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On Stability Margins of the Fiat Dedra Engine Model
Masaaki Kanno and Tai Cheng Yang

Abstract—In this paper, we evaluate the stability margin of a
Fiat Dedra engine model to explore possible applications of theo-
retical achievements in the parametric approach to robust control
problems. The study is based on two versions of the model with
uncertainties. One is the original model, which has a multilinear
characteristic polynomial, while the other is an affine-linearized
model which is obtained by the affine linearization technique pro-
posed in this paper. By applying some newly developed theoretical
tools in the literature, the stability margins of the affine-linearized
model in terms of the norm and the 2 norm and the stability
margin of the original model in terms of the norm are obtained.

Index Terms—Affine linear uncertainty, Fiat Dedra engine
model, multilinear uncertainty, parametric approach, robust
stability, stability margin.

I. INTRODUCTION

RECENTLY, there has been an increased interest in the
parametric approach to robust control problems. Many

theoretical tools have been developed, while the application
of these methods still lags behind. To stimulate application,
a practical robust stability problem—the idle speed control
of a spark ignition engine based on the Fiat Dedra engine
model—has been used to demonstrate the application of some
new results [1], [2]. Until now, the published work in this
respect was limited to the robust stability analysis, i.e., to
determine if the given system is robustly stable or not. Another
important issue in the area is the stability margin, which indi-
cates the size of allowable disturbance under which the system
family is robustly stable. To follow the work in the direction of
application, we apply some methods developed by Chapellat
and Bhattacharyya [4], Tsypkin and Polyak [10], and Keel
and Bhattacharyya [7], [8] to evaluate stability margins of the
Fiat Dedra engine model. In addition, we propose a technique,
affine linearization, to overcome some difficulties in evaluating
stability margins.

This paper is organized as follows. Section II gives a brief
introduction to the problem of stability margin determination
for plants with uncertain parameters. The multilinear charac-
teristic polynomial for the original Fiat Dedra engine model is
presented in Section III. Then, a technique, affine linearization,
is proposed and applied to obtain an affine linear polynomial
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corresponding to a simplified engine model, in terms that some
uncertain parameters in the original model are treated as fixed
in the simplified model. In Section IV, some newly developed
methods are applied to the original and simplified models to
evaluated stability margins. These are: 1) Thenorm stability
margin of the simplified model is evaluated by the method de-
veloped by Chapellat and Bhattacharyya [4]. 2) Thenorm
stability margin of the simplified model is calculated using the
Tsypkin–Polyak loci [10] and also the method proposed by Keel
and Bhattacharyya [3], [7], [8]. 3) The stability margin of the
original Fiat Dedra engine model in terms of the norm is
estimated by the method proposed by Keel and Bhattacharyya
[7], [8].

II. STABILITY MARGIN OF PLANTS WITH

PARAMETRIC UNCERTAINTIES

Given a polynomial with uncertain parameters and a
nominal parameter vector , if the nominal system is
found stable, one then may want to know the maximum allow-
able parameter variations under which the system will remain
robustly stable. To achieve this, the region of the uncertain pa-
rameter vector may be gradually expanded until the polynomial
family contains at least one unstable polynomial. The size of
the parameter region at this point is defined as stability margin.
Mathematically, given a central, or nominal, parameter vector

where the polynomial is stable, the stability margin
is defined as the largest where is stable for all which
satisfies , i.e.,

is stable for all (1)

The norm can be any norms. Still, the main interests
would be the norm and the norm

norm

norm

where and .
It is generally convenient to set by shifting the origin

of the parameter space. Then, the left-hand side of (1) can
simply be expressed as . Also, it may be useful to define
frequency-dependent stability margin. From the zero exclusion
theorem, it can be written as

for all (2)
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under the assumption that is stable. Naturally

(3)

Stability margin determination encompasses a robust stability
test, i.e., an examination of robust stability of the system in a
given region. By properly shifting and scaling, uncertain pa-
rameters can be normalized as . The robust sta-
bility test is then equivalent to the task of determining whether
the stability margin is greater than one. In fact, stability margin
provides more information than just a “yes–no” answer to an or-
dinary robust stability test problem. When value sets are used in
robust stability test, their graphical display shows the distance
between the origin and the value sets. Nevertheless, it does not
correspond to the distance to instability in the parameter space.
On the other hand, the stability margin gives the direct indication
of the distance to the unstable region from the nominal system
in terms of uncertain parameter variations.

