief overview of the
optimal control problem considered in this paper. After
presenting the standard finite horizon optimal control prob-
lem, a brief discussion on receding horizon control (RHC),
stability and feasibility properties of the feedback controller
ensues. We restrict ourselves to the following linear, time-
invariant, discrete-time system

x(k + 1) = Ax(k) + Bu(k), (1)

with A ∈ R
n×n, B ∈ R

n×m and (A,B) stabilizable. We
will let x or x(k) denote the measured state at time k and xi

denote the predicted state at time k+ i, given the state x(k)
at time k and some finite input sequence {u0, . . . , ui−1}.
Assume now that the states and inputs of system (1) are
subject to the constraints

x(k) ∈ X ⊆ R
n, u(k − 1) ∈ U ⊆ R

m, ∀k ≥ 1 (2)

where X and U are compact polyhedral sets containing
the origin in their interior. Before going further, we will
introduce the following definitions

Definition 1: The set XI(K) will denote the maximum
positively invariant set for the linear system (1) subject to
the stabilizing linear feedback controller K that satisfies (2):

XI(K) := {x(0) ∈ R
n | x(k) ∈ X, Kx(k) ∈ U,

x(k + 1) = (A + BK)x(k), ∀k ≥ 0}

The set XI(K) is easily computed with the algorithm in
[3]. Now consider the finite-time constrained LQR problem

V ∗
N (x) := min

u0,...,uN−1

N−1
∑

k=0

(

u′
kRuk + x′

kQxk

)

+ x′
NPxN , (3a)

subj. to xk ∈ X, uk−1 ∈ U, ∀k ∈ {1, . . . , N}, (3b)
xN ∈ XI(K) (3c)

xk+1 = Axk + Buk, x0 = x. (3d)

For the sake of simplicity, we will assume that Q = Q′ � 0,
P = P ′ � 0 and R = R′ � 0 (this can be relaxed to
(Q1/2, A) detectable and Q = Q′ � 0, P = P ′ � 0). The
unique optimizer to the above optimal control problem is
denoted as U∗(x) := [u∗

0(x)′, . . . , u∗
N−1(x)′]′.

Definition 2: We define the N -step feasible set
XN ⊆ R

n as the set of states x(k) for which the optimal
control problem (3) is feasible, i.e. for which problem (3)



has a solution satisfying the constraints:

XN :={x0 ∈ R
n | ∃U = [u′

0, . . . , u
′
N−1]

′ ∈ R
Nm,

xk ∈ X, uk−1 ∈ U, ∀k ∈ {1, . . . , N},

xN ∈ XI(K)}.
Because problem (3) depends on the current state x, it

can be solved either by solving the quadratic program (3)
for a given x, or as shown in [2], [10], by solving prob-
lem (3) for all x within a polyhedral set of values, i.e., by
considering (3) as a multi-parametric Quadratic Program
(mp-QP) [2].

Theorem 1: [2] Consider the finite-time constrained
regulation problem (3). The set of feasible states XN is
convex, the optimizer U∗ : XN → R

Nm is continuous and
piecewise affine (PWA), i.e. U∗(·) has the form:

U∗(x) = Frx + Gr, if x ∈ Pr

Pr = {x ∈ R
n | Hrx ≤ Kr}, r = 1, . . . ,R

and the value function V ∗
N : XN → R is continuous, convex

and piecewise quadratic.
In Receding Horizon Control (RHC), the optimizer U ∗(x)

of problem (3) is computed at each time step but only the
first input u∗

0(x) of the sequence is applied to the plant, i.e.

u(k) = u∗
0(x(k)).

This control policy does not guarantee closed loop stabil-
ity or constraint satisfaction without additional adjustments
to the problem formulation in (3). It is standard practice [7]
to obtain feasibility (i.e. constraint satisfaction) properties
by adding the additional set constraint xN ∈ XI(K) to
the optimal control problem (3). The terminal set constraint
guarantees recursive feasibility, i.e. if a feasible input se-
quence exists at time k = 0 this implies that a feasible input
sequence will be found for all k > 0. If the terminal weight
P is chosen such that F (x) = x′Px is a local Lyapunov
function for the system subject to the linear feedback law
K, then stability is guaranteed as well.

