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Abstract

This report is concerned with the computation cost of the determinant of a (bi-
variate) polynomial matrix required in the guaranteed accuracyL∞-norm compu-
tation. The obtained computation cost is in terms of word operations, unlike most
results available in the literature where the computation cost is provided in terms
of arithmetic operations. The proposed method employs multivariate Lagrange in-
terpolation and the computation cost in terms of word operations is shown to be
polynomial in the dimensions of the system, the orders of transfer functions in the
elements and the sizes of the coefficients of the polynomials.
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1 Introduction

Several algorithms for the solution of systems and control problems with guaranteed accuracy

have been developed in [9]. Those algorithms require exact rational (or multiprecision integer)

arithmetic supported in computer algebra systems, as opposed to floating point arithmetic which

is almost always used in numerical computation. In such cases computation cost should be

expressed in terms of word operations to estimate the realistic growth of computation time, rather

than in terms of arithmetic operations. One of the problems considered in [9] is theL∞-norm

computation. Potentially the most time-consuming part of theL∞-norm computation algorithm

is the computation of the determinant of a bivariate rational function matrix. This reduces to

computing the determinant of a bivariate polynomial matrix after clearing the denominator of

each matrix element. In this report the cost of this matrix determinant computation needed for

the guaranteed accuracyL∞-norm computation is analysed.

The determinant is regarded as a fundamental characteristic of a square matrix and fast

computation algorithms and cost analyses of algorithms for polynomial matrices have been pre-

sented: in [6] two algorithms, Gaussian elimination and expansion by minors, are considered;

in addition an algorithm based on evaluation and interpolation and a procedure which computes

the characteristic polynomial are investigated in [8]; [7] relates (univariate) polynomial matrix

multiplication and determinant computation; [10] presents an algorithm which is based on mul-

tivariate Lagrange interpolation and which is suitable for parallelization. Nevertheless most

computation costs are provided in terms of arithmetic operations. An exception is [2], which

deals with multivariate polynomial resultants, namely, not determinants of general matrices.

The method employed in this report uses multivariate Lagrange polynomial interpolation and

thus is in line with the one used by [10], but the resulting computation cost is given in terms of

word operations. In Section 2, some notation and preliminary results are presented. Section 3

briefly reviews the theorem given in [9] which is needed for the guaranteed accuracyL∞-norm

computation algorithm. Section 4 presents Horner’s rule, which evaluates a polynomial at a

particular value and also computes the quotient and remainder on division of a polynomial by

a monic linear term, and derives its computation cost in terms of word operations. Section 5

reviews Lagrange interpolation and also derives its computation cost. Then, in Section 6, an

algorithm of computing the determinant of a para-Hermitian matrix of bivariate polynomials (of

a special form) is proposed and its computation cost is analysed. Based on the result in Section 6,

the computation cost of the matrix determinant needed for the guaranteed accuracyL∞-norm

computation is estimated in Section 7. The main result derived in this report is summarized

in Theorem 10. Section 8 presents a numerical example whose purpose is to show how the

suggested algorithm works.

2



2 Notation and Preliminary Results

In this section some notation unusual in the control field but commonly used in the computer

algebra field is firstly reviewed. Then some basic results used for the analysis of the computation

cost and/or of the lengths of the outputs of algorithms are presented.

When considering the computation cost of an algorithm, it is customary not to obtain the

exact cost but to find the ‘rate of growth’ with respect to the input. The cost is then expressed

‘up to a constant factor’. The ‘big Oh’ notation is used for this purpose:

Definition 1 ([4, Definition 25.7, p. 684][5, Definition 25.7, p. 710])

(i) A partial function f : N → R, that is, one that need not be defined for alln ∈ N, is called

eventually positiveif there is a constantN ∈ N such thatf (n) is defined and strictly positive for

all n ≥ N.

(ii) Let g : N → R be eventually positive. Then,O(g) is the set of all eventually positive

functions f : N → R for which there existN, c ∈ N such that f (n) and g(n) are defined and

f (n) ≤ cg(n) for all n ≥ N.

In some situations the presence of many logarithmic factors is cumbersome. The ‘soft Oh’

notation is used in those cases in order to simplify the expression (but not to lose essential

information):

Definition 2 ([4, Definition 25.8, p. 685][5, Definition 25.8, p. 711])Let f, g : N → R

be eventually positive. Then we writef ∈ O∼(g) if there are constantsN, c ∈ N such that

f (n) ≤ g(n)(log2(3+ g(n)))c for all n ≥ N.

With this notation,n logn loglogn ∈ O∼(n). See [4, Section 25.7, pp. 684-685][5, Section 25.7,

pp. 710-711] for some features of the notion.

Addition of two integers obviously requires one integer addition but, when an (exact) addition

is carried out on a computer, the computation time (or cost) depends on how large these numbers

are. In general the actual computation cost of an arithmetic operation is affected by the ‘sizes’

of the numbers involved as well as the arithmetic operation itself. The size of an integera is

measured by its lengthλ(a):

λ(a) :=
{

0 if λ = 0 ,⌊
log264 |a|⌋+ 1 if λ 6= 0 ,

where the floor functionbxc gives the largest integer less than or equal tox. This reflects the

word number required to store the integer. The base 264 only affects the constant factor. Thus

this is not important for computation cost analysis and we do not explicitly specify it from now

on. We can see thatλ(a) ∈ O(log |a|) (if a 6= 0).
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In the case of polynomial computations, as well as the degrees of the polynomials, the lengths

of the coefficients have an effect on the computation cost. We measure the size of the coefficients

by the max-norm of a polynomial: iff =∑0≤i≤n ai xi ∈ Z[x], then its max-norm is defined as

‖ f ‖∞ := max0≤i≤n |ai |. In this report we further extend the definition for bivariate polynomials,

that is, if f =∑i, j ai j xi y j ∈ Z[x, y], then‖ f ‖∞ := maxi, j |ai j |.
Let f, g ∈ Z[x] and suppose that‖ f ‖∞ ≤ a, ‖g‖∞ ≤ b, deg f ≤ c and degg ≤ d. Without

loss of generality we can assume thatc ≤ d. Then the following relationships are easy to derive:

deg( f g) ≤ c+ d ,

‖ f g‖∞ ≤ ab(c+ 1) .

Using these we can deduce that, forfi such that‖ fi ‖∞ ≤ a and degfi ≤ c,

deg
∏

1≤i≤n

fi ≤ nc , (1)

∥∥∥∥∥
∏

1≤i≤n

fi

∥∥∥∥∥
∞
≤ an(c+ 1)n−1 . (2)

Addition (and subtraction) of two integers whose lengths are at mostn can be computed with

O(n) word operations. Also addition of two polynomials of degree up ton with coefficients in

a ring usesO(n) ring operations.

