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Abstract

A controller change from a current controller which stabilises the plant to a new
controller, designed on the basis of an approximate model of the plant and with
guaranteed bounds on the stability properties of the true closed loop, is called a
safe controller change. In this paper, we present a model reference approach to the
determination of safe controller changes on the basis of approximate closed loop
models of the plant and robust stability results in the ν-gap.

1 Introduction

The identification of an unknown plant in practice always delivers an approx-
imate model. It is a recognised fact that the mismatch between the plant and
the identified model is influenced by the experimental conditions under which
the identification has been carried out. This fact has been broadly investigated
in the last ten years in the context of closed loop identification [6,9,11]; for a
recent overview on this area the reader is referred to [6].
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A typical closed loop identification scenario is as follows. Let P be an un-
known plant operating in feedback connection with a controller C0 and let
P0 be a model identified from data collected under such an operating condi-
tion. Let [P,C0] denote the closed loop system formed by the plant P and
the controller C0. Then, the model P0 is expected to give rise to a closed loop
system [P0, C0] whose closed loop transfer function is similar to the closed loop
transfer function of [P,C0] and in this sense P0 approximates P . However, it
is not guaranteed that for some different controller C1 (designed using P0) the
closed loop transfer functions of [P,C1] and of [P0, C1] would be similar. In
particular, even if [P0, C1] has very good stability properties, in general the
designer is not assured that also [P,C1] will have good stability properties. In
certain situations the closed loop system [P,C1] could even be unstable. Thus,
there are practical limitations applying in the redesign of controllers based on
identified models.
The observation in effect imposes a need for small controller changes [1–4,8],
where “smallness” is a concept which still needs definition. The rationale be-
hind this is intuitive: if the change between C0 and C1 is small enough, then
also the change between the closed loop transfer functions of [P,C0] and of
[P,C1] should be small. Thus in principle, by limiting the change in the con-
troller to be sufficiently small, one can limit also the degradation of the sta-
bility properties that can occur in the actual closed loop.
The quantification of small controller changes can be obtained by using the
framework of [12] where distances between controllers are measured by the
ν-gap, or pointwise in frequency by the chordal distance, and stability is mea-
sured by the stability margin (see Section 2). In particular, in this paper, we
denote by the term “safe controller change” a small controller change from C0

to C1 such that the new real closed loop system [P,C1] has some known guar-
anteed bound on its stability margin. In Section 3 safe controller changes will
be characterised in terms of chordal distance from the current stabilising con-
troller C0 under the assumption of some known worst-case bound on the error
between the closed loop transfer functions of the real system [P,C0] and of
the nominal system [P0, C0]. The idea of quantifying small controller changes
via the ν-gap metric for the purposes of adaptive control was introduced in
[3]. In [2,1,8], the idea has been applied to multiple model adaptive control
in order to assure safe switchings in a set of candidate controllers. In [4], safe
controller changes have been connected to the Youla-Kucera parametrisation
of all stabilising controllers.
The main contribution of this paper is a procedure to select safe controller
changes motivated by iterative identification and control methods (see e.g.
[11,13]). The general iterative identification and control method consists in
the following successive steps: (1) identification of a model of the plant from
data obtained from the current closed loop system; (2) controller redesign
based on the closed loop model; (3) update of the current controller with the
redesigned controller and evaluation of achieved performance. If the design
criterion assumed in step (2) offers no a priori robustness guarantee it is not
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guaranteed that the designed controller will stabilise the real plant in step
(3) (recall for example the case of an H2 criterion which can lead to closed
loop margins that are arbitrarily small [5]). On the other hand, before imple-
menting the new controller on the plant, the designer would like to be assured
for stability. If the new controller is a considerable distance away from the
current stabilising controller the above discussion on safety implies that the
designer should not implement this new controller directly on the plant. Obvi-
ously, there exists the possibility to reduce the size of the controller change to
a safe/small change. However, care must exercised, since the designer would
like, at the same time, to maintain some portion of the performance improve-
ment that was achieved by the controller calculated at step (2).
In this paper we approach the problem of finding a safe controller change,
from C0 to C1, which also achieves performance improvement. Different defi-
nitions of performance improvement will be considered. Let us denote by C∗

the desired controller designed at step (2) using the model P0. In Section 4,
we define performance improvement in terms of nominal closed loop transfer
functions as the condition that the mismatch between the closed loop transfer
functions of [P0, C1] and of [P0, C∗] is smaller than the mismatch between the
closed loop transfer functions of [P0, C0] and of [P0, C∗]. In Section 5 we extend
performance improvement to the real closed loop [P,C1]. As will be shown,
the identification assumptions needed to obtain the improvement of Section 4
are less strict than those for the improvement considered in Section 5.
The safe controller C1 is then obtained as the solution of a suitable model
reference control problem which is stated in Section 4. An important point in
the formulation of our model reference problem is that we will explicitly take
into account the fact that the method used to calculate C1 could also not de-
liver the exact solution to the problem, typically because of a controller order
reduction step which replaces a controller of excessive order exactly solving
the model reference problem by a controller of acceptable order approximately
solving the problem.
Let us remark that, since the procedure proposed in this paper is not a com-
plete design method but is intended to be used in order to introduce safety in
more general iterative identification and control design methods, it is not clear
at this stage which measure of performance improvement is more convenient
to adopt, whether improvement in nominal performance or guaranteed im-
provement on the real plant with more strict identification requirements. The
main point is, in fact, to have the guaranteed stability margin for [P,C1]. The
new controller can then be tested on the real plant and iteratively redesigned
if necessary.