Both stability and feasibility properties can be proven
by considering the optimal input sequence at time k,
U∗(x(k)) and the shifted sequence ŨN (x(k)) =
[u∗

1(x(k))′, . . . , u∗
N−1(x(k))′, (Kx∗

N (x(k)))′]′ at time k+1,
where x∗

N (x(k))) is the (predicted) solution of the system
at time instant k + N , given the state x(k) at time k and
the input sequence U∗(x(k)). The shifted input sequence
ŨN (x(k)) is guaranteed to be feasible at time k+1, because
XI(K) is invariant and constraint-admissible. The value
function V ∗

N (·) in (3) serves as a Lyapunov function, due to
the choice of the terminal weight P . The reader is referred
to [7] for further details.

III. MOVE BLOCKING SCHEMES

A. Input Blocking (IB)

Since the computational complexity of solving the op-
timization problem (3) depends directly on the degrees of
freedom (i.e. number of free inputs), it is standard practice

[8], [9] to obtain tractable optimization problem formu-
lations by fixing the inputs to be constant over a certain
number of time steps. For example, instead of solving for
the optimal U := [u′

0, . . . , u
′
N−1]

′ ∈ R
Nm, problem (3)

can be restated in terms of solving for the optimal vector
Û := [û′

0, . . . , û
′
M−1]

′ such that U = (T ⊗ Im)Û , where
⊗ denotes the Kronecker product and T ∈ R

N×M is a so-
called blocking matrix with M < N . T is assumed to be
a matrix of ones and zeros only, with each row containing
exactly one non-zero element.

For example, for a SISO system with move blocking
u1 = u2 = u3 and N = 4 we might choose Û = [û′

0 û′
1]

′

and

T =









1 0
0 1
0 1
0 1









. (4)

The N = 4 degrees-of-freedom problem has thus been
reduced to an M = 2 degrees-of-freedom problem.

The control problem is now reformulated as

V ∗
N (x, T ) := min

û0,...,ûM−1

N−1
∑

k=0

(

u′
kRuk + x′

kQxk

)

+ x′
NPxN , (5a)

subj. to xk ∈ X, uk−1 ∈ U, ∀k ∈ {1, . . . , N}, (5b)
xN ∈ XI(K) (5c)

U = [u′
0, . . . , u

′
N−1]

′ = (T ⊗ Im)[û′
0, . . . , û

′
M−1]

′,

xk+1 = Axk + Buk, x0 = x. (5d)

Though the move-blocking reformulation may make the
optimization problem computationally tractable, no stability
or feasibility properties can be obtained. This is because a
simple shift in the input sequence is no longer possible if
the inputs are blocked, i.e. the input sequence obtained at
time k may not be used to obtain a feasible solution at
time k + 1 since the shifted sequence (as in Section II)
will not correspond to the initial move blocking strategy
imposed by T . Furthermore, there may not exist any input
sequence Û that satisfies the constraints in (3) for U =
(T ⊗ Im)Û . Therefore, no guarantee of recursive feasibility
can be provided, i.e. obtaining a feasible input sequence at
time k = 0 does not imply that a feasible input sequence
will be found for all future time steps. Furthermore, this
move-blocking scheme may have a strong adverse effect on
closed-loop performance. These drawbacks are illustrated in
Section V.

B. Offset Blocking (OB)

The input blocking scheme described in the previous
section can easily lead to very bad closed-loop performance
since there is no guarantee that the applied input will be
optimal for any feasible state x ∈ XN .

To some extent, this issue can be dealt with by ‘pre-
stabilizing’ the system with the unconstrained, infinite-
horizon LQR control law and parameterizing the input



sequence in terms of deviations from this control law, i.e.
by letting uk = KLQRxk+ck and formulating the associated
optimal control problem in terms of C := [c′0, . . . , c

′
N−1]

′,
rather than U .

