On the Computation Cost
of the Determinant of
d(y,9) :=y2l — G~ (5)G(9)
in the Guaranteed Accuracy
L0-norm Computation

Masaaki Kanno

CUED/F-INFENG/TR.492
September 2004

On the Computation Cost of the Determinant
of ®(y, s) := y?l — G~ (s)G(S)
in the Guaranteed Accuracy L ,,-norm Computation

Masaaki Kanno
University of Cambridge
Department of Engineering
Trumpington Street
Cambridge CB2 1PZ
United Kingdom
E-mail: mk303@eng.cam.ac.uk

September 3, 2004
Abstract

This report is concerned with the computation cost of the determinant of a (bi-
variate) polynomial matrix required in the guaranteed accusagynorm compu-
tation. The obtained computation cost is in terms of word operations, unlike most
results available in the literature where the computation cost is provided in terms
of arithmetic operations. The proposed method employs multivariate Lagrange in-
terpolation and the computation cost in terms of word operations is shown to be
polynomial in the dimensions of the system, the orders of transfer functions in the
elements and the sizes of the coefficients of the polynomials.

1 Introduction

Several algorithms for the solution of systems and control problems with guaranteed accuracy
have been developed in [9]. Those algorithms require exact rational (or multiprecision integer)
arithmetic supported in computer algebra systems, as opposed to floating point arithmetic which
is almost always used in numerical computation. In such cases computation cost should be
expressed in terms of word operations to estimate the realistic growth of computation time, rather
than in terms of arithmetic operations. One of the problems considered in [9] &&.theorm
computation. Potentially the most time-consuming part offhgnorm computation algorithm

is the computation of the determinant of a bivariate rational function matrix. This reduces to
computing the determinant of a bivariate polynomial matrix after clearing the denominator of
each matrix element. In this report the cost of this matrix determinant computation needed for
the guaranteed accurady,.-norm computation is analysed.

The determinant is regarded as a fundamental characteristic of a square matrix and fast
computation algorithms and cost analyses of algorithms for polynomial matrices have been pre-
sented: in [6] two algorithms, Gaussian elimination and expansion by minors, are considered,;
in addition an algorithm based on evaluation and interpolation and a procedure which computes
the characteristic polynomial are investigated in [8]; [7] relates (univariate) polynomial matrix
multiplication and determinant computation; [10] presents an algorithm which is based on mul-
tivariate Lagrange interpolation and which is suitable for parallelization. Nevertheless most
computation costs are provided in terms of arithmetic operations. An exception is [2], which
deals with multivariate polynomial resultants, namely, not determinants of general matrices.

The method employed in this report uses multivariate Lagrange polynomial interpolation and
thus is in line with the one used by [10], but the resulting computation cost is given in terms of
word operations. In Section 2, some notation and preliminary results are presented. Section 3
briefly reviews the theorem given in [9] which is needed for the guaranteed accsgeyorm
computation algorithm. Section 4 presents Horner’s rule, which evaluates a polynomial at a
particular value and also computes the quotient and remainder on division of a polynomial by
a monic linear term, and derives its computation cost in terms of word operations. Section 5
reviews Lagrange interpolation and also derives its computation cost. Then, in Section 6, an
algorithm of computing the determinant of a para-Hermitian matrix of bivariate polynomials (of
a special form) is proposed and its computation cost is analysed. Based on the result in Section 6,
the computation cost of the matrix determinant needed for the guaranteed ac€ysanyrm
computation is estimated in Section 7. The main result derived in this report is summarized
in Theorem 10. Section 8 presents a humerical example whose purpose is to show how the
suggested algorithm works.

2 Notation and Preliminary Results

In this section some notation unusual in the control field but commonly used in the computer
algebra field is firstly reviewed. Then some basic results used for the analysis of the computation
cost and/or of the lengths of the outputs of algorithms are presented.

When considering the computation cost of an algorithm, it is customary not to obtain the
exact cost but to find the ‘rate of growth’ with respect to the input. The cost is then expressed
‘up to a constant factor’. The ‘big Oh’ notation is used for this purpose:

Definition 1 ([4, Definition 25.7, p. 684][5, Definition 25.7, p. 710])

(i) A partial function f : N — R, that is, one that need not be defined forral€ N, is called
eventually positivef there is a constanN € N such thatf (n) is defined and strictly positive for
alln> N.

(i) Let g : N — R be eventually positive. The®(g) is the set of all eventually positive
functionsf : N — R for which there exisN, ¢ € N such thatf (n) and g(n) are defined and
f(n) <cg(n) forall n > N.

In some situations the presence of many logarithmic factors is cumbersome. The ‘soft Oh’
notation is used in those cases in order to simplify the expression (but not to lose essential
information):

Definition 2 ([4, Definition 25.8, p. 685][5, Definition 25.8, p. 711])Let f,g : N — R
be eventually positive. Then we wrifee O~(g) if there are constantdN, ¢ € N such that
f(n) < g(n)(log,(3+ g(n)))¢foralln > N.

With this notationnlognloglogn € O~ (n). See [4, Section 25.7, pp. 684-685][5, Section 25.7,
pp. 710-711] for some features of the notion.

Addition of two integers obviously requires one integer addition but, when an (exact) addition
is carried out on a computer, the computation time (or cost) depends on how large these numbers
are. In general the actual computation cost of an arithmetic operation is affected by the ‘sizes’
of the numbers involved as well as the arithmetic operation itself. The size of an iatéger
measured by its length(a):

@) {o ifr=0,

|logysslal| +1 if 2 #0,

where the floor functiorix] gives the largest integer less than or equat.torhis reflects the
word number required to store the integer. The b&éealy affects the constant factor. Thus
this is not important for computation cost analysis and we do not explicitly specify it from now
on. We can see thata) € O(log|a)) (if a # 0).

3

In the case of polynomial computations, as well as the degrees of the polynomials, the lengths
of the coefficients have an effect on the computation cost. We measure the size of the coefficients
by the max-norm of a polynomial: if =3 ,_;_, ax e Z[x], then its max-norm is defined as
| fllo := MaXx<i<nla|. Inthis report we further extend the definition for bivariate polynomials,
thatis, if f =Y, a;x'yl € Z[x, y], then| ||, := max j |a;|.