2 Vinnicombe’s tools for robust stability

In this section, we introduce the notation and we recall some robust stability
results from [12].
We shall consider MIMO linear time-invariant systems. In the notation, we
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Fig. 1. The feedback configuration.

will not distinguish between the continuous-time and the discrete-time cases.
The frequency response of a transfer function T is indicated by T (ω). If T is
a continuous-time transfer function it should be read T (ω) = T (jω). If T is a
discrete-time transfer function then T (ω) = T (ejω). The frequency dependent
maximum singular value of a matrix transfer function T is denoted by σ̄(T, ω).
The transfer function of the plant is denoted by P . The feedback connection
of the plant P and a controller C is depicted in Fig. 1. We denote by T (P,C)
the closed loop transfer function from [v2 v1]

T to [y u]T . It is given by

T (P,C) =







P

I





 (I − CP )−1[−C I] .

The results on theorems below provide sufficient conditions on the modifica-
tion of a current stabilising controller to a new controller with guaranteed
preservation of stability.
Firstly, we introduce the following definitions.

Definition 1 (Condition C) Two continuous-time transfer functions C0 and
C1 satisfy Condition C if

det(I + C1(ω)∗C0(ω)) 6= 0 ∀ω and wno (det(I + C∗
1C0)) + η(C0) − η̄(C1) = 0,

where wno(.) indicates the winding number of the Nyquist diagram of a scalar
transfer function, evaluated on a contour along the imaginary axis and in-
dented to the right around any pure imaginary pole, and η(C) (η̄(C)) is the
number of open (closed) right-half-plane poles of C.

The statement of Condition C for discrete-time transfer functions is similar but
with the obvious modifications in the wording when considering the z-plane
instead of the s-plane.

Definition 2 (Chordal distance) The chordal distance κ(C0, C1, ω) is given
by

κ(C0, C1, ω) = σ̄
(

(I + C1C
∗
1 )−

1

2 (C1 − C0) (I + C∗
0C0)

− 1

2 , ω
)

.
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Definition 3 (Frequency dependent stability margin) The frequency
dependent stability margin of the stable closed loop system [P,C] is given by

ρ(P,C, ω) = σ̄ (T (P,C), ω)−1
.

If the closed loop system [P,C] is unstable, we set ρ(P,C, ω) = 0.

Then we have the following results.

Theorem 1 Let [P,C0] be internally stable and

κ(C0, C1, ω) < ρ(P,C0, ω) ∀ω .

Then the closed loop system [P,C1] is internally stable if and only if the pair
C0, C1 satisfies Condition C.
Proof See [12, page 136]. 2

Theorem 2 Let [P,C0] be internally stable and C0, C1 satisfy Condition C.
Then

ρ(P,C1, ω) ≥ ρ(P,C0, ω) − κ(C0, C1, ω) .

Proof See [12, page 137]. 2

The proposition below links the modifications of the controller to the corre-
sponding changes which occur in the closed loop transfer function.

Theorem 3 Let [P,C0] and [P,C1] be internally stable. Then

κ(C0, C1, ω) ≤ σ̄ (T (P,C0) − T (P,C1), ω) ≤ κ(C0, C1, ω)

ρ(P,C0, ω)ρ(P,C1, ω)

Proof See [12, page 159]. 2

3 Initial assumptions

We assume that the exact transfer function of the plant P is unknown. How-
ever, we assume that the plant is operating in feedback connection with a
known stabilising controller C0 (as a particular case, if the plant is stable, this
controller could be C0 = 0) and that, on the basis of data obtained in this
operating condition, a model P0, which approximates P in a closed loop sense,
has been identified. More precisely, we make the following assumptions.

Identification Assumptions

A.1 The controller C0 stabilises both P0 and P .
A.2 P0 is such that

σ̄ (T (P,C0) − T (P0, C0), ω) ≤ εωρ(P0, C0, ω) ∀ω
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where εω is known and 0 ≤ εω < 1.

In Assumption A.2 we basically require that the modelled closed loop [P0, C0]
captures the approximate frequency domain behaviour of the real closed loop
[P,C0]. If, from the identification procedure, one obtains a bound, say ∆ω, di-
rectly on the closed loop error σ̄ (T (P,C0) − T (P0, C0), ω), then, since
ρ(P0, C0, ω) is known, εω can be calculated as εω = ∆ω

ρ(P0,C0,ω)
. Notice that

a poorly designed C0 will generally lead to a small value of ρ(P0, C0, ω) for
some ω. Poor designs then require better modelling of P by P0 for the as-
sumptions to be fulfilled, by forcing a smaller value for the left side of the
inequality.
In the redesign of the controller, our first objective is safety. We wish to obtain
a controller C1 which is guaranteed to realize a certain level of the stability
margin when it is connected to the unknown plant P .
We have the following result.

