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Abstract

Iterative Feedback Tuning (IFT) is a widely used procedure for controller tuning. It
is a sequence of iteratively performed special experiments on the plant interlaced with
periods of data collection under normal operating conditions. In this paper we derive the
asymptotic convergence rate of IFT for disturbance rejection, which is one of the main
fields of application.
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1 Introduction

Iterative Feedback Tuning (IFT) is a data-based method for the tuning of restricted complexity

controllers. It has proved to be very effective in practice and is now widely used in process

control, often for disturbance rejection. The reader is referred to [6] for a recent overview. The

objective of IFT is to minimize a quadratic performance criterion. IFT is a stochastic gradient

descent scheme in a finitely parameterized controller space. The gradient of the cost function at

each step is estimated from data. These data are collected with the actual controller in the loop.

Under suitable assumptions the algorithm converges to a local minimum of the performance

criterion. For more details of the procedure see [7].

In this paper we provide an analytic expression for the asymptotic convergence rate of IFT

for a disturbance rejection. The convergence rate depends on the covariance of the gradient

estimates. Therefore, the calculation of this covariance is a part of our analysis.

The remainder of the paper is structured as follows. In the next section we summarize the

details of the IFT algorithm for disturbance rejection. In Section 3 we derive an expression

for the asymptotic convergence rate dependent on the covariance of the gradient estimates. In

Section 4 the asymptotic expression of this covariance is calculated. Conclusions are given in

Section 5. The Appendix contains all the technical proofs.

2 IFT for disturbance rejection

In this section we review the IFT method for the disturbance rejection problem with a classical

LQ criterion. For a more general and detailed presentation of IFT the reader is referred to

[7, 8].
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Figure 1: The control system under normal operating conditions.

Consider a SISO discrete time system described by

y(t) = G(q)u(t) + v(t) , (1)

where y(t) is the output, u(t) is the input, G(q) is a linear time-invariant transfer function, with

q being the shift operator, and v(t) is the process disturbance, assumed to be quasistationary

with zero mean and spectral density Φv(ω). The transfer function G(q) and the disturbance

spectrum Φv(ω) are unknown.

Consider the feedback loop around G(q) depicted in Figure 1, where C(q, ρ) is a one-degree-

of-freedom controller belonging to a parameterized set of controllers with parameter ρ ∈ Rn.

The transfer function from v(t) to y(t, ρ) is named sensitivity function and is denoted by S(q, ρ).

We assume that in the control system of Figure 1 the reference signal r(t) is set at zero under

normal operating conditions. Our goal is to tune the controller C(q, ρ) so that the variance of

the noise-driven closed loop output is as small as possible subject to a penalty on the control

effort. Thus we want to find a minimizer for the cost function

J(ρ) =
1

2
E
[

y(t, ρ)2 + λu(t, ρ)2
]

, (2)

where λ ≥ 0 is chosen by the user. The IFT method yields an approximate solution to the

above problem. IFT is based on the possibility of obtaining an unbiased estimate of the gradient

∂J
∂ρ

(ρ) of the cost function at ρ = ρn from data collected from the closed-loop system with the
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controller C(ρn) operating on the loop. The cost function J(ρ) can then be minimized with

an iterative stochastic gradient descent scheme of Robbins-Monro type [1]. In that scheme, a

sequence of controllers C(q, ρn) is computed and applied to the plant. In the n-th iteration

step, data obtained from the system with the controller C(ρn) operating on the loop are used

to construct the next parameter vector ρn+1. The data-based iterative procedure is as follows.

IFT PROCEDURE

1. Collect a sequence {u1(t, ρn), y1(t, ρn)}t=1,...,N of N input-output data under normal oper-

ating conditions, i.e. without reference signal.

2. Collect a sequence {u2(t, ρn), y2(t, ρn)}t=1,...,N of N input-output data by performing a

special experiment with reference signal

r2
n(t) = −Kn(q)y1(t, ρn)

where Kn(q) is any stable minimum-phase prefilter.

3. Construct the estimates of the gradients of u1(t, ρn) and y1(t, ρn) as

est

[

∂u1

∂ρ
(t, ρn)

]

=
1

Kn(q)

∂C

∂ρ
(q, ρn) u2(t, ρn) ,

est

[

∂y1

∂ρ
(t, ρn)

]

=
1

Kn(q)

∂C

∂ρ
(q, ρn) y2(t, ρn) .

