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Brief Papers

On Stability Margins of the Fiat Dedra Engine Model

Masaaki Kanno and Tai Cheng Yang

Abstract—In this paper, we evaluate the stability margin of a corresponding to a simplified engine model, in terms that some
Fiat Dedra engine model to explore possible applications of theo- yuncertain parameters in the original model are treated as fixed
retical achievements in the parametric approach to robust control in the simplified model. In Section IV, some newly developed

problems. The study is based on two versions of the model with thod lied to th iqinal and simolified dels t
uncertainties. One is the original model, which has a multilinear methods are applied to the original and simplimed models 1o

characteristic polynomial, while the other is an affine-linearized €valuated stability margins. These are: 1) Th@orm stability
model which is obtained by the affine linearization technique pro- margin of the simplified model is evaluated by the method de-

posed in this paper. By applying some newly developed theoretical yveloped by Chapellat and Bhattacharyya [4]. 2) Phenorm

tools in the literature, the stability margins of the affine-linearized stability margin of the simplified model is calculated using the

model in terms of the £, norm and the £; norm and the stability T kin—Polvak loci 110 dalso th thod d by Keel

margin of the original model in terms of the £, norm are obtained. sypkin—Polyak loci [10] and also the me O_ .propose. y ree
and Bhattacharyya [3], [7], [8]. 3) The stability margin of the

original Fiat Dedra engine model in terms of the norm is

estimated by the method proposed by Keel and Bhattacharyya

[71, (8-

Index Terms—Affine linear uncertainty, Fiat Dedra engine
model, multilinear uncertainty, parametric approach, robust
stability, stability margin.

|. INTRODUCTION Il. STABILITY MARGIN OF PLANTS WITH

R ECENTLY, there has been an increased interest in the PARAMETRIC UNCERTAINTIES

parametric approach to robust control problems. ManyGiven a polynomial with uncertain parametgrs, ¢) and a

theoretical tools have been developed, while the applicati . . . .
of these methods still lags behind. To stimulate applicatio%émmal parameter vectag, if the nominal system(s, go) is

tical robust stabilit bl the idl q ¢ und stable, one then may want to know the maximum allow-
a practical robust stability problem—ine idie speed contray, parameter variations under which the system will remain

of a spark ignition engine based on the Fiat Dedra eng'?c?bustly stable. To achieve this, the region of the uncertain pa-

model—has been used to demonsirate the application of SO eter vector may be gradually expanded until the polynomial

pee;’:);;ss\ll;ss [ﬁ]mlgj E)nttlr!en?\c,)vk,aut;e s?ggilllif;e;n:l’;srli(s |r: éh's{ﬁmily contains at least one unstable polynomial. The size of
L . X * 7 the parameter region at this point is defined as stability margin.
determine if the given system is robustly stable or not. Anoth b 9 b y 9

. . . . i ) S athematically, given a central, or nominal, parameter vector
important issue in the area is the stability margin, which indi-

catgs t_he size of allowable disturbance undgr whic_h the_ syst Végﬁ;%t;]: t?lzl?/;rgr;;?bv(v? gfgp‘f;;?éeét;hbﬁesgrb Q:E/wr?\?ggm
family is robustly stable. To follow the work in the direction o atisfies|q — || < p", i.e
application, we apply some methods developed by Chapel'?at 1~ % prolBe
and Bhattacharyya [4], Tsypkin and Polyak [10], and Keel, .
and Bhattacharyya [7], [8] to evaluate stability margins of thé @) =sup ip| p(s.q) is stable forallg, [lg—goll <p}. (1)
Fiat Dedra engine model. In addition, we propose a technique
affine linearization, to overcome some difficulties in evaluatin%
stability margins.