Lemma 4 Let P0, P and C0 satisfy Assumptions A.1-A.2 and assume that
C1 is a new controller that also stabilises P0, then the condition

κ(C0, C1, ω) ≤ (αω − εω) ρ(P0, C0, ω) ∀ω (1)

guarantees
ρ(P,C1, ω) ≥ (1 − αω) ρ(P0, C0, ω) ∀ω, (2)

where αω ∈ [εω, 1) ∀ω is a pointwise upper bound on the percentage allowable
degradation in the robust stability margin of [P,C1] when compared to that of
[P0, C0].
Proof See Appendix.

In the reminder of the paper we use the term safe controller change to denote
a controller change that satisfies (1).

4 Safe reference models

We now assume that a controller C∗ has been designed using the model
P0 through some design method, and that the closed loop transfer function
T∗ = T (P0, C∗) has the desired performance. We also assume that the con-
troller C∗ is sufficiently different from C0 that C1 = C∗ does not satisfy the
inequality (1). Therefore, it is not safe to implement directly C∗ on the real
plant. In this section, we define, on the basis of the knowledge of T∗ and the
identification assumptions, a simple model reference control problem, with
intermediate reference model T∗,1, such that the solution controller C1 (a) sat-
isfies the safety condition (1) and (b) gives a nominal closed loop [P0, C1] with
better performance than [P0, C0]. In our derivation, we will also make use of
the following assumption which allows some extra freedom when solving the
intermediate model reference problem involving T∗,1. This extra freedom will
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be used later for controller order reduction purposes. After the assumption,
we describe how T∗,1 may be chosen.

Control Design Assumption

A.3 Given a temporary intermediate reference model T∗,1 and a nominal plant
transfer function P0, the controller C1 is designed in such a way that [P0, C1]
is stable and the following inequality is satisfied:

σ̄ (T (P0, C1) − T∗,1, ω) ≤ cω σ̄ (T (P0, C0) − T∗,1, ω) ∀ω

where cω ∈ [0 , 1] is known.

This assumption is not very restrictive: it is trivially satisfied by choosing
cω = 1 and C1 = C0. For cω < 1, it says that T (P0, C1) is closer to T∗,1 than is
T (P0, C0), i.e. C1 does a better job of achieving a closed-loop like T∗,1 than C0.
As will be shown in Section 6, it is possible to choose T∗,1 in a parameterised
way so that there exists a controller C∗,1 such that T∗,1 is exactly attainable
for the model P0, i.e. T∗,1 = T (P0, C∗,1). We remark that there are practical
advantages in considering situations where T∗,1 6= T (P0, C1). For instance, it
may well be the case that a low order controller C1 is desired and the degree
constraint makes impossible the exact achieving of T∗,1. One could initially
find C∗,1 with T∗,1 = T (P0, C∗,1) and then find a low order approximation C1

of C∗,1, which would need to obey the inequality of Assumption A.3.
We are now in the position to state the characteristics of those T∗,1 for which
safety in controller change and nominal performance improvement are guar-
anteed.

Theorem 5 Let P0, P and C0 satisfy Assumptions A.1-A.2 and γω ∈ [cω, 1].
If T∗,1 satisfies the following two conditions:

σ̄ (T∗,1 − T (P0, C0), ω) ≤ αω − εω

1 + cω

ρ(P0, C0, ω) ∀ω (3)

σ̄ (T∗,1 − T∗, ω) ≤ γω − cω

1 + cω

σ̄ (T (P0, C0) − T∗, ω) ∀ω (4)

then a controller C1 that satisfies Assumption A.3 satisfies also the inequality
(nominal performance improvement condition)

σ̄ (T (P0, C1) − T∗, ω) ≤ γωσ̄ (T (P0, C0) − T∗, ω) ∀ω (5)

and the safety condition (1).
Proof See Appendix.

The inequality (5) is a bound on nominal performance improvement between
T (P0, C0) and T (P0, C1).
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5 Guaranteed performance improvement for the unknown plant

In this section, we present additional conditions under which the unknown
physical closed loop system [P,C1], once again with the guaranteed bound on
its stability margin given by (2), also offers guaranteed performance improve-
ment in the sense of moving T (P,C1) closer to T∗ than T (P,C0), similarly
to what was previously achieved for T (P0, Ci) in equation (5). Such a result
comes at some cost; not surprisingly, the quality of identification has to be
strengthened. It will be shown that, provided some additional inequalities in
the identification assumptions hold, there exist some choices of parameters αω

and γω such that the controller C1 designed as required in Theorem 5 attains
also performance improvement on the unknown plant P .
In this section, we consider two cases: improvement of the worst-case perfor-
mance and guaranteed performance improvement for the unknown plant.
To start with, we have the following result.