Let f, g € Z[x] and suppose thdtf || ., < a, ||gll,, < b, degf < cand deg < d. Without
loss of generality we can assume tbat d. Then the following relationships are easy to derive:

deqg fg) c+d,

Ifolle, < abc+1).

IA

Using these we can deduce that, fpisuch that]| f; ||, < a and degf; < c,

deg [i < nc. (1)
1<i<n

[T < ac+ 1"t 2)

1<i<n oo

Addition (and subtraction) of two integers whose lengths are at moeh be computed with
O(n) word operations. Also addition of two polynomials of degree up twith coefficients in
aring use€O(n) ring operations.

Compared to addition, multiplication needs more cost and multiplication appears everywhere
in practical computations. The effort to reduce the computation cost of multiplication has been
made. For two integers whose lengths are boundeat(bgsp., two polynomials of degree up to
n with coefficients in a ring), the so-called classical multiplication method requires at most 2
word operations (resp., ring operations) to multiply them. Some methods have been proposed
to achieve asymptotically faster multiplication. The fastest method currently available seems
to be the method of Schonhage & Strassen, which achi®{edog nloglogn) operations [4,
Chapter 8, pp. 209-241][5, Chapter 8, pp. 219-251]. In the computation cost estimation of
larger problems, in order to abstract from the cost of the underlying multiplication algorithm,
the notation of multiplication tim&1(-) has been introduced [4, Definition 8.26, p. 232][5, Def-
inition 8.26, p. 242]: multiplication of two integers of lengths at mogtesp., two polynomials
of degrees up ta with coefficients in a ring) requires at magin) word operations (resp., ring
operations).

The computation cost of division is the same as that of multiplication up to a constant and
it is O(M(n)) word operations (resp., ring operations) for integers of lengths at mg@ssp.,
polynomials of degrees up) (see [4, Theorems 9.6 & 9.8, pp. 247-248][5, Theorems 9.6 & 9.8,
pp. 257-258]).

In the following we will estimate the computation costs of the product of two factorials of
integers and of operations on polynomials in terms of word operations. Here we note that, if a
computation require®(f) ring operations and the computation cost of each ring operations in
terms of word operations is i@(g), then the total computation cost@(fg) word operations.

Lemma 1 We can computén)!n!in O(M(n logn) log n) word operations. Further its length
is bounded bynlog 2n.

Proof
Firstly consider the length. Since

log(n!) < log(n") = nlogn
and
log((2n)) < log((2n)*™") = 2nlog2n,

the length of (2n)!n! is bounded by Blog2n. The computation of(2n)! requires
O(M(n logn) log n) word operations [4, Exercise 10.8, p. 292][5, Exercise 10.8, p. 304]. We
note thatn! can be computed whilé2n)! is calculated and thus we can getwithout extra
effort. Multiplication of (2n)! andn! requiresM(2nlog 2n) word operations. In total it takes
O(M(nlogn) logn) word operations to comput@n)!n!.
O
Now the computation cost of expanding a product of linear terms is analysed.

Lemma 2 Let p, € Z[s] be defined ap, :=]_[Ofifn(s —1i) (or py = ngign(s —).
Then the length of pnll, is bounded byn — 1)log(n + 1). Further, p, can be computed in
O(M(n logn) M(n) log n) word operations.

Proof
First it should be noted thaf[o_; (s — i) = S[y_i-n(S — i), SO, [[Tosi<n(3— D], =
ITTizi<n(s —)|, Also, after computind ,_; (s — i), to compute[],_;_,(s — i) can be
done by shifting the coefficients, whose cost will®¢n log | [T, (s —)| _.)-

S0, pn = [1<i<n(8 — i) is considered. It is shown thiii, ||, is bounded byn + -1
By noting that| p1|l,, = 1, it is derived that

Pl = IGS—MPrtle = ISPt — NP il
< (4Dl < M+ DNlpnsle <
n+1)! _
< +D-3ple = 200, < et

2

Therefore the length logp, |, is bounded byn — 1) log(n + 1).
To computep,, at mostM(n) logn operations irZ are needed [4, Lemma 10.4, p. 281][5,

Lemma 10.4, p. 293]. It use®(M(nlogn) M(n) logn) word operations since logonll,, <
(n— D log(n+ 1) € O(nlogn) and all the integers appearing in the computation are bounded
by this. This is ovenlog || pnll,, € O(n?logn) so it also holds true fof[o_; _,(s — i), which
establishes the claim.

O
It is not difficult to see that

< (n+1n"1t.

[[s—D

0<i<n
i#]
We need a similar but slightly different result later on.

o0

Lemma 3 Let p, € Z[s] be defined ap, := [Jo_n(s —i?) (OF pn := []iin(s —i9).
Then the length of py|l, is bounded byn — 1) log(n? + 1). Further, p, can be computed in
O(M(nlogn) M(n) logn) word operations.

Proof
Similar to the proof abovey, =]_[Kifn(s— i2)is considered. Itis shown thip, ||, is bounded
by (n? + 1)"~1. Again, by noting that| p; ||, = 1, it is derived that

IPalle = [(5=1)pa-s], = [sm-1—n*pnoz]_,
< M+ D ptlle = MP+D((M=D?+ 1) [pr2llye <
< M+) @+ Dlplle = [[P+Dlple = MP+DME.
2<i<n

Therefore the length lofyp, ||, is bounded byn — 1) log(n? + 1) € O(nlogn). The fact that
this also bounds all the integers appearing in the computation further proves the computation
cost in word operations.

O
Similarly we can see that

< (n?+1p"t.

o0

Here some results of the computation of the determinant of a matrix of real numbers/integers
are quoted.

Theorem 4 (Hadamard’s inequality [4, Theorem 16.6, p. 451][5, Theorem 16.6, p. 465]et
B € R™" and A € R such that all the entries dB are at mostA in absolute value. Then,

|detB| < nzZA".

Theorem 5 ([4, Theorem 5.12, p. 104][5, Theorem 5.12, p. 111T)he determinant of a matrix
B € Z"" with all entries less tha in absolute value can be computed with

O((n4 log(n A + n®log?(nA)) (log? n + (loglog A)2)> or O~ (n*log A + n®log? A)
word operations.