This paper is organized as follows. Section Il gives a brief

The norm|| - || can be any norms. Still, the main interests
ould be the/; norm and the,, norm

introduction to the problem of stability margin determination £, norm: |lg — goll2 =\/ i1 (@ — gi0)?
for plants with uncertain parameters. The multilinear charac- Lo norm: ||g — go oo = max |g; — giol
1<i<i

teristic polynomial for the original Fiat Dedra engine model is
presented in Section Ill. Then, a technique, affine Iinearizationh - -
is proposed and applied to obtain an affine linear polynomidinered = [a1 @ ... a]" andgy = [g10 ¢20 - - q]”.
It is generally convenient to sg} = 0 by shifting the origin
of the parameter space. Then, the left-hand side of (1) can
Manuscript received June 23, 1999. Manuscript received in final form M

31, 2002. Recommended by Associate Editor S. Farinwata. aé'imply be expressed as'. Also, it may be useful to define

M. Kanno is with the Department of Engineering, University of Cambridgdf€quency-dependent stability margin. From the zero exclusion
Cambridge, CB2 1PZ, U.K. (e-mail: mk303@eng.cam.ac.uk) theorem, it can be written as

T. C. Yang is with the School of Engineering and Information Technology,
University of Sussex, Brighton, BN1 9QT, U.K. (e-mail: taiyang@sussex.ac.uk)

Publisher Item Identifier 10.1109/TCST.2002.801801. p(w) =sup{p | p(jw,q) #O0forallg, |lg|| <p} (2

1063-6536/02$17.00 © 2002 IEEE



IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY, VOL. 10, NO. 5, SEPTEMBER 2002 691

under the assumption thats, 0) is stable. Naturally TABLE |
THE RANGE OF PARAMETER VARIATIONS (REPRODUCEDFROM [9])
p* = inf p(w). (3)
w Lower/Upper
ili i i i ili Bounds q a2 2] qs as g6 q7

Sta}bmtymargmc_Jete_rmlnatlonencompgssesarobuststal_alllty o B o et vl IR B
test, i.e., an examination of robust stability of the system in a oF 3.4329 | 0.1627 | 0.1139 | 0.5607 | 00208 | 4.4962 | 1.0000

I i ifti H H _ gio 2.7969 | 0.1327 | 0.0748 | 0.4073 | 0.0154 | 3.2605 | 0.5500
given region. By properly shifting and scaling, uncertain pa T e B B e wT

rameters can be normalized @s€ [—1; 1]. The robust sta-
bility test is then equivalent to the task of determining whether . .
the stability margin is greater than one. In fact, stability margi-ﬁhe uncertain parameters are normalized as

provides more information than just a “yes—no” answer to an or- = 4 — Gio ®)
dinary robust stability test problem. When value sets are used in k_qu

robust stability test, their graphical display shows the distanggerej; denotes a normalized uncertain parameter @nd
between the origin and the value sets. Nevertheless, it does not; 1].

correspond to the distance to instability in the parameter spacewe consider

On the other hand, the stability margin gives the direct indication

of the distance to the unstable region from the nominal system @1 =q0 = 2.7969, g2 = q20 = 0.1327

in terms of uncertain parameter variations. q3 =q30 = 0.0748, q4 = qq0 = 0.4073

g5 =qs0 = 0.0154, g5 = geo = 3.2605
g7 =¢& = 1.0000

I1l. CHARACTERISTIC POLYNOMIALS OF THE
FIAT DEDRA ENGINE MODEL

. . . . as a set of the parameters corresponding to the nominal charac-
Using state-space modeling technique, the Chara(:te“%té(r:istic polynomial. The roots of this polynomial are
3 .

polynomial of the Fiat Dedra engine model is obtained as
fourth-order polynomial with seven uncertain parameters [9] —0.5071 £0.17097, —0.1149, —0.0856

p(s,q) = s* + asz(q)s® + ax(q)s®> + a1(q)s + ao(g)  (4) which show that it is Hurwitz. The stability margin for pa-
rameters in this given nominal polynomial will be studied in

where :
Section IV-B.
a3(q) =k23q697 + @507 + g2 + k121 + k2a +0.05 Remark: Instead ofgzq, the valueqs is used forg;. The
a2(q) =k13q1q4q7 + k12q105q7 + (k12kas — k13kas) qigeq-  eason for this is discussed in Section IV-B. o
¥ 20597 + kasqaq6qr + G3q4q7 Ch_aracterlsnc Polynomial With Affine Linear CoefﬁmentUn—
. certainty: More often than not, a model of a practical system
= k22030607 + (k24 + 0.05) 3507 + kg r is complicated and uncertainties appear in multilinear or poly-
+ (k24 +0.05)g2 + ((k2a +0.05)k12 — k22k14)g1 nomial form in the coefficients of its characteristic polynomial.
a1(q) = (k11 — k1akas + k13 (kog + 0.05)) q1q47 Yet, by fixing some parameters in a polynomial with multi-
+ (k1z (Boq + 0.05) — kyakas) qrasqr Ilm_aar or polynomial yncertalnty, it can be changed ||;1to.an
affine linear polynomial and we call such a process “affine
+ (kizkor = kiikoz) 019607 + (k24 +0.05) 220507 inearization.” Affine linearization will result in a subset of
+ k21G2q6q7 4 (k24 + 0.05) g3q4q7 the original problem and its analysis will only lead to a
ao(q) = (k11 (k24 +0.05) — k14k21) q1qaqr. necessary condition check of the whole polynomial family.