Lemma 6 Suppose the hypotheses of Theorem 5 are fulfilled, including the
inequality conditions in the theorem statement, and let ηω ∈ (γω, 1]. If the
following additional inequality holds

αω ≤ 1 +
εω

2
−
√

√

√

√

ε2
ω

4
+

1

ηω − γω

εω

ρ(P0, C0, ω)

1

σ̄ (T (P0, C0) − T∗, ω)
∀ω (6)

then the controller C1 satisfies also the inequality

σ̄ (T (P,C1) − T∗, ω) ≤ ηωσ̄ (T (P0, C0) − T∗, ω) ∀ω . (7)

Proof See Appendix.

Then, in order to quantify improvement of worst-case performance, notice that
for the initial controller C0, due to Assumption A.2, we have

σ̄(T (P,C0) − T∗, ω) ≤ σ̄(T (P0, C0) − T∗, ω) + εωρ(P0, C0, ω)

which can be written also as

σ̄(T (P,C0) − T∗, ω) ≤ η̄+
ω σ̄(T (P0, C0) − T∗, ω) (8)

η̄+
ω = 1 +

εωρ(P0, C0, ω)

σ̄(T (P0, C0) − T∗, ω)
.

The above inequality characterises the worst case performance in the case of
controller C0. Therefore, we state that C1 attains improvement of the worst
case performance if the inequality (7) is satisfied for some ηω ≤ η̄+

ω .
Notice now that by using a lower bound on σ̄ (T (P,C0) − T∗, ω) we can obtain
also guaranteed performance improvement for the unknown plant. In fact we
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can write

σ̄(T (P,C0) − T∗, ω) ≥ σ̄(T (P0, C0) − T∗, ω) − εωρ(P0, C0, ω)

which can be written also as

σ̄(T (P,C0) − T∗, ω) ≥ η̄−
ω σ̄(T (P0, C0) − T∗, ω) (9)

η̄−
ω = 1 − εωρ(P0, C0, ω)

σ̄(T (P0, C0) − T∗, ω)
.

Then, assuming that (7) is satisfied for some ηω, from (7) and (9) we obtain

σ̄ (T (P,C1) − T∗, ω) ≤ ηω

η̄−
ω

σ̄ (T (P,C0) − T∗, ω) ∀ω (10)

Notice that on the right hand side of the above inequality now the unknown
plant P appears instead of P0. Therefore, we can state that C1 attains guar-
anteed performance improvement for the unknown plant if the inequality (7)
is satisfied for some ηω ≤ η̄−

ω . In this case the performance improvement is
measured by (10).
In the sequel, we derive conditions under which inequality (6) is satisfied, and
therefore (7) is also true, with ηω ≤ η̄+

ω and ηω ≤ η̄−
ω respectively. Obviously

conditions for the first case are less strict than conditions for the second case
since η̄−

ω ≤ η̄+
ω .

We have the following results.

Theorem 7 Let P0, P and C0 satisfy Assumptions A.1-A.2. If the following
additional inequality holds

1 − εω ≥ εω

ρ(P0, C0, ω)

1

[σ̄(T (P0, C0) − T∗, ω) + εωρ(P0, C0, ω)]
∀ω (11)

then there exist: γω ∈ [0, 1] that satisfies

γω ≤ η̄+
ω − εω

1 − εω

1

ρ(P0, C0, ω)

1

σ̄(T (P0, C0) − T∗, ω)
∀ω , (12)

cω ∈ [0, γω], ηω that satisfies ηω ≤ η̄+
ω and

ηω ≥ γω +
εω

1 − εω

1

ρ(P0, C0, ω)

1

σ̄(T (P0, C0) − T∗, ω)
∀ω , (13)

and αω ∈ [εω, 1) that satisfies inequality (6) such that the controller C1 de-
signed under the hypotheses of Theorem 5, including the inequality conditions
in the theorem statement, satisfies also the inequality (7) and hence C1 guar-
antees improvement in worst-case performance.
Proof See Appendix.
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Theorem 8 Let P0, P and C0 satisfy Assumptions A.1-A.2. If the following
additional inequality holds

1 − εω ≥ εω

ρ(P0, C0, ω)

1

[σ̄(T (P0, C0) − T∗, ω) − εωρ(P0, C0, ω)]
∀ω (14)

then there exist: γω ∈ [0, 1] that satisfies

γω ≤ η̄−
ω − εω

1 − εω

1

ρ(P0, C0, ω)

1

σ̄(T (P0, C0) − T∗, ω)
∀ω , (15)

cω ∈ [0, γω], ηω that satisfies ηω ≤ η̄−
ω and (13), and αω ∈ [εω, 1) that satis-

fies inequality (6) such that the controller C1 designed under the hypotheses
of Theorem 5, including the inequality conditions in the theorem statement,
satisfies also the inequality (7) and hence C1 guarantees performance improve-
ment for the unknown plant given by (10).
Proof See Appendix

Conditions (11) and (14) can be seen as an additional restriction on the As-
sumption A.2. It can be easily seen that they are upper bounds on εω which
are satisfied for εω sufficiently small.
Notice from (14) that for performance improvement on the real plant one
needs σ̄(T (P0, C0) − T∗, ω) − εωρ(P0, C0, ω) > 0, i.e. the distance from the
desired target must be greater than the identification error. If this is not the
case only improvement in worst case performance can be guaranteed.