The infinite-horizon, unconstrained LQR law KLQR is
computed off-line and P is chosen to be the solution to
the associated algebraic Riccati equation, i.e.

KLQR = −(BT PB + R)−1BT PA, (6)

where P is the solution to:

P = AT PA − AT PB(BT PB + R)−1BT PA + Q. (7)

The optimal control problem is now restated in terms of
Ĉ = [ĉ′0, . . . , ĉ

′
N−1]

′ and the constraints C = (T ⊗Im)Ĉ and
uk = KLQRxk + ck:

V ∗
N (x, T ) := min

ĉ0,...,ĉM−1

N−1
∑

k=0

(

u′
kRuk + x′

kQxk

)

+ x′
NPxN , (8a)

subj. to xk ∈ X, uk−1 ∈ U, ∀k ∈ {1, . . . , N}, (8b)
xN ∈ XI(KLQR), (8c)
C = [c′0, . . . , c

′
N−1]

′ = (T ⊗ Im)[ĉ′0, . . . , ĉ
′
M−1]

′,

uk = KLQRxk + ck, ∀k ∈ {0, . . . , N − 1}, (8d)
xk+1 = Axk + Buk, x0 = x. (8e)

The advantage of this scheme is that the obtained in-
put sequence will be optimal if x ∈ XI(KLQR), since
Ĉ = [0′, . . . , 0′]′ will be feasible and optimal, regardless
of the blocking strategy. Furthermore, only the offset to
the feedback and not the actual input will be blocked,
which may lead to greater flexibility in the controller. The
computational advantages are maintained since the number
of decision variables is less than Nm. Although this scheme
may improve on performance, no guarantees on stability and
constraint satisfaction can be given for the reasons stated
in the previous section. Furthermore, in addition to the
state constraints, there is the difficulty of satisfying input
constraints, i.e. there may not exist any constant offset such
that the input constraints are satisfied for a fixed number
of steps. Therefore, parameterized move blocking may not
always be preferable to standard move blocking.

C. Delta Blocking (DIB, DOB)

Instead of fixing the input or an offset to a feedback
law to be constant for a fixed number of steps, it is
possible to impose a constraint on the difference between
two consecutive control actions and optimize over the size
of this constraint. This corresponds to a linear interpolation
of inputs û for the case of “delta-input blocking” (DIB).
In DIB we set uk − uk+1 to be constant over a predefined
number of time steps. The constraint on T also has to be
relaxed to allow more than one non-zero element on each
row.

Consider (4) for instance, where we have N = 4 and
M = 2. The decision variables for the DIB problem

correspond to u0, u3 and the values for the ‘blocked’ inputs
u1, u2 follow directly from linear interpolation. Thus the
N = 4 degrees-of-freedom problem has been reduced to a
M = 2 degrees-of-freedom problem.

The same kind of linear interpolation can be applied to
obtain offset sequences from a small number of offsets ĉ.
This scheme will be referred to as “delta-offset blocking”
(DOB). In DOB we set ck − ck+1 to be constant over a
predefined number of time steps, but optimize over the
size of this constraint. As in the previously presented
blocking schemes, both delta-blocking strategies reduce the
computational burden but do not provide any guarantees on
closed-loop stability or feasibility.

IV. MOVING WINDOW BLOCKING (MWB)

In this section we will describe a novel move-blocking
scheme, which provides stability and feasibility guarantees
in closed-loop. The scheme implements a time-dependent
move blocking strategy where the blocked inputs are shifted
at each time step. Specifically, the blocking matrix (denoted
T (k)) is now time-dependent.

Definition 3: A matrix T ∈ R
N×M is an admissible

blocking matrix if M < N , one entry in each row of T

is equal to 1 and all other entries in the row are equal to
0, there are no zero columns or zero rows and the elements
of the matrix are arranged in an ‘upper staircase’ form, i.e.
if the column in which a 1 occurs in the i’th row is

j∗(i) := {j | Ti,j = 1},

where Ti,j denotes the element in the i’th row and j’th
column of T , then j∗(i+1) ≥ j∗(i) for all i ∈ {1, . . . , N−
1}.
Examples of admissible blocking matrices are:









1 0 0
1 0 0
0 1 0
0 0 1









,









1 0 0
0 1 0
0 1 0
0 0 1









,









1 0 0
0 1 0
0 0 1
0 0 1









.

