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Abstract

In the design of switching control systems, the analysis of tran-
sient signals is of utmost importance. Each time a control transfer
takes place, the resulting transient response may degrade performance.
When switching takes place rapidly, interaction between switching
transients may cause instability even when each of the ‘component’
loops are stable taken separately.

We examine the issues of controller realization and controller ini-
tialization in the context of switching systems. Our objective is to
minimize the performance degradation caused by transient signals
at controller transitions, while guaranteeing stability under arbitrary
switching.

Some theoretical tools are needed to analyze such systems, where
the states are permitted to change discontinuously at mode switches.
We consider a general Lyapunov function approach to analyze the
stability of ‘reset switching systems’, and use it to devise some LMI
methods for synthesizing stabilizing reset schemes.

1 Introduction

When we design ideal linear controllers (without switching), the realization
of controllers is a relatively peripheral issue. Similarly the initialization of the
controller rarely merits much thought (zero is good enough most of the time).
The reason is that, once initial transients have died down, only the input-
output transfer functions matter. Furthermore, if the plant state is unknown
at the initial time, it may be impossible to compute optimal controller initial
states in any case.

In a controller switching context, the issues of realization and initializa-
tion are crucialy important. At every controller transition, new transient
signals are introduced which are directly related both to the controller real-
izations and the controller states at switching times. Such transient signals
can degrade performance or even cause instability.

It is not difficult to construct examples of switching systems where each
component system is stable, yet switching may result in unstable trajecto-
ries (see for example [3]). We can also construct such examples in a con-
troller/plant framework. That is, we may switch between stabilizing con-
trollers for a single (linear) plant in such a way that the trajectories become
unstable (see example 3.1).

1



2 Controller Initialization

Suppose we have a family of stabilizing controllers (with given realizations)
for a particular linear plant. If we switch between these controllers, what is
the correct initial state when we switch to a new controller? Naive approaches
such as resetting to zero each time, or having a continuous common controller
state (where the controllers all have the same order) may result in very poor
performance or, in the worst case, instability.

We will introduce a system of controller resets, where the new controller at
each transition is initialized by a function of the plant state (either measured
or observed) at that time. We do so in order to minimize (in some sense) the
initial state transient introduced at each switch, while guaranteeing stability.

2.1 Single switch

Consider first of all a single switch to a controller K (from another con-
troller, or from manual control) at some time t. If we have a measurement
or observation of the plant state xG(t), then it is a straightforward matter
to minimize the initial state transients (in the finite or infinite horizon) with
respect to the controller state xK(t) according to some weighted cost function
(see [6] for more details).

For example, suppose the closed loop state space equations can be written

[

xG

xK

]

= A1xG + A2xK + Bu

y = C1xG + C2xK ,

where y is a generalized output that may include the plant input.
The the minimum initial state transient component of y in the interval

[t,∞) occurs when the function

V (t) =

∫

∞

t

yT (τ)y(τ)dτ.

achieves a minimum, assuming u = 0.
The optimal controller state is then

xK(t) = −P−1
22 P21xG(t),

where

P =

[

P11 P12

P21 P22

]

> 0
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is the solution to the Lyapunov equation

AT P + PA = −CT C,

A = [A1 A2], and C = [C1 C2].

That is, the solution is achieved at the minimum of the function

V (t) = xT (t)Px(t)

with respect to the controller state xK(t) (which is a Lyapunov function for
the system if CT C > 0).

Similar solutions can also be obtained by optimizing over weighted signals.

2.2 Reset switching systems

If we now consider the arbitrary switching case, stability is clearly a major
concern. Since we have seen that the use of controller resets for switching
can improve performance, the next question is whether a sensible choice of
controller resets can stabilize an otherwise (potentially) unstable switching
system.

For the stability analysis we introduce some Lyapunov function results
for reset switching systems, where the state of the system is permitted to
change discontinuously when the system switches.

Consider the family of linear vector fields

ẋ(t) = Aix(t), i ∈ I, x ∈
� n, (1)

where I is some index set (typically discrete valued).
Now define a piecewise constant switching signal σ(t)

σ(t) = ik tk ≤ t < tk+1, ik ∈ I (2)

for some sequence of switching times {tk} and indices {ik} (k ∈ � +). We
assume that tk < tk+1 and ik 6= ik+1 for all k.