6 A set of safe reference models

In this section, we will consider a set of possible reference models T∗,1 that
satisfy (3) and (4). To this end, let T∗,1 be parameterised as:

T∗,1 = B T∗ + (1 − B)T (P0, C0) (16)

where B ∈ RH∞ is a SISO transfer function.
Notice that for any T∗,1 given by (16) there always exists a controller C∗,1 such
that T∗,1 = T (P0, C∗,1). Indeed, we have the following result.

Theorem 9 Given a reference model T∗,1 in the form (16), there exists a
controller C∗,1 such that T (P0, C∗,1) = T∗,1. Defining S0 = [I − C0P0]

−1 and
S∗ = [I − C∗P0]

−1, this controller C∗,1 is given by:

C∗,1 = [S0 + B(S∗ − S0)]
−1[S0C0 + B(S∗C∗ − S0C0)] . (17)

Proof See Appendix.
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Using parameterisation (16), the safety and nominal performance improve-
ment conditions (3) and (4) on T∗,1 can be translated into conditions on B.
Indeed, we obtain that (3) and (4) are respectively equivalent to

|B(ω)| ≤ αω − εω

1 + cω

ρ(P0, C0, ω)

σ̄ (T∗ − T (P0, C0), ω)
∀ω (18)

|1 − B(ω)| ≤ γω − cω

1 + cω

∀ω . (19)

In this section, we will illustrate how transfer functions B ∈ RH∞, which
satisfy (18) and (19), can be constructed.
To start with, let us denote E and F two scalar transfer functions with
E,E−1 ∈ RH∞ and F, F−1 ∈ RH∞ such that |E|−1 and |F |−1 approximate
from below the right hand sides of (18) and (19) respectively. Notice that such
transfer functions can be easily found with standard techniques. Moreover, by
increasing the order of the transfer functions, the approximation errors can be
made arbitrarily small.
Now, we have that (18) can be equivalently rewritten as |B(ω)| ≤

∣

∣

∣E−1(ω)
∣

∣

∣ ∀ω

which is equivalent to ‖BE‖∞ ≤ 1 . In a similar way, inequality (19) can be
equivalently rewritten as ‖F − FB‖∞ ≤ 1 . Then the following condition,
while not equivalent to (18) and (19), certainly implies (18) and (19):

∥

∥

∥

∥

∥

∥

∥







0

F





+







E

−F





B

∥

∥

∥

∥

∥

∥

∥

∞

≤ 1 . (20)

Any B ∈ RH∞ satisfying (20) defines a T∗,1 by (16) for which a safe, nominal
performance improving C∗,1 can be found. It turns out that the problem of
finding all the B satisfying (20) is a model matching problem which can be
solved as shown in [7]. The solution, when it exists (see condition (21) below),
is provided in the following theorem.

Theorem 10 Let E, F be scalar transfer functions with E,E−1 ∈ RH∞,
F, F−1 ∈ RH∞ be such that

|E(ω)|−2 + |F (ω)|−2 > 1 ∀ω . (21)

Then, the set of all transfer functions B ∈ RH∞ satisfying (20) is given by

B = B1B
−1
2 ,







B1

B2





 = Ξ−1







U

1





 with U ∈ RH∞, ‖U‖∞ ≤ 1, (22)

where Ξ is a (2 × 2) unimodular transfer function matrix in RH∞ with a
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unimodular (11)-element that satisfies





















E

−F













0

F







0 1















∼







I2 0

0 −1



























E

−F













0

F







0 1















= Ξ∼







1 0

0 −1





Ξ. (23)

Proof See Appendix.

The following comments are in order.
The condition (21) for the existence of the parameterisation (22) is a constraint
on the choice of γω and cω given εω and αω. It can be written as:

γω ≥ cω + (1 + cω)

√

√

√

√

[

1 − (αω − εω)2

(1 + cω)2

ρ(P0, C0, ω)2

σ̄ (T∗ − T (P0, C0), ω)2

]+

∀ω (24)

where [ · ]+ denotes max(0, ·).
Now, in the case of nominal performance improvement, one has to select γω ∈
[cω, 1]. Notice that for cω = 0 the right hand side of (24) is always smaller than
1. Therefore a possible strategy is to select the desired γω that satisfies (24)
for cω = 0 and then increase cω while (24) remains true. In the case where one
wants to fulfil also the conditions on real performance improvement of Section
5 care must be exercised since, there, an upper bound on γω was imposed. Let
us consider performance improvement on the real plant. In this case one needs
that the right hand side of (24) is less than or equal to the right hand side of
(15). Let us consider again the case cω = 0, then this condition can be written
as a lower bound on αω

αω ≥ εω +

[

ρ(P0, C0, ω)

σ̄ (T∗ − T (P0, C0), ω)

]−1
√

[1 − Q2
ω]+ ∀ω (25)

where Qω denotes the right hand side of (15).
It can be easily seen that the entire set of conditions for performance improve-
ment on the real plant and for the existence of parameterisation (22) can be
fulfilled for εω sufficiently small. Indeed for εω = 0 the upper bounds become
equals to one and the lower bounds become equals to zero.
In general, the matrix Ξ can be found with techniques given in [7]. In the
particular case in which γω = γ and cω = c are constant, the explicit expres-
sion of Ξ can be obtained after some algebraic manipulations. In this case the
parameterisation (22) takes the form