Compared to addition, multiplication needs more cost and multiplication appears everywhere

in practical computations. The effort to reduce the computation cost of multiplication has been

made. For two integers whose lengths are bounded byn (resp., two polynomials of degree up to

n with coefficients in a ring), the so-called classical multiplication method requires at most 2n2

word operations (resp., ring operations) to multiply them. Some methods have been proposed

to achieve asymptotically faster multiplication. The fastest method currently available seems

to be the method of Schönhage & Strassen, which achievesO(n logn loglogn) operations [4,

Chapter 8, pp. 209-241][5, Chapter 8, pp. 219-251]. In the computation cost estimation of

larger problems, in order to abstract from the cost of the underlying multiplication algorithm,

the notation of multiplication timeM(·) has been introduced [4, Definition 8.26, p. 232][5, Def-

inition 8.26, p. 242]: multiplication of two integers of lengths at mostn (resp., two polynomials

of degrees up ton with coefficients in a ring) requires at mostM(n) word operations (resp., ring

operations).

The computation cost of division is the same as that of multiplication up to a constant and

it is O
(
M(n)

)
word operations (resp., ring operations) for integers of lengths at mostn (resp.,

polynomials of degrees up ton) (see [4, Theorems 9.6 & 9.8, pp. 247-248][5, Theorems 9.6 & 9.8,

pp. 257-258]).
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In the following we will estimate the computation costs of the product of two factorials of

integers and of operations on polynomials in terms of word operations. Here we note that, if a

computation requiresO( f ) ring operations and the computation cost of each ring operations in

terms of word operations is inO(g), then the total computation cost isO( f g) word operations.

Lemma 1 We can compute(2n)!n! in O
(
M(n logn) logn

)
word operations. Further its length

is bounded by3n log 2n.

Proof

Firstly consider the length. Since

log(n!) ≤ log(nn) = n logn

and

log
(
(2n!)) ≤ log

(
(2n)2n

) = 2n log 2n ,

the length of (2n)!n! is bounded by 3n log 2n. The computation of(2n)! requires

O
(
M(n logn) logn

)
word operations [4, Exercise 10.8, p. 292][5, Exercise 10.8, p. 304]. We

note thatn! can be computed while(2n)! is calculated and thus we can getn! without extra

effort. Multiplication of (2n)! andn! requiresM(2n log 2n) word operations. In total it takes

O
(
M(n logn) logn

)
word operations to compute(2n)!n!.

2

Now the computation cost of expanding a product of linear terms is analysed.

Lemma 2 Let pn ∈ Z[s] be defined aspn := ∏
0≤i≤n(s − i ) (or pn := ∏

1≤i≤n(s − i )).

Then the length of‖pn‖∞ is bounded by(n − 1) log(n + 1). Further, pn can be computed in

O
(
M(n logn)M(n) logn

)
word operations.

Proof

First it should be noted that
∏

0≤i≤n(s − i ) = s
∏

1≤i≤n(s − i ), so,
∥∥∏

0≤i≤n(s− i )
∥∥
∞ =∥∥∏

1≤i≤n(s− i )
∥∥
∞. Also, after computing

∏
1≤i≤n(s − i ), to compute

∏
0≤i≤n(s− i ) can be

done by shifting the coefficients, whose cost will beO
(
n log

∥∥∏
1≤i≤n(s− i )

∥∥
∞
)
.

So, pn = ∏1≤i≤n(s− i ) is considered. It is shown that‖pn‖∞ is bounded by(n + 1)n−1.

By noting that‖p1‖∞ = 1, it is derived that

‖pn‖∞ = ‖(s− n)pn−1‖∞ = ‖spn−1 − npn−1‖∞
≤ (n+ 1) ‖pn−1‖∞ ≤ (n+ 1)n ‖pn−2‖∞ ≤ · · ·
≤ (n+ 1) · · · 3‖p1‖∞ =

(n+ 1)!
2
‖p1‖∞ ≤ (n+ 1)n−1 .
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Therefore the length log‖pn‖∞ is bounded by(n− 1) log(n+ 1).

To computepn, at mostM(n) logn operations inZ are needed [4, Lemma 10.4, p. 281][5,

Lemma 10.4, p. 293]. It usesO
(
M(n logn)M(n) logn

)
word operations since log‖pn‖∞ ≤

(n− 1) log(n+ 1) ∈ O(n logn) and all the integers appearing in the computation are bounded

by this. This is overn log‖pn‖∞ ∈ O
(
n2 logn

)
so it also holds true for

∏
0≤i≤n(s− i ), which

establishes the claim.

2

It is not difficult to see that ∥∥∥∥∥
∏

0≤i≤n
i 6= j

(s− i )

∥∥∥∥∥∞ ≤ (n+ 1)n−1 .

We need a similar but slightly different result later on.

Lemma 3 Let pn ∈ Z[s] be defined aspn := ∏
0≤i≤n(s − i 2) (or pn := ∏

1≤i≤n(s − i 2)).

Then the length of‖pn‖∞ is bounded by(n − 1) log(n2 + 1). Further, pn can be computed in

O
(
M(n logn)M(n) logn

)
word operations.

Proof

Similar to the proof above,pn =∏1≤i≤n(s−i 2) is considered. It is shown that‖pn‖∞ is bounded

by (n2+ 1)n−1. Again, by noting that‖p1‖∞ = 1, it is derived that

‖pn‖∞ = ∥∥(s− n2)pn−1

∥∥∞ = ∥∥spn−1 − n2pn−1

∥∥∞
≤ (n2+ 1) ‖pn−1‖∞ ≤ (n2+ 1)

(
(n− 1)2+ 1

) ‖pn−2‖∞ ≤ · · ·
≤ (n2+ 1) · · · (22 + 1) ‖p1‖∞ =

∏
2≤i≤n

(i 2 + 1) ‖p1‖∞ ≤ (n2+ 1)n−1 .

Therefore the length log‖pn‖∞ is bounded by(n− 1) log(n2 + 1) ∈ O(n logn). The fact that

this also bounds all the integers appearing in the computation further proves the computation

cost in word operations.

2

Similarly we can see that ∥∥∥∥∥
∏

0≤i≤n
i 6= j

(s− i 2)

∥∥∥∥∥∞ ≤ (n2+ 1)n−1 .

Here some results of the computation of the determinant of a matrix of real numbers/integers

are quoted.
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Theorem 4 (Hadamard’s inequality [4, Theorem 16.6, p. 451][5, Theorem 16.6, p. 465])Let

B ∈ Rn×n and A ∈ R such that all the entries ofB are at mostA in absolute value. Then,

|detB| ≤ n
n
2 An .

Theorem 5 ([4, Theorem 5.12, p. 104][5, Theorem 5.12, p. 111])The determinant of a matrix

B ∈ Zn×n with all entries less thanA in absolute value can be computed with

O
((

n4 log(n A)+ n3 log2(n A)
) (

log2 n+ (loglog A)2
))

or O∼
(
n4 log A+ n3 log2 A

)
word operations.

Remark: The same computation cost as Theorem 5 (up to logarithmic factors) is reported in [1].