We define a linear reset switching system by the equations

ẋ(t) = Aσ(t)x(t),

σ(t) = ik, for tk ≤ t < tk+1, ik ∈ I, k ∈ � +,

x(t+k ) = Gik−1,ikx(t−k ).

(3)

The linear functions Gi,j for i, j ∈ I are reset relations between the discrete
states i and j.
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Note that when each of the reset relations Gi,j are identity, the continuous
state is constrained to be continuous across switching times. Such systems
are extensively analyzed in the literature. See for example [1, 3]. We will
use the term simple switching system to distinguish such systems from those
where reset relations are applied.

We shall choose an index set I such that the family of matrices Ai forms
a compact set.

We will denote by S the set of all admissible switching signals σ. We will
assume in general that the signals in S are non-zeno: that is, there are at
most finitely many transitions in any finite time interval.

Theorem 2.1. The reset switching system (3) is uniformly asymptotically

stable for all admissible switching signals σ ∈ S if and only if there exist a

family of functions Vi :
�

n →
�

with the following properties:

• Vi are positive definite, decrescent and radially unbounded

• Vi are continuous and convex

• There exist constants ci such that

lim
∆t→0+

(

Vi(e
Aitx) − V (x)

∆t

)

≤ −ci ‖x‖
2

• Vj(Gi,jx) ≤ Vi(x) for all x ∈
�

n, and i, j ∈ I.

Proof. (if)
Choose an admissible switching signal σ ∈ S. Then, the switching system

with resets for this particular signal can be considered to be a linear time
varying system with at most finitely many state discontinuities in any finite
interval (by the restrictions on S).

If functions Vi exist, satisfying the theorem conditions, then we can con-
struct a time-varying function

Vσ(t)(x(t)) = Vi(x(t)) when σ(t) = i.

Since the functions Vi are decrescent and radially unbounded, we can find
ai and bi such that

ai ‖x‖
2 < Vi(x) < bi ‖x‖

2 .

By the third condition on Vi, we know that the Vi are strictly decreasing
on trajectories of Ai, and we have the bound

lim
∆t→0+

(

Vi(e
Ai∆tx) − V (x)

∆t

)

≤ −ci ‖x‖
2 .
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Furthermore, since Vj(Gi,jx) ≤ Vi(x), we know that the function Vσ(t)(x(t))
is non-increasing at the (non-zeno) switching times.

Let a = inf i ai, b = supi bi, and c = inf i ci. By the compactness of the
family Ai, a, b and c must be positive and finite. Hence we can write bounds
on the function Vσ(t)(x(t))

a ‖x(t)‖2 < Vσ(t)(x(t)) < b ‖x(t)‖2 ,

and

lim
∆t→0+

(

Vσ(t)(e
Ai∆tx(t)) − V (x(t))

∆t

)

≤ −c ‖x(t)‖2 .

Now if we let the initial state be x0 at time t = 0, we have the bound

Vσ(t)(x(t)) < bx2
0e

−λt,

where λ = c/a, and hence

‖x‖2 <
bx2

0

a
e−λt.

Therefore, the point x = 0 is a uniformly asymptotically stable equilibrium
of the switching system with resets.

(only if)
The point x = 0 is a uniformly asymptotically stable equillibrium of

the switching system with resets. Let φσ(t)(t, x0, t0) denote the state of the
switching system at time t given initial conditions x0 at time t0 and a par-
ticular switching signal σ. Since the set S is time invariant, we may assume
without loss of generality that t0 = 0. Since both the vector fields and reset
relations are linear, we can write the trajectory for a given initial condition
as follows:

φσ(t)(t, x0, 0) = Φσ(t)(t)x0,

where Φσ(t)(t) is a ‘composite’ state transition matrix defined by

Φσ(t)(t) = eAik
(t−tk)Gik−1,ik . . . eAi1

(t2−t1)Gi0,i1e
Ai0

t1

when tk < t < tk+1.
Now let us define the functions Vi as follows

Vi(x) = sup
σ(0)=i

∫

∞

0

∥

∥φσ(t)(t, x, 0)
∥

∥

2
dt

= sup
σ(0)=i

xT

(
∫

∞

0

ΦT
σ(t)(t)Φσ(t)(t)dt

)

x
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That is, Vi(x) is the supremum of the two-norm of trajectories beginning
at state x with dynamics i. The integrals exist and are bounded since the
equilibrium is asymptotically stable (and hence exponentially stable).