B =

[

γ̄√
1 − γ̄2

RU +
1

1 − γ̄2

]−1

(26)
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where γ̄ = γ−c

1+c
and R,R−1 ∈ RH∞ is the solution to the spectral factorisation

problem

R∗(ω)R(ω) =

(

1

1 − γ̄2
− |E(ω)|2

)

. (27)

The transfer function R can be obtained with standard techniques.
Once T∗,1 has been obtained, one can obtain C∗,1 through (17). In general, any
algorithm for controller order reduction can then be used to obtain C1. The
important issue is that the final controller C1 must satisfy the Assumption A.3.
The reader is referred to [10, Section 4.3] for a controller reduction algorithm
with a priori guaranteed bounds on closed loop performance.

7 Simulation example

In this section we illustrate the results derived in the paper with a numerical
example. We will assume that the transfer function of the true plant, actually
unknown to the designer, is given by

P (z) =
0.336z3

(z − 0.6)2(z2 + 0.6z + 0.5)
.

In the following, we will illustrate two design cases: a change with nominal
performance improvement only and a change with guaranteed performance
improvement on the real plant. The first case requires a less accurate model
of P than the second case.

a) Safe controller change with nominal performance improvement In this case
we assume that the model P0 is given by

P0(z) =
0.3245z

(z − 0.705)(z + 0.1)
.

The bode diagrams of P and P0 are compared in Fig. 2-a. The initial stabilising
controller is

C0(z) = −0.49307
(z − 0.705)(z + 0.1)

(z − 1)(z − 0.36)
.

The controller C0(z) has been designed with Internal Model Control (IMC)

method for a reference model given by T0(z) =
0.16z

(z − 0.6)2
.

The stability margin of the initial nominal closed loop ρ(P0, C0), the assumed
bound εωρ(P0, C0, ω) on the closed loop identification error and the actual
identification error are displayed in Fig. 2-b. Notice that in the high frequency
region the uncertainty is almost 30% of the nominal stability margin.
We assume that the objective of the controller change is to enlarge the band-
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width. The desired target controller is

C∗(z) = −0.77042
(z − 0.705)(z + 0.1)

(z − 1)(z − 0.25)

which has been obtained with IMC for a reference model T∗ given by T∗(z) =
0.25z

(z − 0.5)2
. In order to obtain a safe change we select αω = 0.5. This means

that we allow 50% of stability margin degradation on the real plant with
respect to ρ(P0, C0) - see Fig. 2-b. As it is displayed in Fig. 3-a the controller
C∗ does not satisfy the safety condition (1) for the selected bound.
In order to perform a safe controller change the parameters γω = 1 and cω =
0.04 (i.e. an allowed closed loop performance degradation due to controller
reduction less than 4%) has been selected. These values satisfy condition (24)
for the existence of parameterisation (22). Since γ and c have chosen to be
constant the parameterisation (26) has been considered. The transfer function
R in (26) has McMillan degree equal to 2 and has been designed by fitting
the square root of right hand side of (27). As for the choice of U in (26),
the case U = const with const ∈ [−1, 1] has been considered. It turned out
that the best achievements in performance (i.e. the smallest σ̄ (T∗,1 − T∗, ω))
occurred for negative values of const. In the following we illustrate the choice
U = −0.9. By choosing U = −0.9, we obtained T∗,1 with McMillan degree
equal to 8 and the corresponding C∗,1 with McMillan degree equal to 6. In
this case, by reducing the controller C∗,1 we could find a controller C1 with
McMillan degree equal to 3 satisfying the Assumption A.3 . The controller C1

is given by

C1(z) = −0.58245
(z + 0.02205)(z − 0.6993)(z − 0.9463)

(z − 0.3393)(z − 0.9564)(z − 1)

The stability margin of the real closed loop system ρ(P,C1, ω) is shown in Fig.
2-b. The performance improvement between T (P0, C0) and T (P0, C1) is dis-
played in Fig. 3-b. As it is also displayed in Fig. 3-b, in this case we eventually
obtained also performance improvement on the real plant. This improvement
was not guaranteed for this design case, but safety in testing the controller C1

on the real plant was assured.

b) Safe controller change with guaranteed performance on the real plant In
this case we assume a 4th order nominal model P0. The initial controller C0

and the desired controller C∗ have been designed as in the previous case. They
have McMillan degree equal to 4. The closed loop identification bound in this
design case must be more strict. The bound has the same shape as in the
previous case but now it is approximately 0.5% of the stability margin in the
high frequency region. This value is lowered also by the additional constraint
that we want to select a constant γω in order to use parameterisation (26)
without this additional constraint we could have assumed a bound up to 3%
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Fig. 2. (a) Bode diagrams of P (dash-dotted) and P0 (continuous). (b) The
bound on the closed loop identification error εωρ(P0, C0, ω) (dash bold), and
σ̄ (T (P, C0) − T (P0, C0), ω) (dash). The stability margins ρ(P0, C0, ω) (continuous),
ρ(P, C1, ω) (dash-dot) and the guaranteed stability margin (1 − αω)ρ(P0, C0, ω)
(dash-dot bold).