4. Form the estimate of the gradient of J(ρ) at ρn as

estN

[

∂J

∂ρ
(ρn)

]

=
1

N

N
∑

t=1

[

y1(t, ρn)est

[

∂y1

∂ρ
(t, ρn)

]

+ λu1(t, ρn)est

[

∂u1

∂ρ
(t, ρn)

]]

.
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5. Calculate the new parameter vector ρn+1 according to

ρn+1 = ρn − γnR
−1
n estN

[

∂J

∂ρ
(ρn)

]

where γn is a positive step size and Rn is a symmetric positive definite matrix.

We recall that the estimate of the gradient calculated in step 4 is unbiased under the

assumption that the disturbance realizations v1
n(t), in the first experiment, and v2

n(t), in the

second experiment, are independent. This assumption can be considered fulfilled if the two

experiments in the algorithm are sufficiently separated in time. In the procedure, the sequences

γn and Rn are basically left to the choice of the user. The matrix Rn should be an approximation

of the Hessian of the cost function in ρn. A biased estimate of the Hessian, obtained from data,

has been proposed in [7]. The prefilter Kn(q) is also a degree of freedom in the algorithm; it

affects the signal to noise ratio in the second experiment. Two possible choices for prefilter

Kn(q), derived from the results presented in the present paper, are discussed in [4] and [3],

respectively.

3 Analysis of the convergence rate of IFT

In this section we quantify the effect of the variability of the gradient estimate on the asymptotic

convergence rate of the algorithm. The proposition below derives from a more general version of

the same proposition for Robbins-Monro processes as can be found in [9, 11]. In the proposition

we assume convergence of the sequence ρn. The reader is referred to [2, 5] for a detailed proof

of convergence.

Proposition 3.1 Assume that the sequence ρn converges to a local isolated minimum ρ̄ of J(ρ).

Let H(ρ̄) be the Hessian of J(ρ) at ρ = ρ̄. Suppose further that the following conditions hold.
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1. The sequence γn of step sizes is given by γn = a
n
, where a is a positive constant. There

exists an index n̄ and a matrix R such that Rn = R for all n > n̄.

2. The matrix A = 1
2
I−aR−1H(ρ̄) is stable, i.e. the real parts of its eigenvalues are negative.

3. The covariance matrix Cov
[

estN

[

∂J
∂ρ

(ρ)
]]

at ρ = ρ̄ is positive definite.

Then the sequence of random variables
√

n(ρn − ρ̄) converges in distribution to a normally

distributed zero mean random variable with covariance matrix

Σ = a2

∫ ∞

0

eAtR−1Cov

[

estN

[

∂J

∂ρ
(ρ̄)

]]

R−1eAT tdt, (3)

i.e.
√

n(ρn − ρ̄)
D→ N (0, Σ). 2

Proposition 3.1 shows that the asymptotic accuracy of the parameter estimate crucially depends

on the covariance of the gradient estimate.

4 The covariance of the gradient estimate

In this section we compute an explicit expression for the covariance of estN

[

∂J
∂ρ

(ρn)
]

. We show

that this covariance can be written as the sum of two terms. These two contributions originate

in the variability of the noise realizations in the first and second experiment of iteration n,

respectively.

It can be easily seen that the estimates of the gradients of u1(t, ρn) and y1(t, ρn) obtained

in Step 3 of the IFT procedure are corrupted by the realization v2
n(t) of the noise in the second

experiment as follows

est

[

∂u1

∂ρ
(t, ρn)

]

=
∂u1

∂ρ
(t, ρn) − S(q, ρn)

Kn(q)
C(q, ρn)

∂C

∂ρ
(q, ρn) v2

n(t) ,

est

[

∂y1

∂ρ
(t, ρn)

]

=
∂y1

∂ρ
(t, ρn) +

S(q, ρn)

Kn(q)

∂C

∂ρ
(q, ρn) v2

n(t) .
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Therefore we can separate estN

[

∂J
∂ρ

(ρn)
]

as

estN

[

∂J

∂ρ
(ρn)

]

= SN(ρn) + EN(ρn) , with

SN(ρn) =
1

N

N
∑

t=1

[

y1(t, ρn)
∂y1

∂ρ
(t, ρn) + λu1(t, ρn)

∂u1

∂ρ
(t, ρn)

]

,

EN(ρn) =
1

N

N
∑

t=1

[

y1(t, ρn)

[

S(q, ρn)

Kn(q)

∂C

∂ρ
(q, ρn) v2

n(t)

]

+ λu1(t, ρn)

[

−C(q, ρn)S(q, ρn)

Kn(q)

∂C

∂ρ
(q, ρn) v2

n(t)

]]

.

