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Université Catholique de Louvain, B-1348 Louvain-la-Neuve, Belgium

{solari, gevers}@csam.ucl.ac.be

Abstract

Iterative Feedback Tuning (IFT) is a data-based method for the iterative tuning of
restricted complexity controllers. A “special experiment” in which a batch of previously
collected output data is fed back at the reference input allows one to compute an unbiased
estimate of the gradient of the control performance criterion. We show that, by performing
an optimal filtering of the data that are fed back, one can minimize the asymptotic
variability of the control performance cost, and hence minimize the average performance
degradation that results from the randomness of the data. The expression of the optimal
filter is derived, and a simulation illustrates the benefits that result from using this optimal
filter as compared to the use of the classical constant filter.
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1 Introduction

Iterative Feedback Tuning (IFT) is a data-based iterative scheme to optimize the parameter of

a feedback controller according to an LQG cost function. At each iteration an estimate of the

gradient of the cost function is constructed from a finite set of data obtained partly from the

normal operating condition of the closed loop system and partly from a special experiment in

which the output of the plant is fed back in the reference signal of the closed loop. The IFT

algorithm converges to an optimal controller as the number of iterations tends to infinity [4].

In a separate contribution we derived an analytical expression for the asymptotic covariance

of the controller parameter vector, as well as that of the gradient estimate required for the

IFT iterations [3]. The result was derived for the Iterative Feedback Tuning of a disturbance

rejection controller.

In this paper we use the expressions derived in [3] to maximize the average asymptotic

accuracy of the achieved IFT cost by choice of a prefilter for the reference signal in the special

experiment. The prefilter affects the signal to noise ratio in this experiment; it was left as a

degree of freedom in the original formulation of IFT. An analytical expression for the optimal

prefilter is given. It depends on certain characteristics of the unknown process. However,

in the spirit of IFT, these characteristics can be estimated from data collected under normal

operating conditions, which are available in large quantities. Thus the computation of the

optimal prefilter does not necessitate any special experiment on the process and hence does not

impose any additional cost. We also present a Monte Carlo simulation example which confirms

the asymptotic covariance expression derived in [3] and shows the benefits obtained by the use

of the prefilter.

The paper is organized as follows. In the next section we briefly recall the IFT algorithm

for disturbance rejection and results from [3] that we rely upon. This enables us in Section 3

to establish a design criterion for the optimization of the prefilter and, accordingly, derive the

optimal prefilter. In Section 4 we present the simulation example. Conclusions are given in the

last section.
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Figure 1: The control system under normal operating conditions.

2 IFT for disturbance rejection

We assume that the plant to be controlled is a SISO linear time-invariant system; its transfer

function is denoted by G(q). The output of the plant is affected by an additive stochastic

disturbance v(t) assumed to be quasistationary with zero mean and spectral density Φv(ω).

The transfer function G(q) and the disturbance spectrum Φv(ω) are unknown. We consider

the closed loop system depicted in Figure 1, where C(q, ρ) belongs to a parametrized set of

controllers with parameter vector ρ ∈ Rn. The transfer function from v(t) to y(t, ρ) is denoted

by S(q, ρ). In this paper, we consider the situation where the control objective is to perform

disturbance rejection only. Thus, normal operating conditions are defined as those for which

the reference signal r(t) is set at zero. The goal is to find a minimizer for the cost function

J(ρ) =
1

2
E
[

y(t, ρ)2 + λu(t, ρ)2
]

, (1)

where λ ≥ 0 is a penalty on the control effort chosen by the user.

The IFT method is an iterative procedure that gives a solution to this problem. It is based

on the construction, at each iteration step, of an unbiased estimate of the gradient of J(ρ) from

data collected on the plant with some present controller C(ρ) in operation. The cost function

J(ρ) is minimized with an iterative stochastic gradient descent scheme of Robbins-Monro type

[1]. After each iteration, the controller parameter vector is updated (ρn → ρn+1), and new data

are collected on the closed loop system with this updated controller in order to estimate the

next gradient. Under some suitable assumptions [2][4], the sequence of controllers converges to

a local minimum of J(ρ).
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The IFT parameter update rule is given by

ρn+1 = ρn − γnR
−1

n estN

[

∂J

∂ρ
(ρn)

]

(2)

where γn is a positive step size and Rn is a positive definite matrix. The reader is referred to [3]

[4] for details of the algorithm to construct the gradient estimate. Here it suffices to recall that,

in order to construct estN

[

∂J
∂ρ

(ρn)
]