However, there are effective methods for the robust stability
analysis of affine linear polynomials and, thus, an affine-lin-
Ko = [0.0081 0.1586 0.8072 —0.1202} . (5 earized polynomial is favorable in terms of computation cost.
0.0187 0.0848 0.1826 —0.0224 In addition, the information on an affine-linearized model can
The coefficients of the characteristic polynomial depend muprovide engineers with insight into the original problem they
tilinearly on the uncertain parameters. In [9], the operatir@f® facing. For instance, when bisection search is employed in

ki; denotes the elements of the controller gain matrix [2]

domain is defined as a parameter box, of)eox the stability margin determination, the stability margin of the
affine-linearized polynomial can be used as an initial upper
Q= {q = [ql 02 q3 04 G5 06 07]° | @i € bound.

Affine linearization of the Fiat Dedra engine model is

—. ot i=1.2 7 g) conducted here. An investigation into the coefficients in the
[qz‘7qz‘:|7L— P I . () .. . .
characteristic polynomial of (4) reveals that,df, g5, gs,

The upper bounds and the lower bounds are given in Table |. &@d ¢ are fixed, the coefficients are dependent affine linearly

use the same operating domain and calculate from these val@@sy:, g2, and g3. The fixed values

the nominal values and the weights of the uncertain parameters. - +

. . =q, = 0.2539, ¢5 = ¢ = 0.0208
That is, letg;o andk_g; denote the central value and the weight 7 q4_ 7 o q+
of ¢;, respectively. Then @ =qs = 2.0247, g7 = ¢7 = 1.0000

a +qt o at—q are used here, as they correspond to the “nominal” condition
kg = ™ 12

qio = 5 5
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Remark: In [2], the “nominal” operating point of the Fiat ™[

Dedra engine model is the most common operating point. ltdoc
not correspond to the set of the central values of the uncerts
parameters. S
Furthermore, for simplicity of calculation and uniform di- -
lation of the parameter box, the uncertain parameters are nc
malized. The uncertain polynomial then becomes the followin
simplified uncertain polynomial with coefficients that dependz s
affine linearly on three scaled uncertain parameters: 1

sl

p(s,§) =s* +0.9944s® + 0.3341s + 0.0424s + 0.0018 o

po(s)
+ (0.1009s> + 0.0532s% + 0.00845s + 0.0004) gy

~ o~ r

pi(s)

+ (0.0300s® 4 0.01255” + 0.00125) ¢» % 005 X - X5 oz 005
B Fig. 1. (- stability margin (solid) and ... stability margin (dash-dot) (affine
+ (0.003252 + 0.0003s) gs. (9) linear case)

-

PS‘ES)
o For anyw > 0, rank A(jw) = 2 and the size of the smallest
Remark: The same method of normalization of uncertaingrm solution of (10) is calculated by

parameters can be applied to the multilinear coefficient poly-

nomial given in (4). However, the resultant polynomial is  p(w) = HAT(jw) [A(jw)AT(jw)]ilb(jw)H ) (12)
lengthy and its coefficients are not directly used in the study 2

of stability margin. Therefore, the process of normalizationince the characteristic polynomial is monic and its degree
for the polynomial of (4) is not presented in this papes. Never drops irrespective gf

Naturally, letting p(00) = o0o. (13)

71=0,¢2=0,¢3=0 Plotting p(w) againstw, Fig. 1 is obtained (solid line and
e asterisk atv = 0). From this graph, the stability margin

