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Keywords: Computer algebra, interval methods, numerical sis do not solve the problem, since error estimates (rarely

methods, norm computations, controller synthesis. used in practice anyway) are themselves subject to round-
ing errors and can be erroneously computed [17].
Abstract 3. The role played by computer power in this issue is de-

) _ ] o ceptive. To repeat a calculation at successively higher
This paper is concerned with the problem of validation in the precisions does not give a guarantee on accuracy, even
context of numerical computations in control. We explore the  \\hen the solutions appear to converge [17]. In prac-
possibility of using cqmputer_algebra tools and interval meth-  ice increased computer power is often deployed instead
ods to compute solutions which have guarantees on accuracy, for more involved calculations. Thus, the problem is not
e.g. which are not subject to unknown errors due to rounding jikely to decrease as computer power increases (and might
or approximation. We demonstrate that this is possible for two  eyen increase), if the current calculation methods persist.
common norms of a linear systemzandL.) and}{z-optimal Lack of attention to accuracy of solution has quite possi-

coln tr(()jll_er syr?_thgss. Wei_:;urtt.her d|scusts fomthf the tljsues |fn— bly retarded the development of effective software tools in
volved In achieving a validation property for otner problems ot cetain areas. The exampleffcontrol is a case in point.

controller synthesis. . .
sy SIS 5. Although a ‘good engineer’ will always make checks
. whenever possible on final answers by contrasting meth-
1 Introduction ods to verify that they are ‘sensible’, there is an advantage

The aim of this work is to investigate the development of nu- if 0ne source of errors can be eliminated. Moreover, it
merical methods for systems and control which have a guaran- 1S ppssmle that computa}tlonal instabilities can prevent the
tee on accuracy. An end-product of such work is an algorithm ~ desired answer from being found at all.

which could be described as ‘infallible’ in the following sense: 6. Although a solution to an engineering problem which is
the user would specifg priori a tolerance as small as desired,  highly sensitive to the data is not an acceptable engineer-
and the computer would provide an answer which was guaran- ing solution, it is important not to confuse this idea with
teed to be accurate to the specified tolerance. A characteris- the numerical sensitivity of a particular algorithm. It is
tic feature of such work is the application of computer algebra  perfectly possible for a solution (e.g. a controller that one
tools and the avoidance of floating-point arithmetic. This direc- computes) to have low sensitivity to the given data (e.g.
tion is an established subject within computer science, as well Plant parameters) and to be a good engineering solution,
as a few application areas in science and engineering (see [1]), but for the algorithm one uses to compute the solution to

however it has not received attention so far in the control sys- be highly sensitive to the data. With such an algorithm
tems area. there is a clear difficulty in finding the solution one wants.

The currentstatus qudor numerical computation in control

s . ; . 'The above reasons are typical of the arguments that have been
which is based heavily on standard linear algebra routines yP d

hiah dfloati g hmetic. | bl i<fv the ri epted in computer science to justify research in ‘validated
igh-speed floating point arithmetic, is unable to satisfy the ri umerical algorithms’. The authors believe that these argu-

orous requirement on accuracy indicated above. At first sig ents also hold good in the context of computational methods
one might argue that a plant transfer function or state-spage . ontrol systems

realisation is never known with complete accuracy, and there- '

fore small (rounding) errors arising during calculation do n o~ ,
matter, and occasional larger errors are occupational haz dsA Couple of Software ‘Glitches’ for lllustra-
which rarely cause major problems. We claim that this is an tlOn

unsatisfactory view for the following reasons. Let us take the following numerical example system and try to

find its He-norm:

1. In the majority of cases the user has no way to determine .
£4+10"s+1

the extent to which errors have accumulated during calcu- G(s) = _ (1)
lation. In other words, moderate or large errors might go §+108s+1
unnoticed. By hand calculation, it is easy to show tH&(s)||,, = 10 (with

2. Standard approaches to error analysis in numerical anahe norm being achieved at= j). However,hinfnorm a Mat-



lab command to compute thE,-norm based on a quadraticsolutions with a guarantee. Although typical polynomial root
convergent method proposed in [3, 4], fails to converge asdlvers employ floating point arithmetic, there are some stan-
thus fails to find the norm: dard techniques which can be used to find roots with guaran-

teed accuracy. These will be discussed further in Section 6.