Examples of non-admissible blocking matrices are:








1 0 0
1 0 0
1 0 0
0 1 0









,









0 1 0
0 1 0
1 0 0
0 0 1









,









1 0 0
1 0 0
1 0 0
0 1 1









.

The sequence of admissible blocking matrices
{T (0), T (1), . . . , }, is generated by

T (k + 1) = f(T (k)), (9)

where T (0) is an admissible blocking matrix and f(·)
corresponds to the following algorithm:

Algorithm 1 (Blocking Matrix Generation f(T )):
Given an admissible blocking matrix T ∈ R

N×M .
1) Let S :=

[

0(N−1)×1 IN−1

]

T be the matrix of the
last N − 1 rows of T , where S ∈ R

(N−1)×N .
2) Note that the first column of S is, in general, not

guaranteed to be non-zero. If the first column of S is



zero, then we shift the columns to the left and append
the zero column to the right of the resulting matrix.
In other words, let

W :=











S if S1,1 = 1

S

[

01×(M−1) 0

IM−1 0(M−1)×1

]

if S1,1 = 0

3) Note that the first M −1 columns of W are non-zero
and in ‘upper staircase’ form, but that the last column
may be zero. We therefore return the admissible
blocking matrix

f(T ) :=

[

W

01×(M−1) 1

]

,

where f(T ) ∈ R
N×M .

As an example, the following sequence of admissible block-
ing matrices were generated by the function f(·):








1 0 0
1 0 0
0 1 0
0 0 1









→









1 0 0
0 1 0
0 0 1
0 0 1









→









1 0 0
0 1 0
0 1 0
0 0 1









→









1 0 0
1 0 0
0 1 0
0 0 1









In order to obtain stability and feasibility guarantees, we
propose to parameterize the input as in Section III-B, i.e.
P is the solution to the ARE (7) and uk = KLQRxk+ck. We
also propose to replace the terminal constraint (8c) with a
set of constraints that is dependent on the current blocking
matrix T = T (k). Specifically, the following problem is
solved at each time instant k, given the current state x =
x(k) and current blocking matrix T = T (k):

V ∗
N (x, T ) := min

ĉ0,...,ĉM−1

N−1
∑

k=0

(

u′
kRuk + x′

kQxk

)

+ x′
NPxN , (10a)

subj. to xk ∈ X, uk−1 ∈ U, ∀k ∈ {1, . . . , N}, (10b)
x` ∈ XI(KLQR), ` = p(T ), (10c)

[c′0, . . . , c
′
`−1]

′ = ([I`, 0`×(N−`)]T ) ⊗ Im)[ĉ′0, . . . , ĉ
′
M−1]

′,

(10d)
ck = 0, ∀k ∈ {`, . . . , N − 1}, (10e)
uk = KLQRxk + ck, ∀k ∈ {0, . . . , N − 1},

xk+1 = Axk + Buk, x0 = x. (10f)

where p(T ) in (10c) is the row of the first non-zero element
in the last column of T , i.e.

p(T ) := min
i∈{1,...,N}

{i |Ti,M = 1} . (11)

The key part to guaranteeing feasibility and stability is the
choice of constraints (10c)–(10e). Clearly, if p(T ) = N ,
then (10e) can be removed and (10d) becomes

[c′0, . . . , c
′
N−1]

′ = (T ⊗ Im)[ĉ′0, . . . , ĉ
′
M−1]

′.

If we denote the optimizer to the above problem as

Ĉ∗(x, T ) := [ĉ∗0(x, T )′, . . . , ĉ∗M−1(x, T )′]′

and

C∗(x, T ) := [c∗0(x, T )′, . . . , c∗N−1(x, T )′]′

:= (T ⊗ Im)Ĉ∗(x, T )

then the RHC law is given by

u(k) = KLQRx(k) + c∗0(x(k), T (k))

and the closed-loop system is

x(k + 1) = (A + BKLQR)x(k) + Bc∗0(x(k), T (k)) (12)

with
T (k + 1) = f(T (k)).