. - . . t
the nominal characteristic polynomial is obtained. The roots fgdetermined as

this polynomial are
. p* = 4.40
—0.3871 £+ 0.04704, —0.1344, —0.0859
. o , . i and the critical frequency is = 0.
which show that it is Hurwitz. The stability margin for pa- gy 1in_polyak Loci: The Tsypkin—Polyak loci [10] suggest
rameters in this given nominal polynomial will be studied iBhat the frequency-dependeht, norm stability margin of the

Section IV-A. polynomial (9) is given by
IV. SOME STABILITY MARGINS OF THEFIAT DEDRA ENGINE (0) ::lm& =4.40 (14)
MODEL > i—1 |pi(0)]
A. Stability Margins of the Affine Linear Polynomial ‘Im (%)‘

Largest HypersphereThe stability margin in terms of th& plw) = max 0 <w<ee (15)

1<k<3 3 pi(jw)

) mardin in et : 2z [IM {57
norm, i.e., the largest hypersphere, is first investigated using the = pelsw)
method propoged in [4]. o _ p(0) :?!170(‘7—0@' = 0. (16)

The evaluation op(s, §) = 0, wherep(s, §) is given in (9), Doy pi(doo)]
ats = jw yields

The plot of p(w) is depicted in a dash-dot line in Fig. 1. The
Repi(jw) Repa(jw) Repg(jw)} L |:—Rep0(jw):| stability margin in terms of thé., norm is
1 Imp;(jw) Impa(jw) Imps(jw) q_¥ —Impo(jw) | )f =427

AGw) b(jw)

(10) atw = 0.036 [rad/s].
Forw = 0, the second row disappears and the size of theBoUnded Phase Theorentiere, we use the bounded phase
smallestd in terms of thel, norm that satisfies (10), i.e., thet"€orem [31, [7], [8] for thefo, norm stability margin estima-
stability margin ato = 0, is given by tion which can, in fact, _be applled_ tothe an_aly5|s of a more gen-
eral system, e.g, a family of quasipolynomials and a polytope of
|po(0)] polynomials. The theorem says that whether a value set contains
- Ip1(0) p2(0) p3(0)]||2 the origin can be determined by measuring the angle subtended

p(0) = 4.40. (11)
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angle
angle

Fig. 2. Phase differencesat= 1 (dash-dot) and at = 4.28 (solid) (affine  Fig. 3. Maximum phase differences againgaffine linear case).
linear case).

Q) The mapping theorem [11] sugged®jw, Q) €

at the origin by the vertices of the value set and checking if tlﬁp Q). These imply that

angle exceeds. Letwv;, i = 1,2, ..., be the vertices and

o pw) < p(w) < p(w) (19)
= <U> 0<o¢pt<a 17)
1

=1max arg
and that

vy

¢ :IHEH arg <Z—i> ,—m <@ L0, (18) p< P <P (20)
Then, the angle subtended at the originis givepby-¢~. The where p and 7 are the stability margins approximated by
stability margin is evaluated by expanding the range of uncertait{jw, Q) and Py (jw, ), respectively. Rather than calculating
parameterg; € [—e¢; €] and checking whether the maximumg*, p* is estimated fronp andp.

phase difference exceeds The upper boung can be found by increasingand exam-

The phase difference plotat= 1 against frequency is plotted ining that all the polynomials corresponding to the vertices of
in a dash-dot line in Fig. 2. Increasingthe maximum phase the@-box are stable. The estimation of the lower boymén be
differences corresponding to eacltan be obtained. The plot made by means of the bounded phase theorem. That is, expand
of the maximum phase differences againist shown in Fig. 3. the Q-box and calculate the maximum phase difference of the
It can be seen that the maximum phase differences exced images of the vertices of th@-box in order to confirm the ex-
¢ = 4.28. The phase difference plot at= 4.28 is shown in a clusion of the origin in the convex hull d?(jw, Q) throughout
solid line in Fig. 2. The stability margin is judged to be 4.27 anthe frequency.
the critical frequency is» = 0.036 [rad/s]. The results agree The gap between the lower bound and the upper bound may
with those obtained from the Tsypkin—Polyak loci. be greater than acceptable and the actual stability margin may