>> out = hinform(nd2sys([1 10°-7 1], The increasing interest in the use of symbolic methods in con-

1108 1 L2 ; X )
HINENORM iteration DID NOT [Com,erge » trol systems is |IIu_strated in [23, 2_4] ar_ld one ofavaru_ety of dif-
a lower bound for the norm is 10 ferent objectives in those works is to improve numerics. Some
out = 10.00000001492336 Inf 1.00000000000000 techniques such as Quantifier Elimination, Groebner bases and

Bernstein expansion have been applied to control problems,
An old-fashioned slow converging bisection method implevhich are illustrated in [11, 12, 27, 31]. It may be interesting to
mented by using existing Matlab functions converges and finpigint out that many of the articles in [12] are in fact related to
the Hw-norm between 10.2041 and 10.2042 (the lower boundsntrol problems. However, so far, there has been no attempt
is in fact above the actuéf.-norm): to devise validated numerical methods for control in the precise
sense of Krandick and Rump.
>> out = hinfnorm_bs(nd2sys([1 10°-7 1],
1108 1
out = 10.20414352416992 10.204£007446282)):)L 4 Number Systems
The manner of representing real numbers on a computer goes to
Let us take another example. Consider the synthesis problga heart of the issue of accuracy in numerical calculations. In

of finding the gap-optimal controller fa? = S—gﬁ—‘iz. Using the floating pointarithmetic there is a mantissa and exponent with

ncfsyncommand in Matlab: fixed length. The advantage is that arithmetical operations can
be computed in fast hardware. Nevertheless the limited accu-
>> P = nd2sys([1 -0.02], [1 0 1]); racy, i.e., sparseness, prevents one from finding a solution with
>> [Kopt, emax] = ncfsyn(P, 1) arbitrarily accuracy. More serious problems are that the float-
Kopt = 1.02019794021444 [ int system is not closed under arithmetical operations and
emax =  0.70000214192573 Ing point system 1s sedu fithmetical operations
>> [erl, er?] = emargin(P, Kopt) that the operations are neither associative nor distributive.
SJSIEM hag closed-right-half plane  poles This problem is recognised in computer algebra packages and
er2 = Inf  Inf 0 the rational number system is provided to do exact arithmeti-

cal operations. Even though the rational number system is not

The command returns a controller without any warnings, so th@MPlete, rational numbers satisfy the axioms for algebraic op-
user would believe that there were no difficulties in the compfifations and foran ordered field. Moreover, since rational num-
tation and that the controller is reasonably close to the actff&F'S areé dense in the reals, they are suitable for finding solu-

one. Nevertheless the controller is in fact NOT stabilising. 1ONS with arbitrary accuracy. These advantages are achieved
at the price of slower arithmetical operations and the need for

. ‘dynamic’ data structures to store numbers.
3 Previous Work y

As pointed out above the idea of ‘validated numerical met®& The Meaning of Guaranteed Accuracy
ods’ or ‘guaranteed accuracy’ is not new in the computer sci-

ence field. In [17], Krandick and Rump elucidate this idefy"én Solving a problem which finds a single real number (e.g.
as a search for algorithms with a rigorous specification, i.d»"N0rm, stability margin etc), a guaranteed accuracy algo-
methods that never fail. Several papers in [16] propose hybﬂ@m has to use a computer representable number system and
symbolic-numerical approaches to validation. The underlyifSC Produce an interval, whichis a pair of elements in the num-
idea is ‘to begin with infallible algorithms and to make therife" System used, to bound the true answer. The following for-
faster’ [5]. Conventional researches on numerical methods §1@! definition’is thus suggested.

‘to make fast algorithms less fallible’ [5]. We employ the forpefinition 1. Let f: R" — R be well-defined (not necessarily
mer idea to solve problems in systems and control with a gugbntinuous). Let A be some given algorithm taking the form of
antee. an executable procedure, which generates a well-defined func-
Two useful methodologies for validated numerical methodion A: (F",F) — F? whereF C R is a set of computer repre-
which are exploited in this work are interval methods and polgentable numbers andR,e) = (f, fr) where § < f;. Then, A
nomial root localisation. Interval methods have been usedifosaid to be a guaranteed accuracy algorithm for f o¥ef,
examine the existence of a solution to a system of equatidAganyP € F" and anye € F, € > 0, the true {(P) is contained

in an interval and further to find a sequence of intervals whiéhthe closed intervalf,, f;] and § — f, <e.