Theorem 2: If the MWB scheme is applied as above
and T (0) is an admissible blocking matrix, then the origin
of the closed-loop system (12) is an asymptotically stable
equilibrium with a region of attraction equal to the set of
initial states x(0) for which a solution to the optimization
problem in (10) exists.

Proof: The proof is based on using the standard
method [7] of considering, at time k + 1, a shifted version
of the optimal perturbation sequence found at time k:

C̃∗(x(k), T (k)) =

[c∗1(x(k), T (k))′, . . . , c∗N−1(x(k), T (k))′, 0]′.

If, at time k + 1, there exists a Ĉ such that the constraints
in (10) are satisfied with C = C̃∗(x(k), T (k)), then it is
easy to show that the value function at time k + 1 is less
than the value function at time k for all x(k) 6= 0, i.e.
V ∗

N (x(k + 1), T (k + 1)) < V ∗
N (x(k), T (k)). This allows

one to use V ∗
N (·) as a Lyapunov function for the close-loop

system.
The key point to recognize is that, because XI(KLQR) is

invariant under the control law u = KLQRx, the (optimal)
predicted terminal state x∗

N (x(k), T (k)) at time k is in
XI(KLQR), regardless of the value of p(T (k)). This implies
that there always exists a Ĉ such that C = C̃∗(x(k), T (k)) is
feasible at time k + 1. We distinguish between two distinct
cases, where the proofs of feasibility differ in subtle, but
important ways:
(i) p(T (k + 1)) = N implies that cN−1 = ĉM−1 can be

chosen independently of cN−2 = ĉM−2. It also implies
that the (2, 1) element of T (k) is zero, i.e. the first
column of S (the matrix in the definition of f(T (k)))
is zero. This implies that the first row and column
of T (k) was removed when computing T (k + 1) and
hence a shifted version of Ĉ∗(x(k), T (k)) is feasible
at time k + 1. In other words, it is easy to verify that

Ĉ = [ĉ∗1(x(k), T (k))′, . . . , ĉ∗M−1(x(k), T (k))′, 0]′

results in C = C̃∗(x(k), T (k)) at time k + 1.
(ii) If 1 ≤ p(T (k + 1)) ≤ N − 1, then we cannot use the

same arguments as for p(T (k + 1)) = N ; the shifted
version of Ĉ∗(x(k), T (k)) cannot be guaranteed to be
feasible. However, note that p(T (k+1)) = p(T (k))−1.



It is now easy to verify from (10d)–(10e) that a non-
shifted version of Ĉ∗(x(k), T (k)), i.e.

Ĉ = [ĉ∗0(x(k), T (k))′, . . . , ĉ∗M−1(x(k), T (k))′]′

results in C = C̃∗(x(k), T (k)) at time k + 1. Note that
this corresponds to cropping the number of free offsets
(see (10e)) at time k + 1.

Remark 1: Note that for all states x ∈ XI(KLQR) the
input uk = KLQRxk will be feasible, i.e. Ĉ = 0 will be a
feasible and optimal solution.

Remark 2: Note that Theorem 2 does not hold if, as in
Section III-A, Û is chosen as the optimizer. For example,
there may not be a constant sequence of inputs which keep
the state within XI(K) such that recursive feasibility can
be proven.

V. NUMERICAL EXAMPLES

In this section, we will compare the various move block-
ing schemes of Section III as well as the moving window
blocking strategy in Section IV with the optimal full degree
of freedom (FDOF) controller.

A. Problem Formulation

Specifically, 10 random open-loop stable systems and 10
random open-loop unstable systems were generated. All
systems have n = 2 states and m = 1 inputs. Subsequently,
we computed the mp-QP [2] solution to (3) for N =
10 (FDOF) as well as the mp-QP solutions to the input
blocking (IB), offset-blocking (OB), delta-input blocking
(DIB), delta-offset blocking (DOB) and moving window
blocking (MWB) strategies for N = 10, M = 2.