Let

Q(σ) =

∫

∞

0

ΦT
σ(t)(t)Φσ(t)(t)dt

for some σ, and let the set of all such Q(σ) with σ(0) = i be

Qi = {Q(σ) : σ ∈ S with σ(0) = i}.

Now denote the closure of Qi by Q̄i. Qi is bounded by the exponential
stability of the system, so Q̄i is compact. Therefore, we can write

Vi(x) = max
Q

{xT Qx : Q ∈ Q̄i}.

Each function xT Qx is a continuous map from Q̄i ×
�

n to
�

, so the
maximum must be continuous (however, it is not necessarily differentiable).

We can show that the functions Vi are convex as follows. Let

xµ = µx1 + (1 − µ)x0

for µ ∈ [0, 1]. Since positive definite quadratic forms are convex, we have for
Q ∈ Q̄i,

xT
µQxµ ≤ µxT

1 Qx1 + (1 − µ)xT
0 Qx0.

Taking the maximum over Q̄i, we have

Vi(xµ) ≤ µVi(x1) + (1 − µ)Vi(x0),

hence the functions Vi are convex. Since they are continuous and convex, the
Vi are also Lipschitz continuous.

Now we show that the functions Vi must be strictly decreasing on trajec-
tories of the i’th vector field. We can see this as follows:

Vi(x) = sup
σ(0)=i

xT

(
∫

∞

0

ΦT
σ(t)(t)Φσ(t)(t)dt

)

x.

The supremum must include all switching signals which have σ(t) = i for
0 < t < τ , so we have

Vi(x) ≤

∫ τ

0

∥

∥eAitx
∥

∥

2
dt + sup

σ(τ)=i

(eAitx)T

(
∫

∞

τ

ΦT
σ(t)(t)Φσ(t)(t)dt

)

eAitx

=

∫ τ

0

∥

∥eAitx
∥

∥

2
dt + V (eAitx).
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By taking τ small, we have

lim
τ→0

Vi(x) − V (eAitx)

τ
≤

‖x‖2

2
.

So Vi is strictly decreasing on the i’th vector field. Note that since Vi

is in general a quasi-quadratic function, it is not necessarily continuously
differentiable.

From the definition of Vi it is clear that

Vj(Gi,jx) ≤ Vi(x),

since the supremum

sup
σ(0)=i

∫

∞

0

∥

∥φσ(t)(t, x, 0)
∥

∥

2
dt

clearly includes all those switching trajectories which begin with an almost
immediate switch from i to j.

The theorem effectively states that stability of the reset switching system
depends upon the existence of a family of Lyapunov functions for the separate
vector fields such that at any switch on the switching system, it is guaranteed
that the value of the ‘new’ Lyapunov function after the switch will be no
larger than the value of the ‘old’ function prior to the switch. The functions
are not necessarily differentiable everywhere, and so are of similar form to
those considered by Molchanov in [5].

Dayawansa and Martin [1] proved that a simple switching system is stable
for all switching signals if and only if there exists a common Lyapunov func-
tion for the component systems. Our theorem can be considered an extension
of that theorem to reset switching systems, and a similar construction is used
to prove existence.

The functions Vi are not necessarily quadratic. Indeed, Dayawansa gives
an example of a stable two component simple switching system for which no
quadratic common Lyapunov function exists. It still however makes sense
to first consider quadratic functions in attempting to prove stability of a
switching system. We can write the quadratic version of the theorem as the
following sufficient condition.

Corollary 2.2. The reset switching system (3) is uniformly asymptotically

stable for all admissible switching signals σ ∈ S if there exist a family of

matrices Pi > 0 with the following properties:

7



• AT
i Pi + PiAi < 0

• GT
i,jPjGi,j − Pi ≤ 0 for all i, j ∈ I.

Proof. The sufficiency part of theorem 2.1 is clearly satisfied if quadratic
functions Vi exist which satisfy the conditions. That is, let

Vi(x) = xT Pix.

Then, Vi is positive definite, decrescent and radially unbounded when
Pi > 0. Vi is strictly decreasing on trajectories of the i’th vector field when
AT

i Pi + PiAi < 0, and the condition

Vj(Gi,jx) ≤ Vi(x)

is satisfied for all x ∈
�

n if and only if

GT
i,jPjGi,j − Pi ≤ 0.