3

3 Guaranteed AccuracyL∞-norm Computation

In this section the theorem on which the guaranteed accuracyL∞-norm computation algorithm

suggested in [9] is based is briefly reviewed. LetG ∈ RL∞ and8γ (s) := γ 2I − G∼(s)G(s)
whereG∼(s) := GT (−s). (This notation and the ‘soft Oh’ notation may slightly be confusing,

but it should be clear from the context.) Then, det8γ (s) is a (real) rational function ins2, so we

substitutex for s2 in det8γ (s) and write asgγ (x), i.e.,gγ (s2) = det8γ (s). Writegγ (x) = nγ (x)
dγ (x)

wherenγ (x) anddγ (x) are polynomials inx whose coefficients are polynomials inγ (γ 2, in

fact) and, when seen as polynomials inx andγ , are coprime overR[x, γ ]. Further define

hs
γ (x) :=

nγ (x)

GCD
(
nγ (x),

∂
∂x nγ (x)

) (3)

(where the greatest common divisor (GCD) is that of the polynomials inx andγ ). We then have

the following result.

Theorem 6 Suppose thatG ∈ RL∞ and leths
γ (x) be defined as above. Then theL∞-norm of

G is one of the following quantities:

i) σ {G(0)} ,

ii) σ {G( j∞)} ,
iii) a real root of the discriminant ofhs

γ (x) (with respect tox).

Moreover each of the above quantities is a (real) root of a real polynomial.
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The computation of the determinant of8γ (s) is potentially the most time-consuming part in

the entire guaranteed accuracyL∞-norm computation algorithm. In this report we analyse the

computation cost of the determinant of a matrix of the form of8γ (s).

In fact we investigate the computation cost of the determinant of a matrix which is, roughly

speaking, obtained after clearing denominators in8γ (s). So a matrix whose elements are

polynomials inγ ands is dealt with. First we prove some prerequisite results in the following

two sections.

4 Horner’s Rule

There are two ways of representing a univariate polynomial of degreen on a computer [4,

Sections 5.1-2, pp. 92-95][5, Sections 5.1-2, pp. 98-101]. One way is an obvious one and it uses

a list of (n + 1) coefficients. The other way is to express it by its values at(n + 1) different

points. To convert a polynomial in the former form into the latter form is just evaluation of the

polynomial at(n+1) points and it can be executed by using Horner’s rule. When given its values

at (n+ 1) different points, the coefficients can be obtained by means of Lagrange interpolation.

This section reviews Horner’s rule and also estimates its computation cost in terms of word

operations. Lagrange interpolation is treated in the next section.

Suppose a polynomialf =∑0≤i≤n ai xi ∈ F[x] whereF is a field. To evaluate the value at

u ∈ F , Horner’s rule

f (u) =
(
· · · ((anu+ an−1)u+ an−2

)
u+ · · · + a1

)
u+ a0

usesn multiplications andn additions inF [4, p. 93][5, p. 99].

Horner’s rule in fact computes the quotient and the remainder on division off by x − u [4,

Exercise 5.3, p. 124][5, Exercise 5.3, p. 131]. This can easily be seen from the following:

f (x) = anxn−1(x − u)+ (anu+ an−1)x
n−1 + an−2xn−2 + · · · + a0

= {
anxn−1 + (anu+ an−1)x

n−2} (x − u)

+ ((anu+ an−1)u+ an−2
)
xn−2 + · · · + a0

= · · ·
=

{
anxn−1 + (anu+ an−1)x

n−2 + · · ·
+
(
· · · ((anu+ an−1)u+ an−2

)
u+ · · · + a1

)}
(x − u)

+
(
· · · ((anu+ an−1)u+ an−2

)
u+ · · · + a1

)
u+ a0 .

That is, Horner’s rule is equivalent to computing the coefficients of the quotient from the highest

degree and the final value is the remainder.
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It is trivially true that the computation off (u) for f ∈ Z[x], deg f = n andu ∈ Z by way of

Horner’s rule requiresn multiplications andn additions inZ. Now we estimate the computation

cost in terms of word operations. We further suppose that‖ f ‖∞ ≤ A and |u| ≤ B where

A, B ≥ 1. First we find a bound for the absolute values of integers that appear in the calculation.

From the assumption,

|an| ≤ A ,

|anu+ an−1| ≤ |anu| + |an−1| ≤ 2AB ,

· · ·
| f (u)| = |anun + an−1un−1 + · · · + a0|

≤ |anun| + |an−1un−1| + · · · + |a0| ≤ (n+ 1)ABn . (4)

So the lengths of integers appearing in the calculation are bounded by
(
log(n + 1) + log A+

n log B
)
and thus one multiplication costs at mostM

(
log(n+1)+log A+n log B

)
word operations

and one addition costsO(logn+ log A+ n log B) word operations. So we have proven the

following result.

Lemma 7 For f ∈ Z[x], deg f = n, ‖ f ‖∞ ≤ A and u ∈ Z, |u| ≤ B where A, B ≥ 1,

the computation off (u), or equivalently, the computation of the quotient and the remainder

on division of f by x − u (in Z[x]), can be carried out by means of Horner’s rule using

O
(
nM(logn+ log A+ n log B)

)
word operations.

5 Lagrange Interpolation

Let f ∈ F[x] be a polynomial of degreen whereF is a field. Suppose thatu0,u1, . . . ,un ∈ F

and that we know the valuesvi of f atui : f (ui ) = vi ∈ F . Then we can recover the coefficients

of f by the following formula (the so-called Lagrange interpolation) [4, pp. 93-94][5, pp. 99-100]:

f =
∑

0≤i≤n

vi

∏
0≤ j≤n

j 6=i

x − uj

ui − uj
. (5)

In the case off ∈ Z[x], if u0,u1, . . . ,un ∈ Z, then f (ui ) = vi ∈ Z. The above formula can

also be used and the resultingf will be obtained inZ[x]. It should be noted that, if the above

formula is simply used, we have to leaveZ[x] during the calculation sincevi
∏

0≤ j≤n, j 6=i
x−u j

ui−u j

is not necessarily inZ[x].
However it may be possible to stay inZ[x]. In terms of computation cost it is wise to use
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small integers, so,ui = i , 0≤ i ≤ n, are used. Then, (5) can be written as

f =

∑
0≤i≤n

viαi

∏
0≤ j≤n

j 6=i

(x − j )

n!
⌊n

2

⌋
!

(6)

where

αi = (−1)n+i
∏

n−i+1≤ j≤n

j
∏

i+1≤ j≤b n
2c

j , αn−i = (−1)nαi , 0 ≤ i ≤
⌊n

2

⌋
.

Notice thatαi ∈ Z and thus the numerator of (6) can be computed with operations onZ[x].
Since f ∈ Z[x], all the coefficients in the numerator are divisible by the denominator inZ and

what is required is merely(n+ 1) (exact) integer divisions.