The term SN(ρn) corresponds to the sampled estimate of the gradient of J(ρ). This term is

entirely dependent on the realization v1
n(t) of the noise in the first experiment. The second

term EN(ρn) is an error due to the corruption of the estimates of the gradients of u1(t, ρn) and

y1(t, ρn) by v2
n(t). The covariance of estN

[

∂J
∂ρ

(ρn)
]

is described in the following proposition,

which is the main result of this paper.

Proposition 4.1

1.The following relation holds

Cov

[

estN

[

∂J

∂ρ
(ρn)

]]

= Cov [SN(ρn)] + Cov [EN(ρn)] .

2. The following asymptotic frequency-domain expression of Cov [EN(ρn)] holds

lim
N→∞

NCov [EN(ρn)] =
1

2π

∫ π

−π

1

|Kn(ejω)|2 |S(ejω, ρn)|4
[

1 + λ|C(ejω, ρn)|2
]2

× ∂C

∂ρ
(ejω, ρn)

∂C∗

∂ρ
(ejω, ρn) Φ2

v(ω)dω .

3. Under the additional assumption that the 4th order cumulants of the noise v are zero (e.g

the noise is normally distributed), the following asymptotic frequency-domain expression of
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Cov [SN(ρn)] holds

lim
N→∞

NCov [SN(ρn)] = 2 · 1

2π

∫ π

−π

|S(ejω, ρn)|4Φ2
v(ω)

× Re

{

[

G(ejω) − λC̄(ejω, ρn)
]

S(ejω, ρn)
∂C

∂ρ
(ejω, ρn)

}

× Re

{

[

G(ejω) − λC̄(ejω, ρn)
]

S(ejω, ρn)
∂C

∂ρ
(ejω, ρn)

}T

dω .

Proof: see Appendix. 2

Proposition 4.1 shows that the covariance of the gradient estimate can be represented as the

sum of the covariances of the separate contributions SN(ρn) and EN(ρn) (i.e. SN(ρn) and

EN(ρn) are uncorrelated). Both Cov [SN(ρn)] and Cov [EN(ρn)] decay asymptotically as 1/N

as the number of data tends to infinity. Their asymptotic frequency domain expressions as

N → ∞ have been given.

5 Conclusions

In this contribution we have investigated the asymptotic accuracy of the IFT algorithm in the

case of disturbance rejection. The result presented in this paper has been used to derive optimal

choices for the prefilter Kn(q) in two different situations. In [4], we consider the situation where

the current controller is near the optimal controller, and we derive a prefilter which optimally

increases the asymptotic accuracy of IFT under a constraint on the energy used during the

special feedback experiment. In [3] we optimize the prefilter for accuracy of a single IFT step,

under the same energy constraint. This second prefilter can be used when the current controller

can be considered far from the optimal one (e.g. during the initial steps of the procedure).
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A Proof of Proposition 4.1

In order to prove the Proposition, we shall need the following technical results.

Lemma A.1 Let e, f be two independent realizations of a zero mean white noise with variance

σ2. Let A,C be stable transfer functions and B,D be column vectors of stable transfer functions

of equal length. Let a = Ae, b = Bf, c = Ce, d = Df be signals obtained by filtering e and f

through A,B,C,D. Then

lim
N→∞

E

[

1

N

N
∑

t,s=1

a(t)b(t)c(s)d(s)T

]

= σ4 1

2π

∫ π

−π

ΦacΦ̄bdT dω. (4)

Here Φgh denotes the cross-spectrum of the signals g, h.

Proof: The assertion is a direct consequence of the independence of e, f and Parseval’s

Theorem. 2

Lemma A.2 Let A,C be stable transfer functions and B,D be column vectors of stable transfer

functions of equal length. Let v be a quasistationary zero mean stochastic process satisfying (6).

Let a = Av, b = Bv, c = Cv, d = Dv be signals obtained by filtering v through A,B,C,D and

let α, β, γ, δ be fixed delays. Then

Ē[a(t − α)b(t − β)c(t − γ)d(t − δ)T ] = Rab(β − α)RcdT (δ − γ) + Rac(γ − α)RbdT (δ − β)

9



+ Rbc(δ − α)RadT (γ − β), (5)

where the time average is taken with respect to t and Rgh(τ) denotes Ē[g(t)h(t − τ)].

Proof: The relation is easily verified by straightforward calculation using the fact that the

autocorrelation coefficients of the signal v satisfy equation (6). 2

Proof of Part 1 of Proposition 4.1

Since EN(ρn) has zero mean, we obtain

Cov [SN(ρn) + EN(ρn)] = Cov [SN(ρn)] + E
[

EN(ρn) · SN(ρn)T
]

+ E
[

EN(ρn) · SN(ρn)T
]T

+ Cov [EN(ρn)] .