, first a batch

{u1(t, ρn), y1(t, ρn)}t=1,...,N of N data is collected with the controller C(q, ρn) in the loop under

normal operating conditions, i.e. with r(t) = 0. Then, this batch of data is used to construct the

signal sequence {r(t) = −Kn(q)y1(t, ρn)}t=1,...,N which is applied to the reference input of the

system (see Figure 1); this is the “special experiment”, which deviates from normal operating

conditions. It produces a second batch of input and output data {u2(t, ρn), y2(t, ρn)}t=1,...,N ,

which are used to construct the following estimates of the gradients of u1(t, ρn) and y1(t, ρn):

est

[

∂u1

∂ρ
(t, ρn)

]

=
1

Kn(q)

∂C

∂ρ
(q, ρn) u2(t, ρn) ,

est

[

∂y1

∂ρ
(t, ρn)

]

=
1

Kn(q)

∂C

∂ρ
(q, ρn) y2(t, ρn) .

An estimate of the gradient of J(ρ) at ρn is then obtained as

estN

[

∂J

∂ρ
(ρn)

]

=
1

N

N
∑

t=1

[

y1(t, ρn)est

[

∂y1

∂ρ
(t, ρn)

]

+ λu1(t, ρn)est

[

∂u1

∂ρ
(t, ρn)

]]

. (3)

The choice of the prefilter Kn(q) is a degree of freedom of the algorithm and affects the signal

to noise ratio in the special experiment.

The sequence of parameters ρn converges to a local minimum of J(ρ). In [3], under some

suitable technical assumptions, the following characterization of the asymptotic accuracy of the

method was established. Let ρ̄ denote the local minimizer of J(ρ) to which the sequence ρn

converges and H(ρ̄) denote the Hessian of J(ρ) around ρ̄. Let the sequence of step sizes be

given by γn = a
n

where a is a positive constant, let the sequence Rn converge to a constant

positive definite R, and let the covariance matrix Cov
[

estN

[

∂J
∂ρ

(ρ̄)
]]

be positive definite.

Then, the sequence of random variables
√

n(ρn − ρ̄) converges in distribution to a normally
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distributed zero mean random variable with covariance matrix

Σ = a2

∫ ∞

0

eAtR−1Cov

[

estN

[

∂J

∂ρ
(ρ̄)

]]

R−1eAT tdt, (4)

i.e.
√

n(ρn − ρ̄)
D→ N (0, Σ), where A = 1

2
I − aR−1H(ρ̄).

The asymptotic accuracy of IFT thus depends on the covariance of the gradient estimate.

This quantity in turn can be influenced by the prefilter Kn(q). In [3] an asymptotic, with

respect to the number of data N , expression for this covariance was derived. It is given by

lim
N→∞

NCov

[

estN

[

∂J

∂ρ
(ρn)

]]

= Ξ[Kn] + Π (5)

where

Ξ[Kn] =
1

2π

∫ π

−π

|S(ejω, ρn)|4Φ2
v(ω)

|Kn(ejω)|2
[

1 + λ|C(ejω, ρn)|2
]2 ∂C

∂ρ
(ejω, ρn)

∂C∗

∂ρ
(ejω, ρn)dω . (6)

and Π is a constant matrix which does not depend on the prefilter Kn(q). In [3] a frequency

domain expression for Π was also derived. However, for the objective of designing the prefilter

the expression of Π is not specifically of interest.

3 Design of the optimal prefilter

In this section we propose a criterion for the design of the prefilter Kn(q) and we deliver the

expressions of the corresponding optimal prefilter. We assume that the current controller is

near the optimal one. Therefore, in order to construct a design criterion for the prefilter, one

can employ the asymptotic covariance results given in Section 3.

3.1 The design criterion

Let us take E[J(ρn)] − J(ρ̄) as a measure of quality of the controller C(ρn). Note that this

measure is positive by definition of ρ̄. Denote ∆ρ̄n = ρn− ρ̄, then, expanding J(ρ) into a Taylor

series around ρ̄ and retaining only terms up to second order, we obtain E[J(ρn)] − J(ρ̄) ≈

0.5 · E
[

∆ρ̄T
nH(ρ̄)∆ρ̄n

]

(notice that J(ρ) is analytical for ρ = ρ̄ since it is the integral of
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a function that analitically depends on ρ). In the previous section we saw that
√

n∆ρ̄n is

asymptotically normally distributed with zero mean and covariance Σ given by (4). Let us now

adopt the choice R = H(ρ̄), i.e. we consider a Gauss-Newton scheme. Then the asymptotic

covariance of
√

n∆ρ̄n becomes

Σ =
a2

2a − 1
R−1Cov

[

estN

[

∂J

∂ρ
(ρ̄)

]]

[

R−1
]T

. (7)

This yields

lim
n→∞

n · E
[

∆ρ̄T
nH(ρ̄)∆ρ̄n

]

=
a2

2a − 1
Trace

[

Cov

[

estN

[

∂J

∂ρ
(ρ̄)

]]

[

R−1
]T

]

. (8)

We shall take this expression as the criterion to be minimized for the design of the optimal

prefilter.