The same formula can also be used whenf ∈ R[x] whereR= Z[y]. The sameui are used

and f (ui ) = f (i ) = vi ∈ R= Z[y] in this case. Givenvi , the coefficients off can be computed

by way of (5) or (6). Similar to the above, (5) in general requires computation inQ[y] while

in (6) the numerator can be computed inR[x], the denominator is inZ and the division can be

done exactly inR[x].
We now estimate the computation cost of Lagrange interpolation whenf ∈ R[x] where

R= Z[y].
Theorem 8 Let f ∈ R[x] whereR = Z[y], degx f = n, f = ∑

0≤i≤n ai xi , ai ∈ Z[y] and

degy ai ≤ m. Givenvi = f (ui ) ∈ Z[y], 0 ≤ i ≤ n, whereui = i , and a boundA for

‖vi ‖∞ such that‖vi ‖∞ ≤ A for all i , Lagrange interpolation of recovering the coefficients off

(by means of formula (6)) usesO
(
mn2M

(
log max

{
(n+ 1)

3
2n−1, A

})+M(n logn)M(n) logn
)

word operations.

Proof

Firstly consider the computation of the denominator. Lemma 1 states thatn! ⌊n
2

⌋! can be com-

puted inO
(
M
(

n
2 log n

2

)
log n

2

)
or O

(
M(n logn) logn

)
word operations. Also we can see that the

length ofn! ⌊n
2

⌋! is bounded by32n logn.

Then consider the numerator. There are
(⌊

n
2

⌋+ 1
)

different αi . For eachαi , there are⌊
n
2

⌋
integers of lengths at most logn to be multiplied. Therefore the computation of each

αi usesO
(
M
(⌊

n
2

⌋
logn

)
log

⌊
n
2

⌋)
or O

(
M(n logn) logn

)
word operations [4, Exercise 10.8,

p. 292][5, Exercise 10.8, p. 304]. For allαi , the number of word operations required is

O
(
nM(n logn) logn

)
. Also the length ofαi is bounded by

⌊
n
2

⌋
logn.

To computepi := ∏0≤ j≤n, j 6=i (x − j ), we first computep := ∏0≤ j≤n(x − j ) and thenpi

can be computed aspi = p/(x− i ). From Lemma 2,O
(
M(n logn)M(n) logn

)
word operations
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are needed to computep. This has to be done once. Then we can use Horner’s rule to compute

pi and we can see that, for eachpi , O
(
nM(n logn)

)
word operations are used (Lemmas 2 & 7),

noting that logA and B in Lemma 7 are(n − 1) log(n + 1) andn here, respectively. There

are(n + 1) different pi , so for all pi we needO
(
n2M(n logn)

)
word operations. So, in total,

O
(
n2M(n logn)+M(n logn)M(n) logn

)
word operations are used.

Then considerαi pi . Sinceαi is in Z and pi is a polynomial of degreen in Z[x], we need

(n + 1) integer multiplications for eachαi pi . The length ofαi is at most
⌊

n
2

⌋
logn and, from

the comment just below Lemma 2, log‖pi ‖∞ ≤ (n − 1) log(n + 1). So to compute oneαi pi

requires(n+ 1)M
(
(n− 1) log(n+ 1)

)
or O

(
nM(n logn)

)
word operations. There are(n+ 1)

differentαi pi and, as a whole, we needO
(
n2M(n logn)

)
word operations. Furthermore,

log‖αi pi ‖∞ ≤
⌊n

2

⌋
logn+ (n− 1) log(n+ 1) ≤

(3

2
n− 1

)
log(n+ 1) . (7)

To compute eachviαi pi , we have to multiply a polynomial inZ[y] (namely, vi ) and a

polynomial inZ[x] (namely,αi pi ). Since degy vi ≤ m and degx αi pi = n, there are at most

(m + 1)(n + 1) multiplications inZ to be executed. Since‖vi‖∞ ≤ A and (7), we need

O
(
mnM

(
log max

{
(n+ 1)

3
2n−1, A

}))
word operations. To compute allviαi pi , it has to be com-

puted for 0≤ i ≤ n, so,O
(
mn2M

(
log max

{
(n+ 1)

3
2n−1, A

}))
word operations are used.

Adding up allviαi pi needs at most(m+ 1)n(n+ 1) additions in integers, since eachviαi pi

has at most(m+1)(n+1) coefficients when seen as a polynomial inZ[x, y] and there are(n+1)

differentviαi pi . Also,

log

∥∥∥∥∥
∑

0≤i≤n

viαi pi

∥∥∥∥∥
∞
≤ log

{
(n+ 1)max

i
‖viαi pi ‖∞

}

≤ log(n+ 1)+ log A+
(3

2
n− 1

)
log(n+ 1)

≤ 3

2
n log(n+ 1)+ log A . (8)

The cost of integer addition is linear in the length of the integers, so, as a whole, we need

O
(
mn2(n logn+ log A)

)
word operations.

Division of the numerator by the denominator requires(m+ 1)(n + 1) integer divisions.

The bound (8) of the coefficients in the numerator is larger than the bound of the denomina-

tor (3
2n logn), so the computation cost is determined by the length of the numerator and we need

O
(
mnM(n logn+ log A)

)
word operations.

Removing comparatively ‘low’ costs, the whole computation cost is estimated to be

O
(
mn2M

(
log max

{
(n+ 1)

3
2n−1, A

})+M(n logn)M(n) logn
)

word operations.

2
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Now consider the case wheref ∈ Z[x] is in fact a polynomial inx2, i.e., the coefficients of

all the odd degrees are zero and only those of even degrees can be nonzero. Here we suppose

that f is 2n-th order. As in the above, we useui = i , −n ≤ i ≤ n, and write f (ui ) = vi ∈ Z.

Then, by taking into account thatv−i = f (u−i ) = f (ui ) = vi , the following formula can be

obtained which is equivalent to (5):

f =

(−1)nv0

∏
n+1≤ j≤2n

j
∏

1≤ j≤n

(x2 − j 2)

+
∑

1≤i≤n

(−1)n+i 2vi

∏
n−i+1≤ j≤n

j
∏

n+i+1≤ j≤2n

j
∏

0≤ j≤n
j 6=i

(x2 − j 2)

(2n)!n! . (9)

Again this can be computed without leavingZ[x] (in fact, without leavingZ[x2]).
We now estimate the computation cost of Lagrange interpolation whenf ∈ Z[x2]. As will be

seen in Section 6, our determinant computation algorithm executes this Lagrange interpolation

for several times for the sameui (but for different sets ofvi ). The following estimation is for

such a case.

Theorem 9 Let fk ∈ Z[x2], degx fk ≤ 2n (i.e., degx2 fk ≤ n) for 0 ≤ k ≤ m. Givenvi,k =
fk(ui ) ∈ Z, 0 ≤ i ≤ n, 0 ≤ k ≤ m, whereui = i , and a boundA for |vi,k| such that

|vi,k| ≤ A for all i , k, Lagrange interpolation of recovering the coefficients offk, 0≤ k ≤ m, (by

means of formula (9)) usesO
(
mn2M

(
log max

{
2n(n2+ 1)

3
2n−1, A

})+M(n logn)M(n) logn
)

word operations.

Proof

To find all fk, Lagrange interpolation has to be carried out for(m + 1) times, but the only

difference in (9) for differentk is the values ofvi,k. Therefore, (2n)!n!, ∏n+1≤ j≤2n j ,∏
n−i+1≤ j≤n j

∏
n+i+1≤ j≤2n j and

∏
0≤ j≤n, j 6=i (x

2 − j 2) have to be computed only once. We

first consider the computation costs of these.