We will use the notation [i j] to denote that the first
i elements and the last j elements of the optimizer are
fixed to be constant (uk = uk+1,∀k ∈ {0, . . . , i − 1}
and ∀k ∈ {i, . . . , j − 1}) in IB, OB and MWB blocking
schemes. Although we considered all possible combinations
[i j], only a small subset will be shown here due to space
constraints. For delta blocking strategies u0, u9 and c0, c9,
are the decision variables for DIB and DOB, respectively,
denoted by [0 9].

MWB is initialized such that T (0) is equal to T of IB
and OB. Note that the scheme in Section IV may thus force
the initial terminal set constraint to be too restrictive, i.e.
p(T (0)) may be smaller than necessary. In order to avoid
this issue, the MWB controller is initialized with a ‘warm
start’ as described in the following. For example, starting
with T (0) = [1 9] the constraint (10c) would set l = 2, i.e.
our optimization problem would be solved with a prediction
horizon of N = 2. Instead, we here solve the problem at the
first time step k = 0 for the full horizon N = 10, l = 10
with blocking matrix T = [1 9]. At the next time step k = 1,
the MWB scheme is applied with T (1) = [9 1]. Feasibility
and stability from k = 0 to k = 1 can be trivially guaranteed
by considering a shifted version of the input sequence k = 0

at time step k = 1. A similar ‘warm start’ was applied for
the other blocking matrices T (0).

The control objective (e.g. (3a)) was set to Q = I ,
R = 1 and the terminal weight P as the solution to
the ARE (7). The partition of the full degree of freedom
controller with xN ∈ XI(KLQR) is invariant by design.
Therefore constraint satisfaction is guaranteed for all time
and all states x(k) ∈ XN . Since this does not hold for IB,
OB, DIB and DOB we computed the invariant subset of
the move blocking partitions with the method in [5]. In a
second step, the invariant set was gridded to obtain at least
50 feasible initial states and the corresponding closed-loop
performance of the various controllers was computed and
compared.

B. Results

Table I compares the closed-loop performance and Table
II the volume of the controllable state space of the move
blocking schemes versus the FDOF optimal controller. The
results present the ratio to the FDOF case in percentages.
The abbreviations min, avg and max denote the minimum,
average and maximum values, respectively. The abbrevia-
tion (n.c.) indicates the number of systems that were not
controllable with the proposed move blocking scheme.

For stable systems offset blocking strategies OB, DOB,
and MWB yield slightly better performance than input
blocking strategies IB and DIB (Table I). But the control-
lable state space obtained with input blocking strategies is
significantly larger than that obtained with offset blocking
strategies (Table II). This is mostly because, in general, no
constant offset ĉ exists, which satisfies the input constraints
for those initial states that are far away from the origin.

For unstable systems input blocking strategies are inferior
versus offset blocking strategies in terms of performance.
Closed-loop performance can be up to 50 times worse than
that obtained with an optimal controller (FDOF). In some
cases it is not possible to control the system with input
blocking strategies at all.

Note the difference in the controllable systems between
the three IB schemes [1 9], [2 8] and [3 7]. The results
suggest that an uneven number of blocked moves is more
likely to yield the desired closed-loop behavior for unstable
systems. This was reaffirmed in a detailed study of ad-
ditional systems where it was observed that this behavior
occurs for systems with unstable negative poles. For these
types of systems, an uneven number of blocked moves
generally leads to more aggressive controller action on the
first input, which in turn increases the invariant set. The
controller is more aggressive on the first step because the
states on ‘one end’ of the unstable oscillation are weighed
more heavily in the cost function. MWB and OB give
similar results in terms of performance and volume of the
controllable state space, but it cannot be stressed enough
that only the moving window strategy guarantees closed-
loop stability and recursive feasibility. Furthermore, the
results show that for certain systems a moving-window



stable systems unstable systems
avg (%) max (%) avg (%) max (%) n.c.