There are different methods to satisfy the condition R = H(ρ̄). A classical method to obtain

a sequence of estimated matrices Rn which converges to the Hessian is to fit a regression model

using the gradient estimates obtained in the previous iterations; see [7, 8]. In practice, in order

to use (8) as a criterion for the design of the optimal filter, at the iteration n one has to replace

the optimal parameter ρ̄ on the right-hand side by the current parameter ρn, since the prefilter

is estimated from data obtained under the current operating conditions (as will be shown in the

next subsection). In the same way, R must be replaced by the current estimate of the Hessian

Rn. These approximations are reasonable, since the procedure described in the present note is

for the case where the current controller is near the optimal controller. It aims at achieving

optimal asymptotic accuracy of the expected control performance cost.

3.2 The optimal prefilter

The optimal prefilter at iteration n is the filter Kn that minimizes the criterion (8) with ρ̄

replaced by ρn: it minimizes the weighted trace of the covariance of the gradient estimate. In

order to obtain a bounded solution we need to restrict the gain of the prefilter. A straightforward

constraint is a bound on the energy of the reference signal r2
n(t), i.e. on the input of the second

experiment. This bound represents the level of acceptable perturbation to the normal operating
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conditions during the second experiment . We thus arrive at the following optimization problem:

Kopt
n = arg min

K
Trace

{

R−1

n Cov

[

estN

[

∂J

∂ρ
(ρn)

]]}

subject to Var
[

r2

n(t)
]

≤ α,

where α is selected by the user. By using (5), and recalling that Π does not depend on the

prefilter, we can rewrite the optimal prefilter design problem as follows:

Kopt
n = arg min

K
Trace

{

R−1

n Ξ(Kn)
}

subject to Var
[

r2

n(t)
]

≤ α . (9)

The explicit solution of this problem is characterized by the following proposition.

Proposition 3.1 The optimal prefilter solving (9) is given by:

|Kopt
n (ejω)|4 = const · |S(ejω, ρn)|2Φv(ω)

[

1 + λ|C(ejω, ρn)|2
]2

(10)

× Trace

{

R−1

n

∂C

∂ρ
(ejω, ρn)

∂C∗

∂ρ
(ejω, ρn)

}

,

where the constant is determined by the design restriction.

Proof See Appendix. 2

In order to compute the optimal prefilter in practice, one needs an estimate of the unknown

spectral density |S(ejω, ρn)|2Φv(ω) of the signal y(t, ρn) which is the output of the plant under

normal operating conditions, i.e. with zero reference signal. The estimate can be obtained

with standard techniques in the time or in the frequency domain [5, 6]. Note that since the

data needed to estimate this quantity do not stem from a special experiment they are available

in large amounts. In fact periods of normal operating conditions can be interlaced with the

IFT special experiments. By assuming these periods to be much longer than the length of the

special experiment from which the gradient is estimated, the contribution of the variability in

the estimate of |S(ejω, ρn)|2Φv(ω) to the variability of the gradient estimate can be considered

as being negligible. Having an estimate of |S(ejω, ρn)|2Φv(ω) one can construct the magnitude

of the optimal prefilter by calculating the 4-th root of the right-hand side of (10). Then, there

exist standard tools to approximate a given magnitude function by a stable minimum phase

filter.
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4 Simulation example

Consider the system described by

G(q) =
q−1 − 0.5q−2

1 − 0.3q−1 − 0.28q−2
, with noise spectrum Φv(ω) =

∣

∣

∣

∣

1

1 + 0.9e−jω

∣

∣

∣

∣

2

.

Let the class of controllers be C(q, ρ) = ρ1 + ρ2q−1 and set λ = 0.6 in (1). The (local)

minimizer ρ̄ = [−0.69058 0.33105] has been found numerically. The Hessian of J(ρ) at ρ̄ is

given by

H(ρ̄) =







1.87521 0.22642

0.22642 2.44438






.