2.3 Plant/controller structure

Now we consider a class of resets with a particular structure. We are primar-
ily interested in systems where the component vector fields are made up of
plant/controller closed loops. The reset relations we consider then are such
that the plant state remains constant across switching boundaries, and the
controller state only is reset.

Specifically, we consider a family of N controllers Ki in a switching ar-
rangement such that at each instant one of Ki are in feedback with the plant
G.

If G and K have the following state-space representations

G =

[

AG BG

CG DG

]

Ki =

[

AKi BKi

CKi DKi

]

, (4)

then the closed loop matrices Ai can be written

Ai =

[

Ai(1, 1) Ai(1, 2)
Ai(2, 1) Ai(2, 2)

]

:=

[

AG + BGDKiCG BGCKi

−BKiCG AKi + BKiDGCKi

]

.

(5)

The plant state is xG with dimension nG, and the controllers Ki have
states xKi with dimensions nK . For simplicity we restrict consideration to
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controllers of the same dimension, however the results do in fact hold in
general for controllers of different dimensions with relatively straightforward
modifications.

We define the current controller state to be

xK(t) = xKi(t) when σ(t) = i,

and the state of the closed loop system is

x =

[

xG

xK

]

.

Suppose the resets are such that the plant state is continuous, and the
controller state is a linear function of plant state. That is, we restrict the
matrices Gi,j to the form

Gi,j =

[

I 0
Xi,j 0

]

(6)

where Xi,j ∈
�

nK×nG.
We now make an important observation.

Remark 2.1. Consider the reset switching system (3), with reset matrices
with structure given in (6). If theorem 2.1 is satisfied, then the Lyapunov
functions Vi must satisfy the condition

argmin
xK

Vi

([

xG

xK

])

= Xj,ixG.

Put another way, any family of such resets for which stability is guaran-
teed must minimize some Lyapunov functions for the respective subsystems.

A further consequence of this observation is that if Gi,j are stabilizing
resets of the form (6) and the arguments

argmin
xK

Vi

([

xG

xK

])

are unique, then the matrices Xi,j and hence the Gi,j can only depend on the
index of the new dynamics j. This makes sense, since the future behaviour
of the system is not dependent on the previous values of the switching signal.
We will write Xi,j = Xj, and Gi,j = Gj subsequently when appropriate.

Now consider the potentially stabilizing resets Gi of the form

Gi =

[

I 0
Xi 0

]

, (7)

where XixG = argmin
xK

Vi

([

xG

xK

])

, and Vi is a Lyapunov function for the i’th

subsystem.
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Theorem 2.3. Consider the reset switching system (3), with reset matrices

with structure given in (7). The system is asymptotically stable for all switch-

ing signals σ ∈ S if and only if there exists a family of functions Vi :
�

n →
�

with the following properties:

• Vi are positive definite, decrescent and radially unbounded

• Vi are continuous, with continuous partial dervatives

• There exist constants ci such that

lim
∆t→0+

(

Vi(e
Aitx) − V (x)

∆t

)

≤ −ci ‖x‖
2

• Vi are such that

XixG = argmin
xK

Vi

([

xG

xK

])

for all xG ∈
�

nG

•

Vj

([

xG

XjxG

])

= Vi

([

xG

XixG

])

for all xG ∈
�

nG and i, j ∈ I

Proof. (if)
Since XixG minimizes Vi with respect to xK , we can guarantee that

Vj

([

xG

XjxG

])

≤ Vi

([

xG

xK

])

when xK is permitted to vary.
(only if)
Consider the case when the loop i is operating, the plant state xG is in the

set ∂Ωi(k), and the controller state is such that xK = XixG (the minimum
of Vi is achieved at xK). That is,

Vi

([

xG

xK

])

= k.

Now let the loop switch from i to j. From the results of theorem 2.1, we
know that the switching system can only be asymptotically stable if

Vj

([

xG

XjxG

])

≤ Vi(x)
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for all x ∈
�

n, and i, j ∈ I. Thus, it must be true for the specific case when
xK = XixG. So we require

Vj

([

xG

XjxG

])

≤ Vi

([

xG

XixG

])

.