III. CHARACTERISTIC POLYNOMIALS OF THE

FIAT DEDRA ENGINE MODEL

Using state-space modeling technique, the characteristic
polynomial of the Fiat Dedra engine model is obtained as a
fourth-order polynomial with seven uncertain parameters [9]

(4)

where

denotes the elements of the controller gain matrix [2]

(5)

The coefficients of the characteristic polynomial depend mul-
tilinearly on the uncertain parameters. In [9], the operating
domain is defined as a parameter box, or a-box

(6)

The upper bounds and the lower bounds are given in Table I. We
use the same operating domain and calculate from these values
the nominal values and the weights of the uncertain parameters.
That is, let and denote the central value and the weight
of , respectively. Then

(7)

TABLE I
THE RANGE OF PARAMETER VARIATIONS (REPRODUCEDFROM [9])

The uncertain parameters are normalized as

(8)

where denotes a normalized uncertain parameter and
.

We consider

as a set of the parameters corresponding to the nominal charac-
teristic polynomial. The roots of this polynomial are

which show that it is Hurwitz. The stability margin for pa-
rameters in this given nominal polynomial will be studied in
Section IV-B.

Remark: Instead of , the value is used for . The
reason for this is discussed in Section IV-B.

Characteristic Polynomial With Affine Linear Coefficient Un-
certainty: More often than not, a model of a practical system
is complicated and uncertainties appear in multilinear or poly-
nomial form in the coefficients of its characteristic polynomial.
Yet, by fixing some parameters in a polynomial with multi-
linear or polynomial uncertainty, it can be changed into an
affine linear polynomial and we call such a process “affine
linearization.” Affine linearization will result in a subset of
the original problem and its analysis will only lead to a
necessary condition check of the whole polynomial family.
However, there are effective methods for the robust stability
analysis of affine linear polynomials and, thus, an affine-lin-
earized polynomial is favorable in terms of computation cost.
In addition, the information on an affine-linearized model can
provide engineers with insight into the original problem they
are facing. For instance, when bisection search is employed in
the stability margin determination, the stability margin of the
affine-linearized polynomial can be used as an initial upper
bound.

Affine linearization of the Fiat Dedra engine model is
conducted here. An investigation into the coefficients in the
characteristic polynomial of (4) reveals that, if
and are fixed, the coefficients are dependent affine linearly
on and . The fixed values

are used here, as they correspond to the “nominal” condition
[2].
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Remark: In [2], the “nominal” operating point of the Fiat
Dedra engine model is the most common operating point. It does
not correspond to the set of the central values of the uncertain
parameters.

Furthermore, for simplicity of calculation and uniform di-
lation of the parameter box, the uncertain parameters are nor-
malized. The uncertain polynomial then becomes the following
simplified uncertain polynomial with coefficients that depend
affine linearly on three scaled uncertain parameters:

(9)

Remark: The same method of normalization of uncertain
parameters can be applied to the multilinear coefficient poly-
nomial given in (4). However, the resultant polynomial is
lengthy and its coefficients are not directly used in the study
of stability margin. Therefore, the process of normalization
for the polynomial of (4) is not presented in this paper.

Naturally, letting

the nominal characteristic polynomial is obtained. The roots of
this polynomial are

which show that it is Hurwitz. The stability margin for pa-
rameters in this given nominal polynomial will be studied in
Section IV-A.

IV. SOME STABILITY MARGINS OF THEFIAT DEDRA ENGINE

MODEL

A. Stability Margins of the Affine Linear Polynomial

Largest Hypersphere:The stability margin in terms of the
norm, i.e., the largest hypersphere, is first investigated using the
method proposed in [4].

The evaluation of , where is given in (9),
at yields

Re Re Re
Im Im Im

Re
Im

(10)
For , the second row disappears and the size of the
smallest in terms of the norm that satisfies (10), i.e., the
stability margin at , is given by

(11)

Fig. 1. ` stability margin (solid) and̀ stability margin (dash-dot) (affine
linear case).

For any , rank and the size of the smallest
norm solution of (10) is calculated by

(12)

Since the characteristic polynomial is monic and its degree
never drops irrespective of

(13)

Plotting against , Fig. 1 is obtained (solid line and
the asterisk at ). From this graph, the stability margin
is determined as

and the critical frequency is .
Tsypkin–Polyak Loci:The Tsypkin–Polyak loci [10] suggest

that the frequency-dependent norm stability margin of the
polynomial (9) is given by

(14)

Im

Im
(15)

(16)

The plot of is depicted in a dash-dot line in Fig. 1. The
stability margin in terms of the norm is

at [rad/s].
Bounded Phase Theorem:Here, we use the bounded phase

theorem [3], [7], [8] for the norm stability margin estima-
tion which can, in fact, be applied to the analysis of a more gen-
eral system, e.g, a family of quasipolynomials and a polytope of
polynomials. The theorem says that whether a value set contains
the origin can be determined by measuring the angle subtended



IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY, VOL. 10, NO. 5, SEPTEMBER 2002 693

Fig. 2. Phase differences at� = 1 (dash-dot) and at� = 4:28 (solid) (affine
linear case).

at the origin by the vertices of the value set and checking if the
angle exceeds. Let , be the vertices and

(17)

(18)

Then, the angle subtended at the origin is given by . The
stability margin is evaluated by expanding the range of uncertain
parameters and checking whether the maximum
phase difference exceeds.