of the stability margin. Assuming this uncertainty we could find valid values
for all the design parameters. We selected αω = 0.4 (for this values of αω the
change from C0 to C∗ indeed is not a safe change), γω = 0.93 and cω = 0.001.
The choice of γω is illustrated in Fig. 4-a. The parameter ηω was selected
slightly smaller than its upper bound in order to force a higher value in the
right hand side of (6). The parameterisation (26) was considered, also in this
case U = −0.9 gave the best performance achievement on the range [−1, 1]
(in this case however performance on the real closed loop was tested). By
selecting U = −0.9, we obtained T∗,1 with McMillan degree equal to 14 and the
corresponding C∗,1 with McMillan degree equal to 10. In this case, by reducing
the controller C∗,1 we could find a controller C1 with McMillan degree equal
to 6 satisfying the Assumption A.3 . The achieved improvement on the real
plant in displayed in Fig. 4-b.

8 Conclusions

In this paper, we have proposed an approach to the design of safe controller
changes which is based on the use of closed loop models. In our approach we
assume some known bounds on the error between the modelled closed loop
and the actual closed loop. We have shown that safe controller changes can
be obtained as the solution of a suitable model reference control problem. A
practical procedure to construct the reference model through a particular pa-
rameterisation of the reference model has also been provided. The choice of
the optimal parameters in the parameterisation of the reference model and
the extension of this procedure to more general parameterisations will be the
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Fig. 3. (a) The chordal distances κ(C0, C∗, ω) (dash), κ(C0, C1, ω) (dash dot)
and the safety bound (αω − εω) ρ(P0, C0, ω) (dash dot bold). (b) The distances
σ̄ (T (P0, C0) − T∗, ω) (dash bold), σ̄ (T (P0, C1) − T∗, ω) (dash), and the distances
σ̄ (T (P, C0) − T∗, ω) (dash dot bold) and σ̄ (T (P, C1) − T∗), ω) (dash dot).
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Fig. 4. (a) Upper bound (dash), lower bound (dash dot) and the actual value of γω

(continuous). (b) The stability margins ρ(P0, C0, ω) (dot), ρ(P, C1, ω) (dash-dot)
and the guaranteed stability margin (1 − αω)ρ(P0, C0, ω) (dash-dot bold). The dis-
tance σ̄ (T (P, C0) − T∗, ω) (continuous bold), the guaranteed bound on performance
improvement ηω

η̄−

ω

σ̄ (T (P, C0) − T∗, ω) (dash), and σ̄ (T (P, C1) − T∗), ω) (continuous).

objective of future work.
In the paper, a number of identification assumptions has been stated. These
assumptions can be guidelines for the design of the identification experiment.
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A Proofs

Proof of Lemma 4 By Assumption A.2 and Theorem 3, we have

κ(P, P0, ω) ≤ εωρ(P0, C0, ω) . (A.1)
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Moreover, due to the “only if” implication in Theorem 1, we have that P

and P0 satisfy Condition C. Therefore, by applying Theorem 2 and (A.1), we
obtain that ρ(P,C0, ω) satisfies

ρ(P,C0, ω) ≥ ρ(P0, C0, ω) − εωρ(P0, C0, ω). (A.2)

Now, we can use this lower bound on ρ(P,C0, ω) to compute a lower-bound
to the stability margin ρ(P,C1, ω) of the closed loop system formed by P and
a new controller C1.
Since condition (1) implies that κ(C0, C1, ω) < ρ(P0, C0, ω) and since C1 is as-
sumed to stabilise P0, then, again due to the “only if” implication in Theorem
1, C0 and C1 satisfy Condition C.
Hence, by using again Theorem 2 and (A.2), we obtain that ρ(P,C1, ω) satisfies

ρ(P,C1, ω) ≥ (1 − εω) ρ(P0, C0, ω) − (αω − εω) ρ(P0, C0, ω) (A.3)

from which we obtain (2). 2

Proof of Theorem 5 For the safety constraint, we shall introduce an inequal-
ity that implies (1) but in which the distance between the closed loop transfer
functions appears (instead of the distance between the controllers directly).
This can be done by means of Theorem 3, in fact we have that (1) is implied
by

σ̄ (T (P0, C0) − T (P0, C1), ω) ≤ (αω − εω) ρ(P0, C0, ω) ∀ω . (A.4)

Inequality (A.4) thus also guarantees safety. Now notice that Assumption A.3
allows us to link σ̄ (T (P0, C0) − T (P0, C1), ω) to the reference model T∗,1 prior
to the design of controller C1. In fact, we can write

σ̄ (T (P0, C0) − T (P0, C1), ω) ≤ σ̄ (T (P0, C1) − T∗,1, ω) + σ̄ (T∗,1 − T (P0, C0), ω)