Consider the computation of the denominator. Lemma 1 states that(2n)!n! can be computed

in O
(
M(n logn) logn

)
word operations and that its length is bounded by 3n log 2n.

To compute
∏

n+1≤ j≤2n j or
∏

n−i+1≤ j≤n j
∏

n+i+1≤ j≤2n j for a particulari , we have to mul-

tiply n integers of lengths at most log 2n. So its computation cost isO
(
M(n log 2n) logn

)
or

O
(
M(n logn) logn

)
word operations [4, Exercise 10.8, p. 292][5, Exercise 10.8, p. 304]. For

all
∏

n+1≤ j≤2n j and
∏

n−i+1≤ j≤n j
∏

n+i+1≤ j≤2n j , 1 ≤ i ≤ n, the number of word operations

required isO
(
nM(n logn) logn

)
. Also their lengths are bounded byn log 2n.

To computepi := ∏0≤ j≤n, j 6=i (x
2 − j 2), we first computep := ∏0≤ j≤n(x

2 − j 2) and then

pi can be computed aspi = p/(x2 − i 2). From Lemma 3,O
(
M(n logn)M(n) logn

)
word

12



operations are needed to computep. This has to be done once. Then we can use Horner’s

rule to computepi and we can see that, for eachpi , O
(
nM(n logn)

)
word operations are used

(Lemmas 3 & 7), noting that logA and B in Lemma 7 are(n − 1) log(n2 + 1) andn2 here,

respectively. There are(n + 1) different pi , so for all pi we needO
(
n2M(n logn)

)
word

operations. So, in total,O
(
n2M(n logn)+M(n logn)M(n) logn

)
word operations are used.

Then consider the multiplication of
∏

n+1≤ j≤2n j or
∏

n−i+1≤ j≤n j
∏

n+i+1≤ j≤2n j ∈ Z

and pi . Sincepi is a polynomial of degreen in x2, we need(n + 1) integer multiplications.

The length of
∏

n+1≤ j≤2n j or
∏

n−i+1≤ j≤n j
∏

n+i+1≤ j≤2n j is at mostn log 2n and, from

the comment just below Lemma 3, log‖pi ‖∞ ≤ (n − 1) log(n2 + 1). So to compute∏
n+1≤ j≤2n j p0 or each

∏
n−i+1≤ j≤n j

∏
n+i+1≤ j≤2n j pi requires(n+1)M

(
(n− 1) log(n2+ 1)

)
or O

(
nM(n logn)

)
word operations. This should be done for 0≤ i ≤ n and, as a whole,

we need O
(
n2M(n logn)

)
word operations. Furthermore, log

∥∥∥∏n+1≤ j≤2n j p0

∥∥∥∞ and

log
∥∥∥∏n−i+1≤ j≤n j

∏
n+i+1≤ j≤2n j pi

∥∥∥∞ are bounded by

n log 2n+ (n− 1) log(n2+ 1) ≤
(3

2
n− 1

)
log(n2+ 1)+ n log 2 . (10)

Those computed above are common for allfk and hence should be computed once. The

following part is dependent onvi,k and thus should be computed for eachfk, i.e., should be

repeated for(m+ 1) times.

For a particulark, to computev0,k
∏

n+1≤ j≤2n j p0 or vi,k
∏

n−i+1≤ j≤n j
∏

n+i+1≤ j≤2n j pi for

a particulari , we have to multiply an integer and a polynomial of degreen in Z[x2]. There

are at most(n + 1) multiplications inZ to be executed. Since|vi | ≤ A and (10), we need

O
(
nM
(
log max

{
2n(n2+ 1)

3
2n−1, A

}))
word operations. It has to be computed for alli , 0≤ i ≤

n, so, in total,

O
(
n2M

(
log max

{
2n(n2+ 1)

3
2n−1, A

}))
(11)

word operations are used. We note that multiplying an integer by 2 can be achieved by shifting

one bit and its cost is negligible here.

Adding up all the terms in the numerator needs at mostn(n+ 1) additions in integers. Also

the length of the max-norm of the numerator is bounded by

log(n+ 1)+ log 2A+
(3

2
n− 1

)
log(n2+ 1)+ n log 2

≤ 3

2
n log(n2+ 1)+ (n+ 1) log 2+ log A (12)

∈ O(n logn+ log A) .

13



The cost of integer addition is linear in the length of the integers, so, as a whole, we need

O
(
n2(n logn+ log A)

)
(13)

word operations.

Division of the numerator by the denominator requires(n + 1) integer divisions. The

bound (12) of the coefficients in the numerator and the bound of the denominator (3n log 2n) are

both in O(n logn+ log A), so we need

O
(
nM(n logn+ log A)

)
(14)

word operations.

Here it is repeated that the computation costs (11), (13) and (14) are for a particularfk and

they have to be multiplied bym when estimating the computation costs for allfk.

Removing comparatively ‘low’ costs, the whole computation cost is estimated to be

O
(
mn2M

(
log max

{
2n(n2+ 1)

3
2n−1, A

})+M(n logn)M(n) logn
)

word operations.

2

6 Computation of the Determinant of a Para-Hermitian Matrix of
a Special Form

Let 9(γ, s) = (ψi j ) be inZ[γ, s]n×n and suppose that9 is para-Hermitian with respect tos,

namely,9T (γ,−s) = 9(γ, s). Further we assume that degsψi j ≤ m, that degγ ψi i = 1,

degγ ψi j = 0 for i 6= j and that
∥∥ψi j

∥∥∞ ≤ A. In this section we will estimate the computation

cost (in terms of word operations) to find the determinant of9. Writeχ(γ, s) = det9 ∈ Z[γ, s].
First it should be pointed out that

χ(γ, s) = χ(γ,−s)

and henceχ is a polynomial ins2. The degrees ofχ with respect toγ ands are bounded byn

andmn, respectively. In fact,χ is a polynomial ins2 of degree at most
⌊

mn
2

⌋
.

Remark: In practice we may be able to have a smaller bound for the degree ofχ with respect

to s (or s2) [4, Exercise 5.32, p. 127][5, Exercise 5.32, p. 134] and in the actual computation we

should use that bound instead of
⌊

mn
2

⌋
. However,

⌊
mn
2

⌋
can be a tight bound and it is therefore

suitable for the purpose of the cost analysis. 3

We propose to computeχ in the following way, using Lagrange interpolation twice:

1. Computeχ(γi , sj ) ∈ Z for γi = i , 0≤ i ≤ n, sj = j , 0≤ j ≤ ⌊mn
2

⌋
.

14



2. For eachi , 0 ≤ i ≤ n, computeχ(γi , s) ∈ Z[s] from χ(γi , sj ), 0 ≤ j ≤ ⌊
mn
2

⌋
, using

Lagrange interpolation.