The converse is also true, so we must have

Vj

([

xG

XjxG

])

= Vi

([

xG

XixG

])

for all xG.

This theorem says that for reset switching system (of the form (7)) to
be asymptotically stable for all switching signals, there must exist Lyapunov
functions Vi, such that the level curves have the same projection into the
plant subspace.

We now have quite strict conditions which must be met if a reset switching
system is to be stable for all admissible signals σ. It is a relatively straight-
forward matter to test the condition for quadratic Lyapunov functions.

An immediate consequence of the previous theorem is that if the plant is
first order, and the family of resets Xi are equivalent to the minimization of
quadratic Lyapunov functions for the i’th loop, then stability is automatically
guaranteed.

For plants of more than first order, theorem 2.3 is difficult to satisfy
for given resets. It does, however lead to a good method for synthesizing
stabilizing resets for given systems.

2.4 Reset synthesis for stability

For a set of given controllers, we may ask the question of whether a family
of reset relations exist which guarantee asymptotic stability for all switching
signals.

We shall call such a family of resets a stabilizing family of reset relations.
It is a relatively straightforward matter Computationally, we may easily

to perform computations on
While a general search for Lyapunov functions which satisfy theorem 2.3 is

a difficult problem, it is relatively straightforward to find quadratic Lyapunov
functions, and the corresponding stabilizing resets if they exist.

The aim is to find a set of positive definite matrices

Pi =

[

Pi(1, 1) Pi(1, 2)
Pi(2, 1) Pi(2, 2)

]

11



such that

Pi(1, 1) − Pi(1, 2)Pi(2, 2)−1Pi(2, 1)

= Pj(1, 1) − Pj(1, 2)Pj(2, 2)−1Pj(2, 1)

for all j 6= i, and that the Lyapunov inequalities

AT
i Pi + PiAi < 0

are satisfied for all i.
Using Schur complements, we can now form an equivalent problem in

terms of matrices Qi where Qi = P−1
i .

Define
∆ = Pi(1, 1) − Pi(1, 2)Pi(2, 2)−1Pi(2, 1).

∆ can be thought of as the inverse of the (1, 1) block of the inverse of Pi, so
the equivalent problem is to find positive definite matrices

Qi =

[

∆−1 Qi(1, 2)
Qi(1, 2)T Qi(2, 2)

]

satisfying

QiA
T
i + AiQi < 0

Then the required reset relations are

xK = −Pi(2, 2)−1Pi(2, 1)xG,

where Pi = Q−1
i .

Theorem 2.4. Consider the continuous-time linear plant G, and N con-

trollers Ki defined according to (4), and let the closed loop matrices

Ai =

[

Ai(1, 1) Ai(1, 2)
Ai(2, 1) Ai(2, 2)

]

be defined according to eqquation (5).
There exists a stabilizing family of reset relations when there exist matri-

ces ∆,

Qi(1, 2) ∈
�

nG×nK and Qi(2, 2) ∈
�

nKi×nK for each i = {1, . . . , N} such that

the following system of LMIs is satisfied:

[

Φi(1, 1) Φi(1, 2)
Φi(2, 1) Φi(2, 2)

]

< 0 (8)
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where

Φi(1, 1) = ∆−1Ai(1, 1)T + Qi(1, 2)Ai(1, 2)T

+ Ai(1, 1)∆−1 + Ai(1, 2)Qi(1, 2)T ,

Φi(1, 2) = ∆−1Ai(2, 1)T + Qi(1, 2)Ai(2, 2)T

+ Ai(1, 1)Qi(1, 2) + Ai(1, 2)Qi(2, 2),

Φi(2, 1) = Qi(1, 2)TAi(1, 1)T + Qi(2, 2)Ai(1, 2)T

+ Ai(2, 1)∆−1 + Ai(2, 2)Qi(1, 2)T ,

Φi(2, 2) = Qi(1, 2)TAi(2, 1)T + Qi(2, 2)Ai(2, 2)T

+ Ai(2, 1)Qi(1, 2) + Ai(2, 2)Qi(2, 2).

The reset relations guaranteeing stability are

xK = −Pi(2, 2)−1Pi(2, 1),

where

Pi =

[

Pi(1, 1) Pi(1, 2)
Pi(2, 1) Pi(2, 2)

]

=

[

∆−1 Qi(1, 2)
Qi(1, 2)T Qi(2, 2)

]

−1

.