Remark: The same computation cost as Theorem 5 (up to logarithmic factors) is reported in [1].
&

3 Guaranteed Accuracy<L..-norm Computation

In this section the theorem on which the guaranteed accufagyorm computation algorithm
suggested in [9] is based is briefly reviewed. ek RL, andd,,(s) := y2l — G~ (s)G(S)
whereG™~(s) := G' (—s). (This notation and the ‘soft Oh’ notation may slightly be confusing,
but it should be clear from the context.) Then, det(s) is a (real) rational function is?, so we
substitutex for s2in det®, (s) and write ag, (x), i.e.,g, (s?) = detd, (s). Writeg, (x) = 3:8
wheren, (x) andd, (x) are polynomials inx whose coefficients are polynomials jn(y2, in
fact) and, when seen as polynomialiandy, are coprime oveR[x, y]. Further define

n, (x)
GCD(n, (x), 2N, (X))

h? () (3)

(where the greatest common divisor (GCD) is that of the polynomiatsaindy). We then have

the following result.

Theorem 6 Suppose thaG € RL,, and Ieth)s/(x) be defined as above. Then tldg,-norm of
G is one of the following quantities:

) o {G()},
i) o{G(joo)},
iif) a real root of the discriminant oh? (x) (with respect tox).

Moreover each of the above quantities is a (real) root of a real polynomial.

The computation of the determinant @f, (s) is potentially the most time-consuming part in
the entire guaranteed accuragy,-norm computation algorithm. In this report we analyse the
computation cost of the determinant of a matrix of the forndof’s).

In fact we investigate the computation cost of the determinant of a matrix which is, roughly
speaking, obtained after clearing denominatorsbi(s). So a matrix whose elements are
polynomials iny ands is dealt with. First we prove some prerequisite results in the following
two sections.

4 Horner's Rule

There are two ways of representing a univariate polynomial of degree a computer [4,
Sections 5.1-2, pp. 92-95][5, Sections 5.1-2, pp. 98-101]. One way is an obvious one and it uses
a list of (n + 1) coefficients. The other way is to express it by its valuegat 1) different
points. To convert a polynomial in the former form into the latter form is just evaluation of the
polynomial at(n+ 1) points and it can be executed by using Horner’s rule. When given its values
at (n + 1) different points, the coefficients can be obtained by means of Lagrange interpolation.
This section reviews Horner’s rule and also estimates its computation cost in terms of word
operations. Lagrange interpolation is treated in the next section.

Suppose a polynomidl =} 5, & x' e F[x] whereF is a field. To evaluate the value at
u € F, Horner’s rule

fu) = (---((anU+an_1)U+an_z)u+~-+a1)U+ao

usesn multiplications anch additions inF [4, p. 93][5, p. 99].
Horner’s rule in fact computes the quotient and the remainder on divisiérbgfx — u [4,
Exercise 5.3, p. 124][5, Exercise 5.3, p. 131]. This can easily be seen from the following:

fxX) = ax" (X —u)+ (@u+a,_)x" 7t +a, ox"?

= {anxX""+ (@ + a- X"} (x — u)
+ (@U+anDu+an2)x" 4+ a

+-+a

= {anxn‘1 + (@nU + 8q-)X" 2 4 -
+ (“‘((anu +an U+ an 2)u+ - +a1)}(x)
|(...((anu+an,1)u+anfz)u+-~~+8.1)U+ao-

That is, Horner's rule is equivalent to computing the coefficients of the quotient from the highest
degree and the final value is the remainder.

8

Itis trivially true that the computation of (u) for f € Z[x], degf = nandu € Z by way of
Horner’s rule requires multiplications andh additions inZ. Now we estimate the computation
cost in terms of word operations. We further suppose fHdt,, < A and|u| < B where
A, B > 1. Firstwe find a bound for the absolute values of integers that appear in the calculation.
From the assumption,

EN A,
lanu +an-1] =< [aaul +[an-1] < 2AB,

[A

fW] = lau"+an_u" "+ + &
< a4 [ap_ U™ + - +]ag] < (n+1)AB". 4)

So the lengths of integers appearing in the calculation are boundédgm +1) +log A+
nlog B) and thus one multiplication costs at mtvt(tlog(n-i-l)-i—log A+nlog B) word operations
and one addition cost®(logn + log A+ nlog B) word operations. So we have proven the
following result.

Lemma? For f € Z[x], degf = n, |[f|l,, < Aandu € Z, |u] < B whereA,B > 1,

the computation off (u), or equivalently, the computation of the quotient and the remainder
on division of f by x — u (in Z[x]), can be carried out by means of Horner's rule using
O(nM(logn + log A + nlog B)) word operations.

5 Lagrange Interpolation

Let f € F[x] be a polynomial of degree whereF is a field. Suppose thak, u;,...,u, € F
and that we know the valuesof f atu;: f(u;) = vi € F. Then we can recover the coefficients
of f by the following formula (the so-called Lagrange interpolation) [4, pp. 93-94][5, pp. 99-100]:

= Y] :‘_‘:J’j. (5)

O<i<n 0<j<n

A

In the case off € Z[x], if ug, Uy, ..., us € Z, thenf (u;) = v; € Z. The above formula can
also be used and the resultidgwill be obtained inZ[x]. It should be noted that, if the above
. X—Uj
formula is simply used, we have to lea#¢x] during the calculation since [[j i ﬁ
is not necessarily i [X].
However it may be possible to stay #ix]. In terms of computation cost it is wise to use

small integers, say; =i, 0<i < n, are used. Then, (5) can be written as

Z Vi i l_[X=1)
0<i<n 0<j<n

i

o[

a o= 0" T[T i [l i e = D, 0si<|T].

2
n—i+l<j<n iti<j<|}]

(6)

where

Notice thate; € Z and thus the numerator of (6) can be computed with operatiori8[xh
Since f € Z[x], all the coefficients in the numerator are divisible by the denominat@rand
what is required is merelgn + 1) (exact) integer divisions.

The same formula can also be used whea R[x] whereR = Z[y]. The samay; are used
andf (uj) = f(i) = v € R=Z[y]inthis case. Given;, the coefficients of can be computed
by way of (5) or (6). Similar to the above, (5) in general requires computatidd[i) while
in (6) the numerator can be computedRix], the denominator is i and the division can be
done exactly inR[X].