3. Computeχ(γ, s) ∈ Z[γ, s] fromχ(γi , s), 0≤ i ≤ n, again using Lagrange interpolation.

To estimate the computation cost of Step 1, we first point out that the computation of all

χ(γi , sj ) requires evaluation of all the elements of9 at γ = γi = i , 0 ≤ i ≤ n, s = sj = j ,

0 ≤ j ≤ ⌊
mn
2

⌋
, and the computation of the determinants of resulting integer matrices. To

evaluate all the elements of9, we use the fact that9 can be written as

9(γ, s) = 90(s)+ γ91(s)

where90 and91 are matrices whose elements are polynomials ins only and91 is diagonal.

Consider evaluating9(γi , sj ), 0 ≤ i ≤ n, for a particularsj . Sincesj is fixed,90(sj ) and

91(sj ) have to be computed once each. Then the relationships

9(0, sj ) = 90(sj ) ,

9(γi , sj ) = 9(γi − 1, sj )+ 91(sj ) , 1≤ i ≤ n ,

can be used, which only requires (integer) additions. To evaluate an element of90(sj ) or a

diagonal element of91(sj ), we can use Horner’s rule and it can be computed in

O
(
mM

(
m(logm+ logn)+ log A

))
word operations, noting thatm, A and

⌊
mn
2

⌋
here correspond to ‘n’, ‘ A’ and ‘B’ in Lemma 7,

respectively. There are(n2 + n) elements in total, so the computation cost for evaluation of

90(sj ) and91(sj ) is done in

O
(
mn2M

(
m(logm+ logn)+ log A

))
word operations. Moreover the length of each element is bounded by

m log
⌊mn

2

⌋
+ log(m+ 1)+ log A ∈ O

(
m(logm+ logn)+ log A

)
(cf. (4)). To compute all9(γi , sj ), 0 ≤ i ≤ n, (for a particularsj ,) we further needn2 integer

additions, noting that91(sj ) is diagonal. The lengths of integers appearing during the calculation

are bounded by

m log
⌊mn

2

⌋
+ log(m+ 1)+ logn+ log A ∈ O

(
m(logm+ logn)+ log A

)
,
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so the computation cost is

O
(
mn2(logm+ logn)+ n2 log A

)
word operations.

Therefore evaluating9(γi , sj ), 0≤ γi ≤ n, for a particularsj requires

O
(
mn2M

(
m(logm+ logn)+ log A

))
word operations and, for allsj , 0≤ sj ≤

⌊
mn
2

⌋
,

O
(
m2n3M

(
m(logm+ logn)+ log A

))
or

O∼
(
m2n3M(m+ log A)

)
word operations are needed.

Now consider the determinant of9(γi , sj ). When evaluated atγ = γi = i , 0≤ i ≤ n, and

s= sj = j , 0≤ j ≤ ⌊mn
2

⌋
, the absolute value ofψi j is bounded by

A
{(⌊mn

2

⌋)m +
(⌊mn

2

⌋)m−1+ · · · + 1
}
(n+ 1) ≤ A(m+ 1)(n+ 1)

(⌊mn

2

⌋)m
. (15)

By using this bound and Theorem 5, the computation cost of a particularχ(γi , sj ) = det9(γi , sj )

is estimated to be

O∼
(
n4(m+ log A)+ n3(m+ log A)2

)
,

word operations, or equivalently,

O∼
(
m2n3+mn4+ n4 log A+ n3 log2 A

)
word operations. Since there are(n+ 1)

(⌊
mn
2

⌋+ 1
)

different9(γi , sj ), in total,

O∼
(
m3n5+m2n6+mn6 log A+mn5 log2 A

)
word operations are needed. Furthermore a bound for|χ(γi , sj )| can be found from Hadamard’s

inequality (Theorem 4) and (15):

|χ(γi , sj )| ≤ n
n
2

{
A(m+ 1)(n+ 1)

(⌊mn

2

⌋)m}n
. (16)
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Theorem 9 can be used to estimate the computation cost in Step 2. A bound for|χ(γi , sj )|
has already been found in (16), which is ‘A’ in Theorem 9. Also, ‘m’ and ‘n’ in Theorem 9

should be replaced byn and
⌊

mn
2

⌋
, respectively. The two arguments of the max function are

2bmn
2 c
{(⌊mn

2

⌋)2+ 1
} 3

2bmn
2 c−1

and the right hand side of (16). It is not obvious which is the bigger, but, taking their logarithms:

(3

2

⌊mn

2

⌋
− 1

)
log
{(⌊mn

2

⌋)2 + 1
}
+
⌊mn

2

⌋
log 2

∈ O
(
mn(logm+ logn)

)
,

n

2
logn+ n

(
log A+ log(m+ 1)+ log(n+ 1)+m log

⌊mn

2

⌋)
∈ O

(
mn(logm+ logn)+ n log A

)
,

we can conclude that

log max

{
2bmn

2 c
{(⌊mn

2

⌋)2 + 1
} 3

2bmn
2 c−1

,n
n
2

{
A(m+ 1)(n+ 1)

(⌊mn

2

⌋)m}n
}

∈ O
(
mn(logm+ logn)+ n log A

)
.

As a result the computation cost of Step 2 is

O
(
m2n3M

(
mn(logm+ logn)+ n log A

)
+M

(
mn(logm+ logn)

)
M(mn) (logm+ logn)

)
word operations, or

O∼
(
m2n3M(mn+ n log A)+M(mn)2

)
word operations. Furthermore the lengths of the max-norms of the obtainedχ(γi , s) can be

bounded by (12), and hence we get

3

2

⌊mn

2

⌋
log
{(⌊mn

2

⌋)2+ 1
}
+ n

2
logn

+ n
(
log A+ log(m+ 1)+ log(n+ 1)+m log

⌊mn

2

⌋)
+
(⌊mn

2
+ 1

⌋)
log 2

∈ O
(
mn(logm+ logn)+ n log A

)
. (17)

The estimation of the computation cost of Step 3 uses Theorem 8. We have already found a

bound for log‖χ(γi , s)‖∞ in (17), which is the logarithm of ‘A’ in Theorem 8. Also note that
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Step Cost

Step 1 O∼
(
m2n3M(m+ log A)+m3n5+m2n6+mn6 log A+mn5 log2 A

)
Step 2 O∼

(
m2n3M(mn+ n log A)+M(mn)2

)
Step 3 O∼

(
mn3M(mn+ n log A) +M(n)2

)

Table 1: Computation Costs of Steps in Determinant Computation (1)

Step Cost

Step 1 O∼
(
m4n3+m3n5+m2n6+mn6 log A+ (m2n3+mn5) log2 A

)
Step 2 O∼

(
m4n5+m2n5 log2 A

)
Step 3 O∼

(
m3n5+mn5 log2 A

)
Total O∼

(
m4n5+m2n6+mn6 log A+m2n5 log2 A

)

Table 2: Computation Costs of Steps in Determinant Computation (2) (whenM(n) = 2n2:
Classical method)

‘m’ and ‘n’ in Theorem 8 are
⌊

mn
2

⌋
andn here, respectively. If we take the logarithms of the two

arguments of the max function, it is seen that they are in

O(n logn)

and

O
(
mn(logm+ logn)+ n log A

)
,

respectively. We can conclude that Step 3 uses

O
(
mn3M

(
mn(logm+ logn)+ n log A

) +M(n logn)M(n) logn
)

word operations, or

O∼
(
mn3M(mn+ n log A) +M(n)2

)
word operations.