converge to a solution [18, 22] (a detailed treatment of some ) _ _
background theory on interval methods and applications c&hPUr approach, the rational number system is used i.en,

be found in [13, 21, 26]). Using rationals as the underlying definition will always be taken to If.

number system these methods have the potential to locali$e above definition is reminiscent of a standard approach to



computing thels-norm by a bisection method. However thergvhereP is the solution of the following Lyapunov equation
is an important difference to standard implementations using

floating point arithmetic in that it is mandatory that the state- AP+PA"+BB" = 0.

mentf(P) € [f,, f;] refers to the ‘true’ real numbet(P), and . . . _ )
not some approximation of it. We point out that the intentiolf} Standard approaches using floating point arithmetic round-

of the Matlab algorithms in Section 2 is to produce an inte}?9 error is inevitgble, no matter.how numericqlly stqble the
val containing the trué(..-norm, but there is a failure to do soroutines are. This problem can in fact be avoided since the
because of rounding errors Lyapunov equation is a set of linear equations. If rational num-

ber representations are employed, computer algebra can then
be used to calculate the exact solution using algebraic opera-
tions only.

Polynomial root solvers typically employ floating point arithwhen a function irRL; is given exactly (with rational con-
metic, and as such, do _not find _roots with guaranteed acetants), itsC,-norm can be computed with guaranteed accu-
racy. For a real polynomial there is a well-known approach tacy. Consider a (not necessarily stable) SISO SysHés) =

localise thereal roots using the method of Sturm chains [8h(s) whered(s) has no imaginary axis roots and the degree of

ichi i i S)
which is very suitable for a guaranteed accuracy |mplemenn ) is strictly smaller tha (s). Write d(s) — ds(S)da(s) where

tion. In computer algebra packages this is often implementg s) has only LHP roots anda(s) has only RHP roots, i.e., the
using Descartes’ rule of signs suggested in [2]. Several real rQ X ole/anti-stable factors. Then. since T

localisation algorithms using the above two methods and oth

6 Polynomial Root Localisation

ers are discussed and calculation speed comparisons are m jw) \* n(jw) n(—jw) n(jw)

in [6]. d(jw)) djo) — d(-jw) d(jo)

It is also possible to do root localisation for the complex roots n(—jw) n(jw)

of a polynomial with guaranteed accuracy via the Lehmer- = Os(— j0)0a(j0) Os(j0)da(— @)

Schur method [19], which examines the existence of roots of
a polynomial insid_e the unit circle. By a s_uitablc_a transformane £,-norm of G is equal to thé{,-norm Ofﬁ%_ Notice
tion one can examine whether a root is inside a circle centre @i (8)da( S

S a\ ™

bi | X d with bi dius. S s) has only LHP roots. The method of the previ-
an arbitrary oga_Uon and with an ar mary radius. Some metgyq paragraph along with interval matrix inversion [10] can be
ods of determining whether a rectangle in the complex pla

X . 9Fplied and a bound fdiG(s)||, can be obtained with ‘guar-
contains a root are suggested in [5, 7, 28, 30]. anteed accuracy’ in the sense of Definition 1. This method

Guaranteed root localisation methods will find an applicatiaman immediately extended to the MIMO case since, when
in the present work for various substeps in the algorithms ®s) = (Gij(9)), ||G(S)H§ =30 HGii (S)HE_

be developed. One example will be the problem of factoring a '
polynomial into a product of a stable factor and an anti-statée Computation of the Le-norm with Guaran-
factor with guaranteed accuracy. In particular for a monic poly-

nomial f(s) with no imaginary axis roots we will need a fac- teed Accuracy

torisationf(s) = fs(s) fa(s) wherefs(s) is monic and has only The standard approach to computing fhgnorm findsHy, the

left half plane (LHP) roots anéh(s) is monic and has only right HamiltonianA-matrix of ®y(s) = Y2l — GT(-9)G(s), and uses

half plane (RHP) roots. The approach used will find interva®ating point methods to find the smallgstor which Hy has

for the coefficients ofs(s) and fa(s) which may be as tight as no eigenvalues on the imaginary axis [3, 4]. It is well known

desired. One technique which will be used to successively ngat this last step is prone to numerical difficulties. Further-

row the intervals employs the Krawczyk operator [18], whichore, because of repetitive computation of eigenvalues and the

may be computationally more efficient than one which repafrgest singular values, the method does not seem suitable for

itively uses a guaranteed root localisation method. A detailgfiplementation in a computer algebra system. Unlikehe

algorithm may be found in [15]. norm computation, alternative approaches need to be taken to
construct an algorithm with guaranteed accuracy.