We now estimate the computation cost of Lagrange interpolation when R[x] where
R=Zlyl.

Theorem 8 Let f € R[x] whereR = Z[y],deg f =n, f = Zofifn ax', a e Z[y] and
deg,a,- < m. Givenv; = f(u) € Z[y], 0 < i < n, whereuy; = i, and a boundA for
lvi |l SUch thatl|vi ||, < Afor all i, Lagrange interpolation of recovering the coefficientsf of

(by means of formula (6)) us@(ngM(Iog max{ (n + 1)3n-1, A}) + M(nlogn) M(n) log n)
word operations.

Proof

Firstly consider the computation of the denominator. Lemma 1 statea!thg‘lj! can be com-
puted inO(M(g log 3) log g) or O(M(nlogn) logn) word operations. Also we can see that the
length ofn! | 5 |! is bounded by2n logn.

Then consider the numerator. There &€ | + 1) differente;. For eache;, there are
|_gJ integers of lengths at most logto be multiplied. Therefore the computation of each
ai usesO(M(LgJ logn) log L%J) or O(M(nlogn)logn) word operations [4, Exercise 10.8,
p. 292][5, Exercise 10.8, p. 304]. For alf, the number of word operations required is
O(nM(nlogn) logn). Also the length ofy; is bounded by 3 | logn.

To computep; := []o.j<n ji (X — j), we first computep := [[o.; (X —]) and thenp,
can be computed g8 = p/(x—i). From Lemma ZO(M(n logn) M(n) log n) word operations

10

are needed to compufe This has to be done once. Then we can use Horner’s rule to compute
pi and we can see that, for eaph O(nM(n log n)) word operations are used (Lemmas 2 & 7),
noting that logA and B in Lemma 7 argln — 1) log(n + 1) andn here, respectively. There
are(n + 1) different p;, so for all p; we needO(n®M(nlogn)) word operations. So, in total,
O(nZM(n logn) + M(nlogn) M(n) log n) word operations are used.

Then consider; p;. Sinceq; is in Z and p; is a polynomial of degrea in Z[x], we need
(n + 1) integer multiplications for each; pi. The length ofy; is at most| 5 | logn and, from
the comment just below Lemma 2, 1§@i ||, < (n — 1) log(n + 1). So to compute one; p;
requires(n + 1)M((n — Dlog(n + 1)) or O(nM(n log n)) word operations. There afa + 1)
differenta; pi and, as a whole, we nee|(n*M(nlogn)) word operations. Furthermore,

logllai pille < EJ logn+(—21logn+1) < (gn — 1) log(in+1) . (7)

To compute each«; pj, we have to multiply a polynomial itZ[y] (namely, v;) and a
polynomial inZ[x] (namely,a; p;). Since deg vi < mand degew;pi = n, there are at most
(m 4+ 1)(n + 1) multiplications inZ to be executed. Sincgvil,, < A and (7), we need
O(m nM(log max{ (n + 1)3n-1, A})) word operations. To compute alky; p;, it has to be com-

puted for 0<i <n, so,O(m r*M(log max{ (n + 1)3n-1, A})) word operations are used.

Adding up allvia; p; needs at mosim + 1)n(n + 1) additions in integers, since eatfw; p;
has at mostm+ 1) (n+ 1) coefficients when seen as a polynomiaZirx, y] and there arén+1)
differentvja; pj. Also,

log | > viei < log{(n+1) max|[vict p oo}
0<i<n 00
3
< log(n+1) +log A+ <§n — 1) log(n + 1)
< gn log(n+ 1) + log A. (8)

The cost of integer addition is linear in the length of the integers, so, as a whole, we need
O(mr?(nlogn + log A)) word operations.

Division of the numerator by the denominator requitas+ 1)(n + 1) integer divisions.
The bound (8) of the coefficients in the numerator is larger than the bound of the denomina-
tor (gn logn), so the computation cost is determined by the length of the numerator and we need
O(mnM(nlogn + log A)) word operations.

Removing comparatively ‘low’ costs, the whole computation cost is estimated to be
O(m M (log max{ (n + 1)3n-1, A}) + M(nlogn) M(n) log n) word operations.

O

11

Now consider the case whefec Z[x] is in fact a polynomial irk?, i.e., the coefficients of
all the odd degrees are zero and only those of even degrees can be nonzero. Here we suppose
that f is 2n-th order. As in the above, we use=i, —n <i < n, and writef (U;) = v; € Z.
Then, by taking into account that; = f(u_j) = f(u;) = v;, the following formula can be
obtained which is equivalent to (5):

D% [i [[e=i®

n+l<j<2n 1<j<n
+2 ™2 JT 0 JT i JTed-i?
1<i<n n—i+l<j<n n+i+l<j<2n 0<j=<n

[#i
b= 2n)!n! - O

Again this can be computed without leavifgx] (in fact, without leavingZ[x?]).
We now estimate the computation cost of Lagrange interpolation he[x?]. As will be
seen in Section 6, our determinant computation algorithm executes this Lagrange interpolation
for several times for the samg (but for different sets of;). The following estimation is for
such a case.

Theorem 9 Let fy € Z[x?], deg, fx < 2n (i.e.,deg. fx < n)for 0 < k < m. Givenvjx =

fu(u) € Z,0 <i <n, 0 <k < m, wherey; = i, and a boundA for |v; x| such that
lvik| < Aforalli, k, Lagrange interpolation of recovering the coefficientfgf0 < k < m, (by
means of formula (9)) use® (m *M(log max{2"(n? + 1)3n-1, A}) + M(nlogn) M(n) log n)

word operations.

Proof

To find all fx, Lagrange interpolation has to be carried out for + 1) times, but the only
difference in (9) for differentk is the values ofvix. Therefore, 2n)!n!, [T, 1 ;o0 i,
Mhoivazj<nd [nsisazj<on § @ndTozj<n i (X* — j?) have to be computed only once. We
first consider the computation costs of these.

Consider the computation of the denominator. Lemma 1 stateghgn! can be computed
in O(M(n logn) log n) word operations and that its length is bounded byog 2n.