The phase difference plot at against frequency is plotted
in a dash-dot line in Fig. 2. Increasing, the maximum phase
differences corresponding to eachcan be obtained. The plot
of the maximum phase differences againstis shown in Fig. 3.
It can be seen that the maximum phase differences exceedat

. The phase difference plot at is shown in a
solid line in Fig. 2. The stability margin is judged to be 4.27 and
the critical frequency is [rad/s]. The results agree
with those obtained from the Tsypkin–Polyak loci.

The first two methods used in this section only require fre-
quency grid, while has to be gridded as well in the last method.
Hence, the last method is less attractive in terms of computa-
tional effort. Yet, the disadvantage can be offset by the fact that
the method can deal with more general systems.

B. Stability Margin of the Multilinear Polynomial

It has been discovered [5], [6] that under special circum-
stances, the stability margin of a multilinear polynomial
family can be obtained from subsets of an entire operating
domain. In general, it is not easy to find the exact stability
margin directly. Therefore, a method is proposed to evaluate
the stability margin from a lower bound and an upper bound
[3], [7], [8]. The stability margin can be obtained in the
following way.

Let and denote the value
set at the frequency, the convex hull of , and the im-
ages of the vertices of , respectively. Naturally,

Fig. 3. Maximum phase differences against� (affine linear case).

. The mapping theorem [11] suggests

. These imply that

(19)

and that

(20)

where and are the stability margins approximated by
and , respectively. Rather than calculating

, is estimated from and .
The upper bound can be found by increasingand exam-

ining that all the polynomials corresponding to the vertices of
the -box are stable. The estimation of the lower boundcan be
made by means of the bounded phase theorem. That is, expand
the -box and calculate the maximum phase difference of the
images of the vertices of the-box in order to confirm the ex-
clusion of the origin in the convex hull of throughout
the frequency.

The gap between the lower bound and the upper bound may
be greater than acceptable and the actual stability margin may
not be evaluated within a desired precision. In that case, the
operating domain can be divided into several boxes for better
approximation of the actual polynomial family and the stability
margin may be evaluated within a desirable accuracy.

Now, of the Fiat Dedra engine model is fixed to the
“nominal” value due to the following reason. It is known that
the necessary condition of the robust stability of the uncertain
polynomial

(21)
is

for all (22)

As for the Fiat Dedra engine model

(23)
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Fig. 4. Root set of the vertex polynomials at� = 2:34 (multilinear case).

where and are unscaled. Since the nominal values of
and are all positive, it is necessary for the stability of

the polynomial that all and are positive. Nevertheless,
looking at the range of the unscaled, [0.1 ; 1.0], it is easily
found that there is only a small margin for . Calculating
the margin for

is obtained. Consequently, the stability margin cannot be greater
than 1.22. In fact, when the method described above is applied
to this seven uncertain parameter problem, the resultant stability
margin is 1.22. Therefore, the problem turns out to be trivial in
spite of its appearance.

Recall that [9]. Therefore, corresponds
to the situation where the inertia momentgets tremendously
large. This will not be a real case. To exclude the unlikely sit-
uation and to make the task worth exploring,is fixed to the
“nominal” value, i.e., [2] and the characteristic poly-
nomial with six uncertain parameters is analyzed.

In order to find the upper bound and the lower bound of the
stability margin, the -box is dilated from . The root set
of the vertex polynomials at is shown in Fig. 4 and it is
seen that one of the polynomials has roots with positive real part
and becomes unstable. Therefore, the upper bound is tentatively
given as . It is also found that the angle subtended at
the origin by the images of the vertices exceedsat
(Figs. 5 and 6). Therefore, the lower bound is , which
coincides with the upper bound.

Consequently, there is no need to divide the-box for nar-
rowing the gap between the lower bound and the upper bound
and the stability margin is immediately determined as

. The coincidence suggests that the unstable polynomial
happens at one of the vertices of the-box.

For the stability margin determination of a multilinear poly-
nomial, both and are in general to be gridded. Also, the-box
may be divided. These imply the complexity of computation
incurred by multilinear uncertainty.

Fig. 5. Phase differences at� = 1 (dash-dot) and at� = 2:34 (solid)
(multilinear case).

Fig. 6. Maximum phase differences against� (multilinear case).

V. CONCLUSION

In this paper, some newly developed methods of obtaining
stability margin are successfully applied to a practical model
of the Fiat Dedra engine. Affine linearization is also proposed
to overcome some difficulties in computation burdens. For the
affine-linearized engine model, the stability margins in terms
of the norm and the norm are evaluated. For the original
engine model with multilinear uncertainty, the norm stability
margin is estimated by “sandwiching” it with an upper bound
and a lower bound.
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