7 Computation of the Lo-norm with Guaran-  the following approach, which involves reducing the problem
teed Accuracy to real root localisation of a polynomial rather than an eigen-
a}/_alue test, does allow a guaranteed accuracy algorithm to be

We begin with a problem that is rather trivial to solve in a gu ; . ; ; .
9 P g Implemented. The idea is summarised in the following theo-

anteed accuracy way, namely th&-norm. Let us recall a
standard state-space method for its computation. Given a stabld-
systemG(s) — { AlB } | its F(,-norm can be calculated by Theorem 2 ([15]). Let G(s) € RL. and assume that it€.-
c|o0 normys = ||G(s)| ., is not achieved ats 0 or joo (=0 0r ),
i.e.,Yo > 0(G(0)) andye > 0(G(jo)) whereo(-) is the largest
singular value. Furthermore, leb,(s) = I — GT (—s)G(s)

IG(s)|, = +/trace(CPC) and denote ¢s?) = detd,(s). Moreover, write g(x) = %.



Let h,(x) be the square-free part of(x) considered as a poly- accuracy. In the feedback configuration in Figure 1, Ret
nomial in x andy. Then, ify > y., hy(x) has no root in be the plant to be controlled which is expressed by a strictly
—oo < X< 0. Further, h, (x) has a multiple rootin-o < x< 0. proper rational transfer function and let the transfer function
fromw = (dy dp)" to z= (y1 y2)" be denoted byly,(s). We
The candidate values for thee,-norm are theng(G(0)), consider the problem of minimisingTu.(s)||, over all stabil-
0(G(j»)) and the real rooty of the discriminant ofhy(x), ising controllersK. Write P = Py/Pp wherePy and Py are
which is a polynomial iny>. Note that all the candidate val-coprime polynomials. Le¥lp be a stable polynomial with pos-
ues can be found to desired accuracy via real root localisati@ve leading coefficient that satisfiédsMp = PyPn + P53 Po
methods mentioned in Section 6. The true one can be chvheref~(s) = f(—s) for a real polynomialf (s). The coeffi-
sen from the candidates using the Sturm test. Namely, gients ofMp can be found with guaranteed accuracy as men-
find the candidatg for which the corresponding upper boundioned in Section 6. Ther® = N/M, whereM = P5/Mp and
(resp. lower bound) gives no (resp. some) rooth@k) in N = Py/Mp, is a normalised coprime factorisation. Any sta-
—o0 < X< 0. In this way, using a computer algebra system, thgising rational controller can be factorisedkis=U /V such
Le-norm can be found with guaranteed accuracy in the senisatU,V € RH,, satisfy the Bezout identitylV — NU = 1. It
of Definition 1. is not difficult to deduce from [20, 25] that the denominators of
A Maple program implementing the above method found tfyéandV for the optimal controller arélp. Write U = Un/Mp
H{,-norm of (1) to be between 10 and.00001 in less than.a  @ndV = Vn/Mp. Uy andVy can be found from the Bezout
seconds on a 750 MHz Pentium. The bound indeed contaifigntity which is now equivalent to
the actual value. We illustrate the method on a further specific

_ M2
example. Thel,-norm of the plant in Example 4.2 in [32] POV —PUn - = M5 . @)
G(s) = When the order of the plaftis n, the degrees d¥, Mp and
20155425 025110 VW are alln and those oPy andUy are at mosh— 1. It can be

§710.3555+351+0.455+2.0  2(s+0.3555+3.515+0.455+2.0) shown that a pair dfly andVy that satisfy the degree require-
015405 24025410 ments and also (2) is unique and, moreouky,andVy thus

§440.3553+3512+0.455+2.0  2(s7+0.3553+3.515%+0.455+2.0) obtained yield the optimal controller. Equating the coefficients
f (2), a matrix equatio®hy, = by, is obtained wher&is a ma-
trix whose elements consist of the coefficient®elandPp, by

is a column vector that is composed of the coefficientspf

is found to be one of the roots of the following 12th order pol
nomial iny (or 6th order iny?) with integercoefficients:

1540583450598938837%° — 207008808434667878109% andVy andbp, is a column vector whose elements are polyno-
+57O7237953777309755328:3— 408294833968356609759@ mials in the coefficients dflp. Sis nonsingular and hence the
+ 8902009499296500000¢— 262805117500000000§9 elements obyp, or the coefficients dfly andVy, are expressed

as polynomials in the coefficients bfp. Since the coefficients
of Mp can be found with guaranteed accuracy, the coefficients

Via a real root localisation method the actiial-norm can be ¢y, andvy can also be found with guaranteed accuracy.
found with guaranteed accuracy. Specifying, say, sixteen dec-

imal places to be accurate in advance, fhgnorm was com- . .
puted to be 11.470396543268978% guarantee that this an—:l'0 Synthesis Problems with Guaranteed Accu-

swer is accurate to 16 places (which was obtained in less than  acy

+3240000000000000000

1.4 seconds)! The extension of Definition 1 to problems in which a vector

or matrix is sought is straightforward. In the previous section

9 Hy-optimal Controller Synthesis with Guar- bounds for the coefficients of the optimal controller were used
anteed Accuracy to guarantee accuracy. However in a controller synthesis prob-
] o ) lem there may be more desirable ways to specify ‘guaranteed

This section is devoted to the guaranteed solution 1o the NQEcracy’ than in terms of the coefficients of the controller's
malised J(>-optimal controller synthesis problem describeglansfer function or state-space realisation. Other possibilities
in [14] in the SISO case. We discuss how to obtain boung§jsht e to guarantee that the gap between the computed solu-

for the coefficients of the optimal controller with guaranteegh, and the true solution is less than some gigeno0, or that
the achieved performance measure is guaranteed to be within
dy i somee > 0 of the true performance measure.

However another difficulty arises when a discontinuity in the
solution of a synthesis problem occurs. A synthesis problem
V2 o in general consists of_ a multiple stage_procedqre. When the
K outputs from the previous stages are given as intervals rather
than exact values, the following stage inevitably has to work
with these intervals which is problematic in the case where a
Figure 1:H; -optimal Feedback Configuration discontinuity occurs nearby. Evidently basic questions relating




to continuity of solution need to be answered along with algo-

rithm development. The following example illustrates this.

Consider the plans% (see Section 2). With= 0, itis known
from [9] that the gap-optimal controller is equaltd.. When

[2]

€ # 0, the controller takes a different form. Using a specialiseqi3]
routine developed in Maple, the following formula was found

for the controller [15]:

—0s—oa+oc+1
S+a+c—o0

wheread is the positive (resp. negative) root of

_ 2¢2

—24e\/—1+2y/14+€2—1/1+€2 =0

for positive (resp. negatived, a = v —1+2v1+¢€2, b=

(1+sz)02+{

_ (oa-1b - P
V1+€e2andc= S The reason for the discontinuity in

[4]

[5]

[6]

this case is that the top singular value in the underlying Neha[ir]

extension problem is repeated whena: 0. Since the repeated

root occurs at an intermediate stage in the algorithm, the algo-
rithm needs to be able to cope with such a circumstance in a

guaranteed accuracy context.

The above situation in which an actual discontinuity of solutiorg]
occurs is likely to be the most challenging. Fortunately, many

synthesis procedures have continuity properties, ¥ gsyn-

thesis [9] and als6{. maximum entropy [29] solutions, which

[9]

makes them more promising for guaranteed accuracy solutions.

11 Concluding Remarks

[10]

The purpose of this paper is to raise the issue of validation in
the context of numerical computations in systems and control
and to show that progress can be made in some situations. g
range of problems for which this goal can be achieved in a

tractable way remains open.

For the problems investigated in this paper, numerical alg@2]
rithms based on floating-point arithmetic are commercially
available. A further target of this research is to tackle some
problems for which satisfactory algorithms using ordinary
floating-point arithmetic have proven difficult to develop. IflS]
is our view that the lack of reliable computational tools has

prevented some theoretical developments from being used

practice.

14

The issue of computational speed is bound up with this topic in
several ways, since guaranteed accuracy algorithms are likely
to be more expensive in computer time. However increasgg_‘]

computer power makes such methods a more practical pro

sition.
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