The first two methods used in this section only require fréot be evaluated within a desired precision. In that case, the
quency grid, while has to be gridded as well in the last method?perating domain can be divided into several boxes for better
Hence, the last method is less attractive in terms of compugproximation of the actual polynomial family and the stability
tional effort. Yet, the disadvantage can be offset by the fact tH&rgin may be evaluated within a desirable accuracy.

the method can dea' W|th more genera' SystemS. NOW, q7 of the Fiat Dedra engine model is fixed to the
“nominal” value due to the following reason. It is known that
B. Stability Margin of the Multilinear Polynomial the necessary condition of the robust stability of the uncertain
It has been discovered [5], [6] that under special circun‘?—mynoml"’II

stances, the., stability margin of a multilinear polynomial ;s o) = a,,(q)s™ + a,_1(g)s™ > + - - + ao(q)an(g) > 0
family can be obtained from subsets of an entire operating (21)
domain. In general, it is not easy to find the exact stability

margin directly. Therefore, a method is proposed to evaluate

the stability margin from a lower bound and an upper bound a;(q)>0,i=0,1,...,n forall g€ Q. (22)
[3], [7], [8]. The £, stability margin can be obtained in the
following way. As for the Fiat Dedra engine model

Let P(jw,Q), P(jw,Q), and Py (jw, Q) denote the value
set at the frequenay, the convex hull oP(jw, @), and the im-  @0() = (k11 (k24 4 0.05) — k14ko1)q1gagr = 0.0025¢1 gagr
ages of the vertices @, respectively. NaturallyPy (jw, Q) € (23)
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Fig. 4. Root set of the vertex polynomialseat= 2.34 (multilinear case).

(multilinear case).

whereq;, g4, andg; are unscaled. Since the nominal values of 4
q1, 94, andg; are all positive, it is necessary for the stability of
the polynomial that al{;, ¢4, andg; are positive. Nevertheless, ss
looking at the range of the unscaleg, [0.1 ; 1.0], it is easily

found that thers s only a small maugin far > 0. Caloulating S R

the margin forg; > 0
25

-2
1.0—=0.1
2

=1.22

angle
N

‘0 _ 0.141.0

is obtained. Consequently, the stability margin cannot be great
than 1.22. In fact, when the method described above is appli¢
to this seven uncertain parameter problem, the resultant stabili
margin is 1.22. Therefore, the problem turns out to be trivial ir os
spite of its appearance.

Recall thatg; = 1/J [9]. Therefore,g; — 0 corresponds 0
to the situation where the inertia momehgets tremendously

Fig. 5. Phase differences

1

2.34 (solid)
2{8 3

large. This will not be a real case. To exclude the unlikely sif_—,g. 6. Maximum phase differences againgmultilinear case).

uation and to make the task worth explorigg,is fixed to the
“nominal” value, i.e.gF = 1.0 [2] and the characteristic poly-
nomial with six uncertain parameters ¢, - . ., gg is analyzed.

V. CONCLUSION

In order to find the upper bound and the lower bound of the |n this paper, some newly developed methods of obtaining
stability margin, the)-box is dilated frome = 1. The root set stability margin are successfully applied to a practical model
of the vertex polynomials at= 2.34 is shown in Fig. 4 and itis of the Fiat Dedra engine. Affine linearization is also proposed
seen that one of the polynomials has roots with positive real pgstovercome some difficulties in computation burdens. For the
and becomes unstable. Therefore, the upper bound is tentativgfihe-linearized engine model, the stability margins in terms
given asp = 2.33. Itis also found that the angle subtended &t the ¢, norm and the’., norm are evaluated. For the original
the origin by the images of the vertices exceedst c = 2.34  gngine model with multilinear uncertainty, the norm stability
(Figs. 5 and 6). Therefore, the lower boungbis- 2.33, which  margin is estimated by “sandwiching” it with an upper bound

coincides with the upper bours

Consequently, there is no need to divide ¢oox for nar-
rowing the gap between the lower bound and the upper bound
and the stability margin is immediately determinedgés=
2.33. The coincidence suggests that the unstable polynomial
happens at one of the vertices of tBebox.

For the stability margin determination of a multilinear poly-
nomial, bothv ande are in general to be gridded. Also, tiebox (2]
may be divided. These imply the complexity of computation 3]
incurred by multilinear uncertainty.

and a lower bound.
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