Proof. We prove the theorem by attempting to find quadratic functions
Vi(x) = xT Pix, and the corresponding resets Xi = −Pi(2, 2)−1Pi(2, 1) which
satisfy theorem 2.3. Since we consider only quadratic functions, the necessary
and sufficient condition becomes only sufficient.

The LMI conditions (8) are simply an expanded version of the Lyapunov
inequalities

QiA
T
i + AiQi < 0

where

Qi =

[

∆−1 Qi(1, 2)
Qi(1, 2)T Qi(2, 2)

]

,

and

Ai =

[

Ai(1, 1) Ai(1, 2)
Ai(2, 1) Ai(2, 2)

]

.

Define Pi = Q−1
i . Then the matrices Pi satisfy the Lyapunov inequalitites

AT
i Pi + PiAi < 0,

and also,
Pi(1, 1) − Pi(1, 2)Pi(2, 2)−1Pi(2, 1) = ∆−1

for each i. Hence the Lyapunov functions

Vi(x) = xT Pix

13



satisfy theorem 2.3, and asymptotic stability of the reset switching system is
proved with the corresponding resets

Xi = −Pi(2, 2)−1Pi(2, 1).

For the discrete-time case, we require the following lemma.

Lemma 2.5. Let P ∈
�

n×n be a positive definite matrix, and A ∈
�

n×n any

real valued matrix. Then the inequality

AT PA − P < 0

holds if and only if the inequality

AP−1AT − P−1 < 0

also holds.

Proof. Consider the following matrix, decomposed in two alternative ways:
[

P−1 A
AT P

]

=

[

I 0
AT P I

] [

P−1 0
0 P − AT PA

] [

I PA
0 I

]

=

[

I AP−1

0 I

] [

P−1 − AP−1AT 0
0 P

] [

I 0
P−1AT I

]

Since both P and P−1 are positive definite, then

P − AT PA > 0 ⇐⇒ P−1 − AP−1AT > 0

Theorem 2.6. Consider the discrete-time linear plant G, and N controllers

Ki defined according to (4), and let the closed loop matrices

Ai =

[

Ai(1, 1) Ai(1, 2)
Ai(2, 1) Ai(2, 2)

]

be defined according to eqquation (5).
There exists a reset relation for which the switching system is stable for

any switching sequence when there exist matrices ∆, Qi(1, 2) ∈
�

nG×nK and

Qi(2, 2) ∈
�

nK×nK for each i = {1, . . . , N} such that the following system of

LMIs is satisfied:
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[

Φi(1, 1) Φi(1, 2)
Φi(2, 1) Φi(2, 2)

]

< 0 (9)

where

Φ1 = Ai(1, 1)T ∆−1Ai(1, 1) + Ai(2, 1)T Qi(1, 2)T Ai(1, 1) + Ai(1, 1)T Qi(1, 2)Ai(2, 1) + Ai(2, 1)T Qi(2, 2)Ai(2, 1) − ∆−1

Φ2 = Ai(1, 1)T ∆−1Ai(1, 2) + Ai(2, 1)T Qi(1, 2)T Ai(1, 2) + Ai(1, 1)T Qi(1, 2)Ai(2, 2) + Ai(2, 1)T Qi(2, 2)Ai(2, 2) − Qi(1, 2)

Φ3 = Ai(1, 2)T ∆−1Ai(1, 1) + Ai(2, 2)T Qi(1, 2)T Ai(1, 1) + Ai(1, 2)T Qi(1, 2)Ai(2, 1) + Ai(2, 2)T Qi(2, 2)Ai(2, 1) − Qi(1, 2)T

Φ4 = Ai(1, 2)T ∆−1Ai(1, 2) + Ai(2, 2)T Qi(1, 2)T Ai(1, 2) + Ai(1, 2)T Qi(1, 2)Ai(2, 2) + Ai(2, 2)T Qi(2, 2)Ai(2, 2) − Qi(2, 2)

The reset relations guaranteeing stability are

xK = −Pi(2, 2)−1Pi(2, 1),

where

Pi =

[

Pi(1, 1) Pi(1, 2)
Pi(2, 1) Pi(2, 2)

]

=

[

∆−1 Qi(1, 2)
Qi(1, 2)T Qi(2, 2)

]

−1

.