To compute] [, 1<j<an J O [Tniv1<j<n J [nsis1<j<2n | fOr aparticulai, we have to mul-
tiply n integers of lengths at most log2 So its computation cost i@(M(n log 2n) log n) or
O(M(n logn) log n) word operations [4, Exercise 10.8, p. 292][5, Exercise 10.8, p. 304]. For
all TTnya<jon i @nd] T iy1<j<n i [nsiva<j<on i+ 1 <1 < n, the number of word operations
required isO(nM(nlogn) logn). Also their lengths are bounded byog 2n.

To computep; := [Joj <« (X* — %), we first computep := []o-;,(x* — j?) and then
pi can be computed ag = p/(x? —i%). From Lemma 3,0(M(nlogn) M(n) logn) word

12

operations are needed to compuytte This has to be done once. Then we can use Horner's
rule to computep; and we can see that, for eaph O(nM(n log n)) word operations are used
(Lemmas 3 & 7), noting that lod and B in Lemma 7 aren — 1) log(n? + 1) andn? here,
respectively. There arén + 1) different p;, so for all pi we needO(n*M(nlogn)) word
operations. So, in totaD(nzM(n logn) + M(nlogn) M(n) log n) word operations are used.
Then consider the multiplication of, ;- <onJ OF [Tn ivi<j<n i [Tnyivi<j<ni € Z
and p;. Sincep; is a polynomial of degrea in x?, we need(n + 1) integer multiplications.
The length of [T, 1j<onJ OF [In_iy1<j<n] [lntiz1<j<2n | iS @t mostnlog2n and, from
the comment just below Lemma 3, 19@i[l,, < (n — log(n? + 1). So to compute
[Thia<j<on i PooOreach T, qoj<n i [Tnsiza<j<on | Pi requiresin+1)M((n — 1) log(n® + 1))
or O(nM(nlogn)) word operations. This should be done for<0i < n and, as a whole,
we need O(n?M(nlogn)) word operations. Furthermore, I#ﬁ[nﬂfjﬁn j pOHC>O and

log H]‘[n,wlﬂ-sn I [nyisa<j<on i Pi Hoo are bounded by

nlog2n + (n—1)logn>+1) < (gn — 1) log(n?+ 1) + nlog2. (10)

Those computed above are common for falland hence should be computed once. The
following part is dependent on x and thus should be computed for eafi i.e., should be
repeated fofm + 1) times.

For a particulak, to computevo k [[1<j<on] PoOrvik [o iva<j<n J [nyiva<j<on i Pifor
a particulari, we have to multiply an integer and a polynomial of degnei@ Z[x?]. There
are at most(n + 1) multiplications inZ to be executed. Since;| < A and (10), we need
O(nM(Iog max{2"(n? + 1)3n-1, A})) word operations. It has to be computed forial < i <
n, so, in total,

O(nzM(Iog max{2"(n® + 1)3"1, A})) (11)

word operations are used. We note that multiplying an integer by 2 can be achieved by shifting
one bit and its cost is negligible here.

Adding up all the terms in the numerator needs at mast+ 1) additions in integers. Also
the length of the max-norm of the numerator is bounded by

log(n + 1) + log 2A + (gn — 1) log(n? + 1) + nlog 2

< gnlog(n2+1)+(n+l) log2+ log A (12)
€ O(nlogn+logA) .

13

The cost of integer addition is linear in the length of the integers, so, as a whole, we need
O(n*(nlogn + log A)) (13)

word operations.

Division of the numerator by the denominator requifes+ 1) integer divisions. The
bound (12) of the coefficients in the numerator and the bound of the denominatog @) are
both inO(nlogn + log A), so we need

O(nM(nlogn + log A)) (14)

word operations.
Here it is repeated that the computation costs (11), (13) and (14) are for a parficalad
they have to be multiplied bsn when estimating the computation costs for fll
Removing comparatively ‘low’ costs, the whole computation cost is estimated to be
O(m M (log max{2"(n? + 1)3n-1, A}) + M(nlogn) M(n) log n) word operations.
O

6 Computation of the Determinant of a Para-Hermitian Matrix of
a Special Form

Let W(y,s) = (¢j) be inZ[y, s]"*" and suppose tha¥ is para-Hermitian with respect &
namely, &' (y, —s) = W(y,s). Further we assume that deg; < m, that deg vi = 1,
deg, yi; = Ofori # j and that|y;; || < A. In this section we will estimate the computation
cost (interms of word operations) to find the determinani ofNrite x (y, s) = detW¥ e Z[y, s].
First it should be pointed out that

x(v,s) = x(,—9)

and hencey is a polynomial ins?. The degrees of with respect toy ands are bounded by
andmn, respectively. In facty is a polynomial ins? of degree at most™” |.

Remark: In practice we may be able to have a smaller bound for the degreemith respect

to s (or s?) [4, Exercise 5.32, p. 127][5, Exercise 5.32, p. 134] and in the actual computation we
should use that bound instead|d%" |. However,| 37| can be a tight bound and it is therefore
suitable for the purpose of the cost analysis. O

We propose to compute in the following way, using Lagrange interpolation twice:

1. Computex (yi,sj) € Zfory, =i,0<i<n,s;=j,0=<j<|%|

14

2. Foreacti, 0 <i < n, computex(,s) € Z[s] from x(y,sj), 0 < j < [5], using
Lagrange interpolation.

3. Computex (y, s) € Z[y, s] from x(yi,S), 0 <i < n, again using Lagrange interpolation.

To estimate the computation cost of Step 1, we first point out that the computation of all
x (%, Sj) requires evaluation of all the elementsbfaty =y =i,0<i <n,s=s; = j,
0<jc=< L%‘J and the computation of the determinants of resulting integer matrices. To
evaluate all the elements &, we use the fact thab can be written as

V(y,s) = Wo(S)+y¥als

wherey, andW¥, are matrices whose elements are polynomials anly andW¥, is diagonal.
Consider evaluatingt (i, sj), 0 < i < n, for a particulars;. Sinces; is fixed, ¥o(s;j) and
W (s)) have to be computed once each. Then the relationships

v(,s) = Wo(s),
Y(r.s) = Y- Ls)+Wals), 1=<i=n,

can be used, which only requires (integer) additions. To evaluate an elemégtspf or a
diagonal element o¥/, (sj), we can use Horner's rule and it can be computed in

O (mM (m(logm -+ logn) + log A))

word operations, noting tham, A and| 5| here correspond ta', A’ and ‘B’ in Lemma 7,
respectively. There aré? + n) elements in total, so the computation cost for evaluation of
Wo(s)) andW, (s)) is done in