≤ (1 + cω) σ̄ (T∗,1 − T (P0, C0), ω) . (A.5)

and we obtain that (A.4) is implied by (3). Therefore, if T∗,1 is chosen so that
(3) is satisfied, then safety is guaranteed.
Now, for nominal performance improvement, we require inequality (5) to be
satisfied. We shall also use Assumption A.3 in order to express quantities in
terms of T∗,1. Since

σ̄ (T (P0, C1) − T∗, ω) ≤ σ̄ (T (P0, C1) − T∗,1, ω) + σ̄ (T∗,1 − T∗, ω)

≤ cω σ̄ (T (P0, C0) − T∗,1, ω) + σ̄ (T∗,1 − T∗, ω)

and

σ̄ (T (P0, C0) − T∗,1, ω) ≤ σ̄ (T (P0, C0) − T∗, ω) + σ̄ (T∗ − T∗,1, ω) ,

it follows that inequality (5) is implied by (4). 2
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Proof of Lemma 6 Let us consider the left hand side of inequality (7). We
can write

σ̄(T (P,C1) − T∗, ω) ≤ σ̄(T (P,C1) − T (P0, C1), ω) + σ̄(T (P0, C1) − T∗, ω) .

The last term of the right hand side of the above inequality is bounded in (5).
As for the first term, by using Theorems 2, 3 we have

σ̄(T (P,C1) − T (P0, C1), ω) ≤ κ(P, P0, ω)

ρ(P,C1, ω)ρ(P0, C1, ω)

≤ σ̄(T (P,C0) − T (P0, C0), ω)

ρ(P,C1, ω)[ρ(P0, C0, ω) − κ(C0, C1, ω)]

Moreover, by using (1), (2) and Assumption A.2 we obtain

σ̄(T (P,C1) − T (P0, C1), ω) ≤ εω

1 − αω

1

1 − (αω − εω)

1

ρ(P0, C0, ω)
.

Therefore, we have

σ̄ (T (P,C1) − T∗, ω) ≤ εω

1 − αω

1

1 − (αω − εω)

1

ρ(P0, C0, ω)

+ γωσ̄ (T (P0, C0) − T∗, ω) . (A.6)

Now, we can state that if the right hand side of (A.6) is smaller or equal to the
right hand side of (7) then (7) itself is implied. This condition can be written
as

α2
ω − (2 + εω)αω + (1 + εω) ≥ 1

ηω − γω

εω

ρ(P0, C0, ω)

1

σ̄ (T (P0, C0) − T∗, ω)
∀ω

On the interval αω ∈ [εω, 1) the left hand side of the above inequality, as a
function of αω, decreases monotonically from (1 − εω) to 0. If the right hand
side belongs to this range of values then the inequality is satisfied for the
values of αω given by (6). 2

Proof of Theorem 7 The condition for existence of αω ∈ [εω, 1) satisfying
(6) is that εω is smaller or equal to the right hand side the inequality. This
gives inequality (13). Now, for worst-case performance improvement we want
also ηω ≤ η̄+

ω . Obviously, this is possible if the right hand side of (13) is less
or equal η̄+

ω . This gives inequality (12). Since γω is a positive number we need
that the right hand side of (12) is positive. This is exactly condition (11). 2

Proof of Theorem 8 From the proof of Theorem 7 we have that ηω must
satisfy inequality (13). Therefore we can choose ηω ≤ η̄−

ω if the right hand side
of (13) is smaller than η̄−

ω . This gives inequality (15). Since γω is a positive
number the right hand side of (15) must be positive. This is exactly condition
(14). 2
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Proof of Theorem 9 The proof is constructive. First, note that

T (Po, C∗,1) =







−I 0

0 I













I Po

C∗,1 I







−1

+







I 0

0 0







and

T∗,1 = B







−I 0

0 I













I Po

C∗ I







−1

+ B







I 0

0 0







+ (1 − B)







−I 0

0 I













I Po

Co I







−1

+ (1 − B)







I 0

0 0





 .

Then, for T (P0, C∗,1) = T∗,1, we need:







I Po

C∗,1 I







−1

= B







I Po

C∗ I







−1

+ (1 − B)







I Po

Co I







−1

(A.7)

m






I 0

0 (I − C∗,1Po)
−1





= B







I 0

0 S∗













I 0

C∗,1 − C∗ I





 (A.8)

+ (1 − B)







I 0

0 So













I 0

C∗,1 − Co I







The equivalence (A.7)⇔(A.8) follows through premultiplication by







I Po

0 I





 and

postmultiplication by







I 0

C∗,1 I





 of statement (A.7). Then, it is clear that (17)

is necessary and sufficient for statement (A.8) to hold. 2

Proof of Theorem 10 The result follows from [7, Theorem 2.4]. Let us show
where condition (21) comes from. On expanding the left hand side of equation

(23) we get







|E|2 + |F |2 −|F |2

−|F |2 |F |2 − 1





 which is similar to







|E|2 + |F |2 0

0 1−|E|−2−|F |−2

|E|−2+|F |−2





.

For equation (23) to have a solution, we must have one positive eigenvalue and
one negative eigenvalue, hence the necessity for inequality (21). 2
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