Proof. The LMI conditions (9) are simply an expanded version of the Lya-
punov inequalities

AiQiA
T
i − Qi < 0

where

Qi =

[

∆−1 Qi(1, 2)
Qi(1, 2)T Qi(2, 2)

]

,

and

Ai =

[

Ai(1, 1) Ai(1, 2)
Ai(2, 1) Ai(2, 2)

]

.

Define Pi = Q−1
i . Then from lemma 2.5, the matrices Pi satisfy the

Lyapunov inequalitites
AT

i PiAi − Pi < 0,

and also
Pi(1, 1) − Pi(1, 2)Pi(2, 2)−1Pi(2, 1) = ∆−1

for each i. Hence the Lyapunov functions

Vi(x) = xT Pix

satisfy theorem 2.3, and asymptotic stability of the reset switching system is
proved with the corresponding resets

Xi = −Pi(2, 2)−1Pi(2, 1).
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It is not always possible to find controller resets which will guarantee
stability under arbitrary switching. This is trivially shown by constructing
an example of a dynamic plant with two static gain controllers, but where
no common Lyapunov function exists. Since the controllers have no state,
a reset cannot help! We shall see however that we can always construct
a non-minimal realization of the controllers such that stabilizing resets do
exist.

The reset results so far depend on precise knowledge of the plant state.
In fact the results hold if we reset based on observed plant states, as long as
the observer converges (that is, the system is observable).

3 Controller realization

Recent work by Hespanha and Morse [2] considers the problem of selection
of appropriate realizations for a family of stabilizing controllers for a partic-
ular process. They have shown that it is possible to choose realizations for
families of stabilizing controllers such that the (simple) switching system is
stable under arbitrary switching. The scheme uses an internal model control
arrangement, where the realized controller contains a model of both the plant
and the desired closed loop.

We can also realize controllers to guarantee stability by implementing the
controllers in a particular coprime factor form.

Suppose we have a plant G, and a set of stabilizing controllers Ki. We
may choose a right coprime factorization of the plant G = NM−1, and left
coprime factorizations of the controllers Ki = V −1

i Ui, such that for each i
the bezout identity

ViM + UiN = I

is satisfied . Furthermore given any Q such that Q, Q−1 ∈ ��� ∞, the factor-
izations G = ÑM̃−1, and Ki = Ṽ −1

i Ũi also satisfy the bezout identities

ṼiM̃ + ŨiÑ = I,

where Ñ = NQ, M̃ = MQ, Ũi = Q−1Ui, and Ṽi = Q−1Vi.
A particular choice of Q for a controller factorization can also be thought

of as a particular choice for the plant factorization (via Q), or vice versa. In
the switching controller case, this is true provided that all of the controllers
have the same choice of Q.

Now consider the coprime factor switching arrangement in figure 1. The
switching connection is such that u(t) = ûσ(t), where σ(t) is the switching
signal governing the controller selection. The signals u, v, and w are common
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w

v

u

û1
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Figure 1: Switching arrangement

to the loops. We can think of this system as a plant P in a feedback loop
with the augmented controller K̂σ.

Note that for each loop i, we have

ûi = (I − Ṽi)u − ŨiPu − ŨiPw + Ũiv

= (I − Ṽi − ŨiÑM̃−1)u − ŨiPw + Ũiv

= (M − ṼiM − ŨiÑ)M̃−1u − ŨiPw + Ũiv

= (I − M̃−1)u − ŨiPw + Ũiv.

Since u = ûσ, we can write

u = (I − M̃−1)u − ŨσPw + Ũσv

= −M̃ŨσPw + M̃Ũσv

= −M̃(ŨσÑ)M̃−1w + M̃Ũσv

= −M̃(I − ṼσM̃)M̃−1w + M̃Ũσv

= −(I − M̃Ṽσ)w + M̃Ũσv,

and

y = P (u + w)

= ÑM̃−1((−(I − M̃Ṽσ)w + M̃Ũσv) + w)

= ÑṼσw + Ñ Ũσv.
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We assume that the signals w and v are bounded with bounded two norm,
and we know all of the coprime factors are stable. Then the signals Ṽσw, Ṽσv,
Ũσw, and Ũσv will all be bounded with bounded two norm. Hence u and y
are bounded with bounded two norm, and the switching system is stable for
all admissible switching sequences.