O(mnzM(m(Iog m + logn) + log A))
word operations. Moreover the length of each element is bounded by
mn
mlog L7J +logm+1) +logA € O(m(log m + logn) + log A)

(cf. (4)). To compute all¥(y,s;), 0 <i < n, (for a particulars;,) we further needh? integer
additions, noting thab , (s;) is diagonal. The lengths of integers appearing during the calculation
are bounded by

mn
mlog L7J +log(m+ 1) +logn+logA € O(m(logm+ logn) + log A) ,

15

so the computation cost is
O(mré(logm + logn) + n?log A)

word operations.
Therefore evaluating’ (v, Sj), 0 < 1 < n, for a particulars; requires

O(mnzM(m(Iog m + logn) + log A))
word operations and, for af, 0 < s; < [3"],
0 (m2n3M (m(logm + logn) + log A))
or
O™~ (m*n®M(m + log A))

word operations are needed.

Now consider the determinant &(y;, sj). When evaluated gt = y; =i,0<1i <n, and
s=s;=j,0< | < |5, the absolute value af;; is bounded by
mn p\m mn j\ m-1 mn (\m
A +(Z) +rorn = amrvoen (| 5]) - @s)

By using this bound and Theorem 5, the computation cost of a partigtley's;) = detW (y, s))
is estimated to be

O~ (n*(m+log A) + n®(m + log A)?) ,
word operations, or equivalently,
O~ (m?n® + mn + n*log A + nlog® A)
word operations. Since there are+ 1) (| %" | + 1) different W (3, s;), in total,
O™~ (m®n® + m*n® + mr’log A + mrP log? A)

word operations are needed. Furthermore a bounikias, s;)| can be found from Hadamard’s
inequality (Theorem 4) and (15):

xouspl = nffamsna+n ([5))"] (16)

16

Theorem 9 can be used to estimate the computation cost in Step 2. A bound)fors;)|
has already been found in (16), which &' ‘in Theorem 9. Also, fn" and ‘n’ in Theorem 9
should be replaced hyand L%‘J respectively. The two arguments of the max function are

3| mn
|mo] m 2 5151
2H([Z)) +1]
and the right hand side of (16). Itis not obvious which is the bigger, but, taking their logarithms:

L) () 1]+ |5 o

€ O(mn(logm + logn)) ,
g logn+n (Iog A+ logim+ 1) + log(n + 1) + mlog L?J)

€ O(mn(logm -+ logn) + nlog A) ,

we can conclude that
log max{ZLnﬁnJ {(L%‘J)Z + 1} : L%kl, n? {A(m +1(n+1) (L?J)m}n}
e O(mn(logm+ logn) +nlog A) .
As a result the computation cost of Step 2 is
O<m2n3M(m nlogm+ logn) + nlog A)
+ M(m n(logm + log n))M(m n) (logm + log n))

word operations, or

O™ (m?n*M(mn+ nlog A) + M(mn)?)

word operations. Furthermore the lengths of the max-norms of the obtgifigeds) can be
bounded by (12), and hence we get

25 ool (L5])" 1) + Gromm
+n (IogA+ log(m + 1) + log(n + 1) + mlog L?J) + (L%\ + 1J) log 2
€ O(mn(logm—+logn) + nlog A) . (17)

The estimation of the computation cost of Step 3 uses Theorem 8. We have already found a
bound for logl| x (¥4,)|l In (17), which is the logarithm ofA’ in Theorem 8. Also note that

17

| Step | Cost \
Step 1| O~ (m?n®M(m + log A) + m®n® + m?n® + mrflog A + mn° log? A)
Step 2 O~ (m2n®M(mn-+ nlog A) + M(mn)?)

Step 3 O~ (mrM(mn+ nlog A) + M(n)?)

Table 1: Computation Costs of Steps in Determinant Computation (1)

| Step | Cost \
Step 1| O™ (m*n® + m*n® + m?n® + mrflog A + (m?n® 4+ mr?) log? A)
Step 2 O™~ (m*n® + m?n®log?® A)
Step 3 O~ (m*n® + mrPlog? A)
Total O~ (m*n® 4+ m?n® + mrflog A + m?n®log® A)

Table 2: Computation Costs of Steps in Determinant Computation (2) (Weh = 2n:
Classical method)

‘m’and ‘n’in Theorem 8 ard 3 | andn here, respectively. If we take the logarithms of the two
arguments of the max function, it is seen that they are in

O(nlogn)
and
O(mn(logm + logn) + nlog A) ,
respectively. We can conclude that Step 3 uses
O(m n3M(m n(logm + logn) + nlog A) + M(nlogn) M(n) log n)
word operations, or
O™~ (mr*M(mn+ nlog A) + M(n)?)

word operations.

The computation costs of those steps are summarized in Table 1. Also the computation cost
whenM(n) = 2n? andM(n) € O(nlognloglogn) € O™ (n) are shown in Table 2 and Table 3,
respectively. When the classical multiplication method is used, the most (asymptotically) costly
steps are the first step (for larggand the first and second steps (for lame For largeA, all

18

| Step | Cost \
Step 1| O~ (m®n® + m?n® + (m?n® + mnf) log A + mrP log? A)
Step 2 O~ (m®n* + m?n*log A)
Step 3 O~ (m?n* + mnflog A)
Total | O~ (m®n® + m?n® + (m?n* + mn®) log A + mrP log? A)

Table 3: Computation Costs of Steps in Determinant Computation (3) (When e
O(nlognloglogn) € O™ (n): Schénhage & Strassen method)

the steps can be expensive. The total cost is quartic, iextic inn and quadratic in log\. In
the case of the Schénhage & Strassen method, Step 1 is the most expensive one (also Step 2 for
largem) and the total cost is cubic im, sextic inn and quadratic in log\.

Remark: A similar estimate will result if Lagrange interpolations are done first toxget s;)
and then to gey (y, s) in the method proposed at the beginning of this section. O

Even though the proposed method is not claimed to be the most efficient method, it is
guessed that the method can be efficient in practice. Although the presentation of the method
relies on polynomial manipulation, actual implementation may only have to keep the values
of coefficients and only operations on numbers may be required, just as in [10]. Therefore
direct polynomial manipulation (or symbolic operations), which is expensive in practice, can be
avoided. Furthermore the method is suitable for parallelization since it is in line with the one
proposed in [10]. If one can prepare a number of processors, the computing time can greatly be
reduced.