The computation costs of those steps are summarized in Table 1. Also the computation cost

whenM(n) = 2n2 andM(n) ∈ O(n logn loglogn) ∈ O∼(n) are shown in Table 2 and Table 3,

respectively. When the classical multiplication method is used, the most (asymptotically) costly

steps are the first step (for largen) and the first and second steps (for largem). For largeA, all

18



Step Cost

Step 1 O∼
(
m3n5+m2n6+ (m2n3+mn6) log A+mn5 log2 A

)
Step 2 O∼

(
m3n4+m2n4 log A

)
Step 3 O∼

(
m2n4+mn4 log A

)
Total O∼

(
m3n5+m2n6+ (m2n4+mn6) log A+mn5 log2 A

)

Table 3: Computation Costs of Steps in Determinant Computation (3) (whenM(n) ∈
O(n logn loglogn) ∈ O∼(n): Schönhage & Strassen method)

the steps can be expensive. The total cost is quartic inm, sextic inn and quadratic in logA. In

the case of the Schönhage & Strassen method, Step 1 is the most expensive one (also Step 2 for

largem) and the total cost is cubic inm, sextic inn and quadratic in logA.

Remark: A similar estimate will result if Lagrange interpolations are done first to getχ(γ, sj )

and then to getχ(γ, s) in the method proposed at the beginning of this section. 3

Even though the proposed method is not claimed to be the most efficient method, it is

guessed that the method can be efficient in practice. Although the presentation of the method

relies on polynomial manipulation, actual implementation may only have to keep the values

of coefficients and only operations on numbers may be required, just as in [10]. Therefore

direct polynomial manipulation (or symbolic operations), which is expensive in practice, can be

avoided. Furthermore the method is suitable for parallelization since it is in line with the one

proposed in [10]. If one can prepare a number of processors, the computing time can greatly be

reduced.

There is a remark in [8, p. 44] regarding the determinant computation: ‘[...] Thus we

can already surmise that though the evaluation-interpolation method may work quite well on

completely dense polynomials of reasonably small degree and number of variables, other methods

will become superior as the matrix’s polynomials become more sparse.’ It can be true in general

(their surmise is based on the number of arithmetic operations, however), but the determinant

we consider here is in general a dense polynomial and therefore the interpolation approach

seems sensible. There is another remark in [3, p. 103]: ‘It seems that in the case of a matrix of

polynomials in several variables, Cramer’s method is clearly much faster than any method based

on Gaussian elimination. For the case of a matrix of integers or of polynomials in one variable,

Bareiss’ method1 seems to be the most efficient.’ It is not clearly mentioned how costly those

methods are. If Bareiss’s method is efficient for matrices of univariate polynomials, then we

1A variation of Gaussian elimination.
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may use Bareiss’s method to computeχ(γi , s) and then carry out one Lagrange interpolation to

calculateχ(γ, s).

7 Computation of det8′(γ, s)

Now we are in a position to estimate the computation cost of the determinant needed in the

guaranteedaccuracyL∞ -norm computation. WhenG(s) ∈ RL∞ is givenandall the coefficients

in G(s) are rational numbers (or finite decimals), then, by clearing all the denominators (or

decimal points), we can have all the elements ofG(s) in Z(s). So letG(s) = (gi j

) ∈ Z(s)m×n

and suppose thatgi j (s) are at mostd-th order. Writegi j (s) = ni j (s)
di j (s)

whereni j (s), di j (s) ∈ Z[s].
Then, degni j (s), degdi j (s) ≤ d. Further suppose that‖ni j ‖∞, ‖di j ‖∞ ≤ A.

Define

8(γ, s) := γ 2I − G∼(s)G(s) ∈ Z(γ, s)n×n .

We actually consider the computation cost of the determinant of

8′(γ, s) = (
φ′i j
) := T∼(s)8(γ, s)T(s)

= γ 2T∼(s)T(s)− T∼(s)G∼(s)G(s)T (s) (18)

where

T(s) = diag

( ∏
1≤k≤m

dk1(s),
∏

1≤k≤m

dk2(s), · · · ,
∏

1≤k≤m

dkn(s)

)
∈ Z[s]n×n . (19)

First we note that

8′T (γ,−s) = T∼(s)8T (γ,−s)T(s) = T∼(s)8(γ, s)T(s) = 8′(γ, s)

and hence that8′(γ, s) is para-Hermitian with respect tos. Also, noting thatT∼(s)T(s) is

diagonal, we can see only diagonal elements of8′(γ, s) are polynomials inγ (in fact,γ 2) and

that degγ 2 φ′i i = 1 and degγ 2 φ′i j = 0 for i 6= j . Further the(i, j )-element ofG(s)T(s) can be

written as

ni j (s)
∏

1≤k≤m
k6=i

dkj (s) ∈ Z[s] , (20)

which implies that

8′(γ, s) ∈ Z[γ, s]n×n
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and further that

det8′(γ, s) ∈ Z[γ, s] .

Therefore the form of8′(γ, s) is the same as that of9(γ, s) in Section 6. (Note thatγ 2 here

corresponds toγ in Section 6.) It should be pointed out that, since

det8′(γ, s) = detT∼(s) · detT(s) · det8(γ, s)

and detT∼(s),detT(s) ∈ Z[s], it can be concluded that det8′(γ, s) is divisible by the numerator

of det8(γ, s) and moreover that the quotient is inZ[s]. The ‘extra’ factor will be removed when

computinghs
γ (x) in (3) and does not cause a problem for theL∞-norm computation (except for

the possible extra computation cost).

Remark: In fact it is sufficient to use

T(s) = diag
(
LCM

(
dk1(s)

)
,LCM

(
dk2(s)

)
, · · · ,LCM

(
dkn(s)

))
,

instead ofT(s) in (19), to clear denominators in8. So in the actual computation the aboveT(s)

should be used. Nevertheless,T(s) in (19) is the worst case of suchT(s) and it is suitable for

the purpose of the cost analysis. 3

In order to use the result in Section 6, we need to find a bound for the degree ofφ′i j (with

respect tos) and also a bound for
∥∥φ′i j ∥∥∞. Firstly we consider the diagonal elements ofT(s).

From (1)-(2),

degs

∏
1≤k≤m

dkj (s) ≤ md

and ∥∥∥∥∥
∏

1≤k≤m

dkj (s)

∥∥∥∥∥
∞
≤ Am(d + 1)m−1 .

Hence bounds for the degree and the moduli of the coefficients of each element ofT∼(s)T(s)
are 2md and(md+ 1)A2m(d + 1)2(m−1), respectively. Similarly, from (20), for each element

of G(s)T(s), the degree is bounded bymd and the moduli of the coefficients are bounded by

Am(d + 1)m−1. They further imply that the degree and the moduli of the coefficients of each

element ofT∼(s)G∼(s)G(s)T (s)are bounded by 2mdandm·Am(d+1)m−1·Am(d+1)m−1(md+
1) = m(md+ 1)A2m(d + 1)2(m−1), respectively.