We can write these closed-loop relationships in the compact form

[

u
y

]

=

[

−(I − M̃Ṽσ) M̃Ũσ

ÑṼσ Ñ Ũσ

] [

w
v

]

.

The stability of this switching system is guaranteed since M̃ , Ñ , and each
Ũi and Ṽi are stable. Note that the states of the controllers evolve identically
irrespective of which controller is active.

This structure is similar to that employed in the work of Miyamoto and
Vinnicombe [4] for controllers subject to saturation. In that case, Q may
be computed via an � ∞ optimization without reference to the controller.
Hence the same Q may be used to guarantee stability in the switching case.

We may combine the results on controller realization and initialization.
The addition of a reset arrangement to a system of controllers realized for
stability can result in a substantial performance improvement as the following
example shows.

Example 3.1. Take a second order lightly damped plant

P (s) =
1

s2 + 0.2s + 1

implemented in controller canonical form

[

ẋ1

ẋ2

]

=

[

−0.2 −1
1 0

] [

x1

x2

]

+

[

1
0

]

u

y =
[

1 0
]

[

x1

x2

]

,

and two static stabilizing feedback gains k1 = 2, and k2 = 4. The closed loop
equations formed by setting u = k1(r − y), and u = k2(r − y) (where r is
some reference) are respectively

[

ẋ1

ẋ2

]

=

[

−0.2 −3
1 0

] [

x1

x2

]

+

[

1
0

]

r

y =
[

1 0
]

[

x1

x2

]

,
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(a) Unstable trajectory
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(b) Coprime factor realization
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(c) Coprime factor realizations
(Lyapunov based reset full state
knowledge)
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(d) Coprime factor realizations
(Lyapunov based reset, state ob-
server)

Figure 2:
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and
[

ẋ1

ẋ2

]

=

[

−0.2 −5
1 0

] [

x1

x2

]

+

[

1
0

]

r

y =
[

1 0
]

[

x1

x2

]

.

We shall refer to the respective state-space matrices as A1, A2, B and C.
It is reasonably straightforward to show that while both A1 and A2 have
eigenvalues in the left half plane, they do not share a common quadratic
Lyapunov function.

The switching system defined by

ẋ = Aσ(t)x + Bu

y = Cx

is therefore not guaranteed to be stable for all switching signals σ(t). Indeed,
we can construct a destabilizing signal by switching from k1 to k2 when x2

2 is
a maximum (for that loop), and from k2 to k1 when x2

1 is a maximum. This
produces the unstable state trajectories shown in figure 2(a) from an initial
state of x1 = x2 = 1, and zero reference.

Since the controller is static, we obviously cannot improve stability by
resetting controller states! We can, however implement the controllers in a
non-minimal form, for which stability can be guaranteed. We use here the
coprime factor approach.

When we implement these controllers in the arrangement of figure 1 using
the same initial condition and switching criterion as before (the non-minimal
are initialized to zero), we obtain the stable trajectory shown in figure 2(b).
Note however, that the performance is poor and the states take over 50
seconds to converge.

We now apply the results of theorem 8 to the loops formed by these
non-minimal controllers. We find that there exist as expected, Lyapunov
functions of the respective closed loops with common projection into plant-
space. Hence we can find a stabilizing controller reset. This results in the
stable trajectory shown in figure 2(c). Note the performance improvement
obtained by using the extra freedom in the controller states at the switching
times.

Since the reset scheme as applied for figure 2(c) requires full state knowl-
edge, it is not quite a fair comparison with the (non-reset) coprime factor
scheme. Therefore, we also implement the results using a plant state ob-
server. The results, shown in figure 2(d) show that while performance is
slightly worse than the full-state knowledge case, it is still substantially bet-
ter than the other schemes.
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4 Conclusions

We have introduced a new Lyapunov stability theorem which allows us to
analyze stability of switching systems where the state is permitted to reset at
switching times. This primarily allows us to examine resets of the controller
in controller switching systems.

The theorem has a number of important consequences. Principally, it
leads us to a method for synthesizing reset rules for a given switching system,
which then guarantee stability under arbitrary switching.

This approach may also be combined with methods for realizing con-
trollers such that stability may be guaranteed for arbitrary switching, and
performance substantially improved.
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