Hence we have to show that SN(ρn) and EN(ρn) are uncorrelated. Note that SN(ρn) depends

only on the noise realization v1
n(t). By independence of v1

n(t) and v2
n(t) we have

E
[

EN(ρn) · SN(ρn)T
]

=
1

N

N
∑

t=1

E
[

y1(t, ρn)SN(ρn)
]

E

[

S(q, ρn)

Kn(q)

∂C

∂ρ
(q, ρn) v2

n(t)

]

+
λ

N

N
∑

t=1

E
[

u1(t, ρn)SN(ρn)
]

E

[

−C(q, ρn)S(q, ρn)

Kn(q)

∂C

∂ρ
(q, ρn) v2

n(t)

]

.

But E
[

S(q,ρn)
Kn(q)

∂C
∂ρ

(q, ρn) v2
n(t)

]

= E
[

−C(q,ρn)S(q,ρn)
Kn(q)

∂C
∂ρ

(q, ρn) v2
n(t)

]

= 0 for all t, because v2
n(t) has

zero mean. It follows that E
[

EN(ρn) · SN(ρn)T
]

= 0. 2

Proof of Part 2 of Proposition 4.1

The claim follows from Lemma A.1 by writing Cov [EN(ρn)] as a double sum over four separate

terms and by inserting the cross-spectra of the corresponding transfer functions. 2

Proof of Part 3 of Proposition 4.1

The assumption that the 4th order cumulants of the noise v are zero means that the 4th order

properties of v are related to its second order properties in the same way as for a Gaussian
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stochastic process. To be more precise, let us denote the autocorrelation function Ē[v(t)v(t−τ)]

of v by Rv(τ). Then this assumption can be rewritten as

Ē[v(p + t)v(q + t)v(r + t)v(s + t)] = Rv(p − r)Rv(q − s) + Rv(p − s)Rv(q − r)

+ Rv(p − q)Rv(r − s) ∀ p, q, r, s. (6)

Here the time average is taken with respect to t and the numbers p, q, r, s are assumed to be

arbitrary, but fixed. Relation (6) is not very restrictive. It is satisfied e.g. for filtered zero

mean i.i.d. white noise, if the probability density function of the white noise has zero kurtosis

(”peakedness”, see e.g. [10]). This is equivalent to the condition that the 2nd and 4th moments

m2, m4 of this probability density function satisfy the relation m4 = 3m2
2. This relation holds

e.g. for a normal distribution.

Consider now the notations and assumptions of Lemma A.2. For notational convenience,

define a column vector QN by

QN =
1

N

N
∑

t=1

[a(t)b(t) + c(t)d(t)] . (7)

and notice that SN has the same structure as QN . We have

Cov [QN ] = E[QNQT
N ] − E[QN ]E[QN ]T .

By (5), we obtain

E[QNQT
N ] =

1

N2

N
∑

t,s=1

[Rab(0)RabT (0) + Raa(t − s)RbbT (t − s) + Rba(t − s)RabT (t − s)

+ Rab(0)RcdT (0) + Rac(t − s)RbdT (t − s) + Rbc(t − s)RadT (t − s)

+ Rcd(0)RabT (0) + Rca(t − s)RdbT (t − s) + Rda(t − s)RcbT (t − s)

+ Rcd(0)RcdT (0) + Rcc(t − s)RddT (t − s) + Rdc(t − s)RcdT (t − s)] .
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On the other hand, we have

E[QN ]E[QN ]T = Rab(0)RabT (0) + Rab(0)RcdT (0) + Rcd(0)RabT (0) + Rcd(0)RcdT (0) .

Subtracting above equations and taking the limit N → ∞ yields

lim
N→∞

NCov [QN ] =
∞
∑

τ=−∞

[Raa(τ)RbbT (τ) + Rba(τ)RabT (τ) + Rac(τ)RbdT (τ)

+ Rbc(τ)RadT (τ) + Rca(τ)RdbT (τ) + Rda(τ)RcbT (τ)

+ Rcc(τ)RddT (τ) + Rdc(τ)RcdT (τ)] .

Applying the formula

+∞
∑

τ=−∞

Rab(τ)Rcd(τ) =
1

2π

∫ π

−π

Φab(ω)Φ̄cd(ω) dω

componentwise and inserting the expressions for the cross-spectra finally furnishes the claim of

Proposition 4.1 with the obvious substitutions applying. 2
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