There is a remark in [8, p. 44] regarding the determinant computation: ‘[...] Thus we
can already surmise that though the evaluation-interpolation method may work quite well on
completely dense polynomials of reasonably small degree and number of variables, other methods
will become superior as the matrix’s polynomials become more sparse.’ It can be true in general
(their surmise is based on the number of arithmetic operations, however), but the determinant
we consider here is in general a dense polynomial and therefore the interpolation approach
seems sensible. There is another remark in [3, p. 103]: ‘It seems that in the case of a matrix of
polynomials in several variables, Cramer’s method is clearly much faster than any method based
on Gaussian elimination. For the case of a matrix of integers or of polynomials in one variable,
Bareiss’ methotiseems to be the most efficient.” It is not clearly mentioned how costly those
methods are. If Bareiss's method is efficient for matrices of univariate polynomials, then we

1A variation of Gaussian elimination.

19

may use Bareiss’s method to compute/, s) and then carry out one Lagrange interpolation to
calculatey (y, s).

7 Computation of detd’(y, S)

Now we are in a position to estimate the computation cost of the determinant needed in the
guaranteed accurad,,-norm computation. Whe@(s) € RL, isgiven and all the coefficients

in G(s) are rational numbers (or finite decimals), then, by clearing all the denominators (or
decimal points), we can have all the element&d$) in Z(s). So letG(s) = (gij) € Z(s)™n

and suppose tha}; (s) are at mostl-th order. Writeg;; () = 3:: 8 wherenj; (s), d;j (S) € Z[s].

Then, de; (s), degd;; (s) < d. Further suppose thitj ||, lIdij |l < A.

Define

Oy, = Yl —=GT(9GO) € Z(y,9™".
We actually consider the computation cost of the determinant of

P(y.s) = (¢)) = T (. 9T(S)
= YT ©OTE) - T ()G (5)G(9T(s) (18)

where
TS = diag([T da®. J] de®.---, [] dkn(s>> e ZIs™ . (19)
1<k<m 1<k<m 1<k<m

First we note that
Ty, -5 = TP (y,-9T() = TPy, 9T() = &' (¥,9

and hence tha®’(y, s) is para-Hermitian with respect ® Also, noting thatT~(s)T(s) is
diagonal, we can see only diagonal element®afy, s) are polynomials iry (in fact, y2) and
that deg. ¢/ = 1 and deg. ¢;; = O fori # j. Further the(i, j)-element ofG(s) T (s) can be
written as

i [di® e Zsl, (20)

1<k<m

kA
which implies that

®'(y,s) € Zy,s|™"

20

and further that
detd'(y,s) € Z[y,s].

Therefore the form ofb’(y, s) is the same as that d@f (y, s) in Section 6. (Note thag? here
corresponds tgr in Section 6.) It should be pointed out that, since

detd’'(y,s) = detT™(s)-detT(s)-detd(y,s)

and deflT ~(s), detT (s) € Z[s], itcan be concluded that dét (y, s) is divisible by the numerator
of det®(y, s) and moreover that the quotient isifis]. The ‘extra’ factor will be removed when
computingh? (x) in (3) and does not cause a problem for #ig-norm computation (except for
the possible extra computation cost).

Remark: In fact it is sufficient to use
T = diag(LCM(cka(s)), LCM(dhe($)), -+ . LCM (Ghn(S)))

instead ofT (s) in (19), to clear denominators ih. So in the actual computation the abdvés)
should be used. Nevertheledgs) in (19) is the worst case of sudh(s) and it is suitable for
the purpose of the cost analysis. O

In order to use the result in Section 6, we need to find a bound for the deg¢ge(afith
respect ts) and also a bound fdf¢;; || . Firstly we consider the diagonal elementsTaf).
From (1)-(2),

deg, l—[dj(s) < md
1<k<m

and

< A™d+ 1™t

l—[dy;j (s)

1<k<m

Hence bounds for the degree and the moduli of the coefficients of each elemMEN(DT (s)

are 2nd and (md + 1) A?™(d + 1)2™-D respectively. Similarly, from (20), for each element
of G(s)T(s), the degree is bounded Iyd and the moduli of the coefficients are bounded by
A™(d 4+ 1)™1. They further imply that the degree and the moduli of the coefficients of each
element ofl ~(s)G™~(s)G(S)T (s) are bounded byrd andm- A™ (d+1)™1. A" (d4-1)™ 1 (md+

1) = m(md+ 1) A?™(d + 1)2™-D respectively.

As aresult a degree bound fof is

2md in s. (21)

21

The moduli of the coefficients qf{j ,

¢/, | .. is bounded by
m(md + 1) A>™(d 4 1)2™D | (22)
or its length log ¢/; | is bounded by

logm + log(md + 1) + 2mlog A + 2(m — 1) log(d + 1)
€ O(m(log A+ logd)) .

(Remember the definition df || ., for bivariate polynomials.)

Now we can use the result in Section 6. In SectiontGy, s) = () is in Z[y, s]"*",
deg vij <mand|y; || < A So the correspondence ¥f(y, s) in Section 6 andb’(y, s) in
this section is as follows:

Y(y, s) in Section 6 @' (y, s) in this section

<>
m <— 2md
n <— n
A <«— m(md+ 1)A*™d 4 1)2M-D
logA <— O(m(log A + logd))
If we use the classical method for multiplication, i%.(n) = 2n?, the result in Table 2 can

be used. Using the above correspondence, we can derive the following theorem, which is the
main result of this report.

Theorem 10 Let G(s) = (gij) € Z(s)™". Write gjj (s) = 2:: g wheren;; (s), dij () € Z[s].

Suppose thatlegn;; (s), degdij (s) < d. Further suppose thafn;j ||, lIdijllc < A. Then,

when the classical method for multiplication is employed, the computation of the determinant of
®'(y, s) as is defined in (18)-(19) requires

o~ <m2n5d {m?d® + nd + nlog A + m?d log® A}) (23)
word operations. Namely, the computation cost in terms of word operations is

4th order inm,
6th order inn,
4th order ind,
2nd order inlog A.