Let us assume that the constraint on the reference signal r2
n(t) during the IFT procedure is

that this signal has to have one half the energy of the output of the first experiment. We

quantify the performance improvement obtained with the optimal filter (10) with respect to

the constant prefilter when the criterion E
[

∆ρ̄T
nH(ρ̄)∆ρ̄n

]

is used, both filters satisfying the

same energy constraint. We consider the IFT procedure with experiment length N = 512, step

sizes γn = 1/n and Rn = H(ρ̄).

We first calculate the theoretical values of Σ for the two cases by using the numerical value

of H(ρ̄) and the complete asymptotic expression of Σ derived in [3]. For the constant prefilter

we obtain

Σ = 10−2 ·







2.74 −2.02

−2.02 1.71







and correspondingly lim
n→∞

n · E
[

∆ρ̄T
nH(ρ̄)∆ρ̄n

]

= 8.39 · 10−2. As for the optimal prefilter, we

obtain

Σ = 10−2 ·







1.87 −1.21

−1.21 1.16







and lim
n→∞

n · E
[

∆ρ̄T
nH(ρ̄)∆ρ̄n

]

= 5.79 · 10−2. The improvement in the asymptotic value of

E
[

∆ρ̄T
nH(ρ̄)∆ρ̄n

]

between the two cases is 31%.

In order to confirm the validity of these theoretical values, we have performed a Monte-Carlo

simulation. The parameter vector ρ8 has been extracted 1024 times. The extractions have been
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Figure 2: the parameter ρ̄ (•), the 1024 pa-
rameters ρ8 obtained using the constant filter
(×) and the contour lines of J(ρ).

Figure 3: the parameter ρ̄ (•), the 1024 pa-
rameters ρ8 obtained using the optimal filter
(×) and the contour lines of J(ρ).

performed by starting the IFT procedure at ρ0 = ρ̄, in order to eliminate the transient effect of

the initial condition, and then running 8 iterations of the IFT parameter vector update up to

the parameter vector ρ8. The 1024 parameter vectors obtained this way are shown in Figure 2

for the case of the constant prefilter. The corresponding sampled estimate of Σ is

Σ̂ = 10−2 ·







2.64 −1.94

−1.94 1.65







and the corresponding sampled estimate of 8 · E
[

∆ρ̄T
8 H(ρ̄)∆ρ̄8

]

is 8.38 · 10−2. The parameter

vectors obtained for the case of the optimal prefilter are shown in Figure 3. In this case, the

sampled estimate of Σ is

Σ̂ = 10−2 ·







1.93 −1.21

−1.21 1.18







and for 8 · E
[

∆ρ̄T
8 H(ρ̄)∆ρ̄8

]

we obtain 5.98 · 10−2. The estimated improvement between the

two cases hence equals 31.5%, as predicted by the theoretical calculations.

5 Conclusions

In this contribution we have shown how the performance of the IFT algorithm for disturbance

rejection can be improved by prefiltering the reference input for the special experiment. The
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effect of the prefilter amounts to decreasing the contribution of the process noise in the special

experiment to the error in the gradient estimate. Hence the prefilter will be the more effective

the bigger the contribution of the process noise in the special experiment is. This is the case if

a low energy level of the reference signal for the special experiment is required.
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A Appendix

Proof of Proposition 3.1

We address the following optimization problem. By choice of Kn minimize

I1 =
1

2π

∫ π

−π

S(ρn)|4Φ2
v

|Kn|2
|
[

1 + λ|C(ρn)|2
]2

Trace

{

R−1

n

∂C

∂ρ
(ρn)

∂C∗

∂ρ
(ρn)

}

dω

subject to

I2 =
1

2π

∫ π

−π

|Kn|2|S(ρn)|2Φv dω ≤ α.

By the Cauchy-Schwarz inequality we have

I1I2 ≥
(

1

2π

∫ π

−π

|S(ρn)|3Φ
3

2

v (1 + λ|C(ρn)|2)
√

Trace

{

R−1
n

∂C

∂ρ
(ρn)

∂C∗

∂ρ
(ρn)

}

dω

)2

and equality holds if and only if the integrands in the expressions for I1 and I2 are proportional.

It follows that Kn realizes the minimum of I1 if and only if I2 = α and there exists a positive

constant β such that

|Kn|2|S(ρn)|2Φv ≡ β
|S(ρn)|4Φ2

v

|Kn|2
[

1 + λ|C(ρn)|2
]2

Trace

{

R−1

n

∂C

∂ρ
(ρn)

∂C∗

∂ρ
(ρn)

}

.

Proposition 3.1 now follows immediately. 2
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