IB T [1 9] 0.8 5.9 510.2 1982.4 -
IB T [2 8] 3.7 11.1 832.2 4691.3 3
IB T [3 7] 2.0 12.1 220.4 1121.5 2
DIB [0 9] 2.2 14.8 91.9 319.3 1
OB T [1 9] 0.7 3.2 2.3 11.9 -
OB T [2 8] 0.3 2.0 1.0 5.1 -
OB T [3 7] 0.7 5.7 1.8 6.3 -
DOB [0 9] 1.1 8.9 4.2 13.3 -
MWB T [1 9] 1.2 7.2 1.9 5.1 -
MWB T [2 8] 0.4 2.0 1.7 4.8 -
MWB T [3 7] 0.7 5.7 1.7 5.7 -

TABLE I
COMPARISON OF MOVE BLOCKING SCHEMES VERSUS THE OPTIMAL

CONTROLLER: CLOSED-LOOP PERFORMANCE DECAY (E.G. 0% EQUALS

OPT. CTRL.). n.c. DENOTES THE NUMBER OF SYSTEMS THAT WERE NOT

CONTROLLABLE WITH THE RESPECTIVE MOVE BLOCKING SCHEME.

stable systems unstable systems
avg (%) max (%) avg (%) max (%) n.c.

IB T [1 9] 89.4 46.7 46.3 4.2 -
IB T [2 8] 85.8 59.6 44.9 2.7 3
IB T [3 7] 87.7 63.6 50.7 19.0 2
DIB [0 9] 89.1 62.7 40.6 0.6 1
OB T [1 9] 59.3 21.9 56.5 13.5 -
OB T [2 8] 29.1 16.9 44.2 9.8 -
OB T [3 7] 25.9 12.9 43.7 10.4 -
DOB [0 9] 30.9 20.4 50.2 11.8 -
MWB T [1 9] 59.3 22.0 56.5 13.5 -
MWB T [2 8] 30.4 20.5 45.9 10.0 -
MWB T [3 7] 26.0 12.9 43.8 10.4 -
XI(KLQR) 12.5 2.6 24.2 4.2 -

TABLE II
COMPARISON OF MOVE BLOCKING SCHEMES AND MAXIMUM

INVARIANT SET VERSUS THE OPTIMAL CONTROLLER: VOLUME OF THE

CONTROLLABLE STATE SPACE. n.c. DENOTES THE NUMBER OF

SYSTEMS THAT WERE NOT CONTROLLABLE WITH THE RESPECTIVE

MOVE BLOCKING SCHEME.

strategy may yield excellent performance for a large set
of states, together with stability and feasibility guarantees.

The examples presented in this section are only a small
subset of all the cases examined. Different cost objectives,
system sizes and blocking combinations [i j] were consid-
ered. The heuristic insights gained in the case study are
presented in the following section.

All results were created with the MPT Toolbox [6].

VI. CONCLUSION

This paper pointed out the theoretical and practical short-
comings of various move-blocking strategies. In addition,
a novel move blocking scheme, termed ‘Moving Window
Blocking’ (MWB), was introduced. The MWB strategy
provides stability and feasibility guarantees. An extensive
case study was also presented which shows the advantages
and drawbacks of the different strategies.

From the large number of examined systems we were
able to deduce the following heuristic insights:

• For stable systems, the IB strategy tends to give better
results with respect to performance and size of the
controllable state space than any of the other strategies
which were considered.

• For unstable systems, the offset blocking strategies
(e.g. OB, DOB and MWB) give better performance
results than input blocking schemes (e.g. IB, DIB) and
are always able to stabilize a subset of the controllable
state space.

• If the controllable state space is large in volume,
then strategies using offset blocking (e.g. OB, MWB,
DOB) are generally not able to obtain feasible control
sequences for states which are far from the origin. For
stable systems the controllable state-space is therefore
significantly smaller than that obtained with input
blocking schemes.

• Systems with negative unstable poles are more difficult
to control with IB when choosing an even number of
blocked moves for the first blocking sequence in the
prediction horizon.

• MWB is the only blocking scheme that provides guar-
antees on stability and constraint satisfaction.
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