As a result a degree bound forφ′i j is

2md in s . (21)
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The moduli of the coefficients ofφ′i j ,
∥∥φ′i j ∥∥∞, is bounded by

m(md+ 1)A2m(d + 1)2(m−1) , (22)

or its length log
∥∥φ′i j ∥∥∞ is bounded by

logm+ log(md+ 1)+ 2m log A+ 2(m− 1) log(d + 1)

∈ O
(
m(log A+ logd)

)
.

(Remember the definition of‖·‖∞ for bivariate polynomials.)

Now we can use the result in Section 6. In Section 6,9(γ, s) = (ψi j ) is in Z[γ, s]n×n,

degsψi j ≤ m and
∥∥ψi j

∥∥∞ ≤ A. So the correspondence of9(γ, s) in Section 6 and8′(γ, s) in

this section is as follows:

9(γ, s) in Section 6 ←→ 8′(γ, s) in this section

m ←→ 2md

n ←→ n

A ←→ m(md+ 1)A2m(d + 1)2(m−1)

log A ←→ O
(
m(log A+ logd)

)
If we use the classical method for multiplication, i.e.,M(n) = 2n2, the result in Table 2 can

be used. Using the above correspondence, we can derive the following theorem, which is the

main result of this report.

Theorem 10 Let G(s) = (
gi j

) ∈ Z(s)m×n. Write gi j (s) = ni j (s)
di j (s)

whereni j (s), di j (s) ∈ Z[s].
Suppose thatdegni j (s), degdi j (s) ≤ d. Further suppose that‖ni j ‖∞, ‖di j ‖∞ ≤ A. Then,

when the classical method for multiplication is employed, the computation of the determinant of

8′(γ, s) as is defined in (18)-(19) requires

O∼
(
m2n5d

{
m2d3+ nd+ n log A+m2d log2 A

})
(23)

word operations. Namely, the computation cost in terms of word operations is

4th order inm,

6th order inn,

4th order ind,

2nd order inlog A.
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In the case of squareG(s), i.e., whenm = n, the computation cost ofdet8′(γ, s) is estimated

to be

O∼
(
n9d2(d2+ log2 A)

)
word operations and this is

9th order inn,

4th order ind,

2nd order inlog A.

Remark: Since‖G(s)‖∞ = ‖GT (s)‖∞, we can useGT (s) to compute theL∞-norm ofG(s).

When computing degree bound (21) and coefficient bound (22), we do not use the relationship

betweenm andn (e.g.,m< n, etc.), so we can just swapm andn to get the computation cost

O∼
(
m5n2d

{
md+ n2d3+m log A+ n2d log2 A

})
word operations. Judging from the powers ofm andn, if G(s) ∈ Z(s)m×n is a wide matrix (i.e.,

m< n), it is in general sensible to first transpose it and then compute the determinant. The first

sentence of Theorem 10 should thus be read:Let G(s) = (
gi j

) ∈ Z(s)m×n wherem ≥ n (if

G(s) is a wide matrix, useGT (s)). 3

8 Numerical Example

In this section the algorithm proposed in this report is demonstrated by a numerical example.

The purpose is to show how the algorithm works, not to show the validity of the computation

cost analysis.

We use the plant

G(s) =
[ s+1

s2−4 0
1 1

s+3

]
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s
χ

0 1 2 3 4

0 1 0 -3 -8 -15
γ 2 1 -24 -9 12 -33 -264

2 239 126 27 -58 -2529

Table 4: Values ofχ atγ 2 = γ 2
i = i , s= sj = j

as an example. In this case,

8(γ, s) = γ 2I − G∼(s)G(s)

=
[
γ − 1+ s2−1

s4−8s2+16 − 1
s+3

1
s−3 γ + 1

s2−9

]
,

T(s) =
[

s2 − 4 0
0 s+ 3

]
,

8′(γ, s) = T∼(s)8(γ, s)T(s)

=
[
(s4 − 8s2 + 16)γ 2− s4 + 9s2 − 17 − s2 + 4

− s2 + 4 (− s2 + 9)γ 2− 1

]
.

So,m andn (in Section 6) arem = 4 andn = 2, respectively. Writeχ(γ, s) = det8′(γ, s).
Then, degγ 2 χ = 2 and degs χ ≤ 8 (or degs2 χ ≤ 4). The values thatχ takes when evaluated at

γ 2 = γ 2
i = i , 0≤ i ≤ 2, s= sj = j , 0≤ j ≤ 4 are shown in Table 4.

Now the first Lagrange interpolation is carried out to obtainχ(γi , s). We use formula (9)

and, forγ 2
0 = 0,

χ(γ0, s) =

1 · 1680(s2 − 1)(s2 − 22)(s2 − 32)(s2 − 42)

− 2 · 0 · 1344· s2(s2 − 22)(s2 − 32)(s2 − 42)

+ 2 · (−3) · 672· s2(s2− 1)(s2− 32)(s2− 42)

− 2 · (−8) · 192· s2(s2− 1)(s2− 22)(s2− 42)

+ 2 · (−15) · 24 · s2(s2− 1)(s2− 22)(s2− 32)

8!4!

=

1680(s8 − 30s6 + 273s4 − 820s2 + 576)
− 4032(s8 − 21s6 + 84s4 − 64s2)

+ 3072(s8 − 21s6 + 84s4 − 64s2)

− 720(s8 − 14s6 + 49s4 − 36s2)

967680

= − 967680s2 + 967680

967680
= − s2 + 1 .
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Similarly we get

χ(γ1, s) = − 2s4 + 17s2 − 24 ,

χ(γ2, s) = − 2s6 + 30s4 − 141s2 + 239 .

The second Lagrange interpolation yields

χ(γ, s) = 1 · χ(γ0, s)(γ 2− 1)(γ 2− 2)− 2 · χ(γ1, s)γ 2(γ 2− 2)+ 1 · χ(γ2, s)γ 2(γ 2− 1)

2!1!

=
(− s2 + 1)(γ 4− 3γ 2+ 2)
−2(−2s4+17s2−24)(γ 4−2γ 2)+(−2s6+30s4−141s2+239)(γ 4−γ 2)

2

= (− 2s6 + 34s4 − 176s2 + 288)γ 4 + (2s6 − 38s4 + 212s2 − 338)γ 2 − 2s2 + 2

2
= (−s6+ 17s4 − 88s2 + 144)γ 4 + (s6 − 19s4 + 106s2 − 169)γ 2 − s2 + 1 .

Of course this coincides with the result obtained from a direct calculation.

9 Conclusion

This report has shown that the matrix determinant computation used for the guaranteed accuracy

L∞-norm computation can be carried out in polynomial time in the dimensions of the system, the

orders of transfer functions in the elements and the sizes of the coefficients of the polynomials.

It should be emphasized that the time is measured in terms of word operations.

The computation cost is 6th order in the larger dimension of the system, or 9th order in the

dimension in the case of a square system. Although it may be expensive, this is the cost required

for the guaranteed computation.
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