22

In the case of squar&(s), i.e., wherm = n, the computation cost afetd’(y, s) is estimated
to be

O™~ (n%d?(d? + log® A))
word operations and this is

9th order inn,
4th order ind,
2nd order inlog A.

Remark: Since||G(s)|l, = IGT(S)]l.,, We can usé' (s) to compute thel,.-norm of G(s).
When computing degree bound (21) and coefficient bound (22), we do not use the relationship
betweerm andn (e.g.,m < n, etc.), so we can just swap andn to get the computation cost

o~ (m5n2d {md+ n?d® + mlog A + n’d log?® A})

word operations. Judging from the powergwéandn, if G(s) € Z(s)™" is a wide matrix (i.e.,

m < n), itis in general sensible to first transpose it and then compute the determinant. The first
sentence of Theorem 10 should thus be reddet G(s) = (gij) € Z(s)™" wherem > n (if

G(s) is a wide matrix, us&’ (s)). &

8 Numerical Example

In this section the algorithm proposed in this report is demonstrated by a numerical example.
The purpose is to show how the algorithm works, not to show the validity of the computation
cost analysis.

We use the plant

s+1

% 0
G(s) = [51‘4 1]
s+3

23

S

X 0] 1] 2] 3] 4
o] 1] o] 3] 8] -15
211 | 24| 9 | 12 | 33 | 264
2 | 239 | 126 | 27 | 58 | -2529

Table 4: Values of aty?=y2 =i,s=5; = |

as an example. In this case,

d(y,s9) = y’l =G (5)G(s)

21 1
- | vt s s |
i 53 Y+ 35
[s2—4 O
Te = 0 s+3}’
D'(y,8) = T (9P(y,9)T(9)
[(s*—8s*+16)y? —s*+9s* — 17 —s?+4
= | —2+4 (—s2+9y2-1

So,m andn (in Section 6) aran = 4 andn = 2, respectively. Write((y, s) = detd’'(y, s).
Then, deg. x =2 and degy < 8 (ordeg. x < 4). The values that takes when evaluated at
y?=y?=i,0<i <2,s=s;=j,0<] <4are shown in Table 4.

Now the first Lagrange interpolation is carried out to obtaily, s). We use formula (9)
and, foryZ = 0,

1-168Qs? — 1)(s? — 2%)(s*> — 3?)(s* — 47)
—2.0-1344. $%(s? — 22)(s? — 3)(s? — 4?)
+2.(=3)-672-5%(s* — 1)(s* — 3)(s* — 4%
—2.(—8)-192. 5%(s? — 1)(s? — 2%)(s? — 4?)

2 (a2 2 2 2 2
oS = +2~(—15)-24-58(Z'—1)(s —22)(s? — 3
168Q;s® — 30s® + 273* — 82052 + 576)
— 4032s8 — 215 + 84s* — 645?)
+ 30728 — 21s® + 84s* — 645?)
— 720(s® — 14s® + 495* — 365?)
967680
— 9676862 + 967680

_ 2
= 967680 s+1.

24

Similarly we get

x(y,8) = —28*4178% - 24,
x(y2,8) = —2s°+30s* — 141s% + 239.
The second Lagrange interpolation yields

1- X0, 92— D(¥%2—2) = 2- x(y1, 9)Y2(¥2 =2 +1- x(y2,9y%(y? = 1)
21

x(y,s) =

(—+D*—3y2+2)
—2(—254 41752 —24) (y*— 2y %)+ (—2s°4+-30s* - 1415°4+-239) (y* —y?)
2
(— 2% 4 34s* — 17682 + 288y + (2s° — 38s* + 2122 — 3382 — 252 + 2
2
= (—s®+17s* — 8852 + 144)y* + (¥ — 195* + 1065 — 169y —* + 1.

Of course this coincides with the result obtained from a direct calculation.

9 Conclusion

This report has shown that the matrix determinant computation used for the guaranteed accuracy
£L-Norm computation can be carried out in polynomial time in the dimensions of the system, the
orders of transfer functions in the elements and the sizes of the coefficients of the polynomials.
It should be emphasized that the time is measured in terms of word operations.

The computation cost is 6th order in the larger dimension of the system, or 9th order in the
dimension in the case of a square system. Although it may be expensive, this is the cost required
for the guaranteed computation.

References

[1] J. Abbott, M. Bronstein, and T. Mulders. Fast deterministic computation of determinants of
dense matrices. IRroceedings of the International Symposium on Symbolic and Algebraic
Computation, ISSAC '9pages 197-204, Vancouver, British Columbia, Canada, July 1999.

[2] G. E. Collins. The calculation of multivariate polynomial resultar@surnal of the Asso-
ciation for Computing Machiner18(4):515-532, October 1971.

[3] J. H. Davenport, Y. Siret, and E. Tourni€@omputer Algebra: Systems and Algorithms for
Algebraic ComputationAcademic Press, London, 2nd edition, 1993.

25

[4] J.von zur Gathen and J. GerhalModern Computer AlgebraCambridge University Press,
Cambridge, 1st edition, 1999.

[5] J.von zur Gathen and J. GerhalModern Computer AlgebraCambridge University Press,
Cambridge, 2nd edition, 2003.

[6] W. M. Gentleman and S. C. Johnson. Analysis of algorithms, a case study: Determinants of
matrices with polynomial entrieACM Transactions on Mathematical Softwa2¢3):232—
241, September 1976.

[7] P. Giorgi, C.-P. Jeannerod, and G. Villard. On the complexity of polynomial matrix compu-
tations. InProceedings of the International Symposium on Symbolic and Algebraic Com-
putation, ISSAC 20Q3ages 135-142, Philadelphia, Pennsylvania, USA, August 2003.

[8] E.Horowitzand S. Sahni. On computing the exact determinant of matrices with polynomial
entries.Journal of the Association for Computing Machine??(1):38-50, January 1975.

[9] M. Kanno. Guaranteed Accuracy Computations in Systems and Con®biD thesis,
University of Cambridge, 2003.

[10] A. Marco and J.-J. Martinez. Parallel computation of determinants of matrices with poly-
nomial entries.Journal of Symbolic ComputatipB87(6):749—-760, June 2004.

26

