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Via Branze 38, 25123 Brescia, Italy
E-Mail: campi@ing.unibs.it

Internet: http://bsing.ing.unibs.it/~campi
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Abstract

Virtual Reference Feedback Tuning (VRFT) is a general methodology for the design
of a controller when the plant transfer function is unknown, proposed by the same
authors in previous contributions. It is a direct method that aims at minimizing a
control cost of the 2-norm type by using a batch of data collected from the plant. The
minimization is conducted in one-shot (the method is not iterative) and this makes
VRFT particularly handy in many practical applications.

This paper presents an application of VRFT to a benchmark active suspension system.
As a by-product, this paper also delivers a new extension of VRFT that permits to
cope with constraints on the input-sensitivity.
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1 Introduction

VRFT (Virtual Reference Feedback Tuning) is a method for the direct design of a controller

based on a set of input-output measurements with no need for an intermediate step where

a model of the plant is identified. It was originally introduced for 1-degree of freedom con-

trollers in [6, 20, 7] and then extended to a 2-degree of freedom context in [21, 22].

In this paper, VRFT is applied to a benchmark control problem where one has to design

a controller for an active suspension system (see Section 3 for a precise description of the

problem).

One aspect that is particularly emphasized in the benchmark is that the controller should be

of restricted complexity. As a matter of fact, the controller complexity is a very important

issue in real applications, either because of constraints in the computation time and/or in

the hardware or just because simple controllers are easier to understand. Many controller

reduction techniques have been proposed in the literature mainly belonging to two different

approaches: i) a-priori reduction of the model complexity ([2, 4]); and ii) a-posteriori reduc-

tion of the controller complexity ([3]). Along the first approach, one first reduces the order

of the model in such a way that by applying standard controller design techniques one then

obtains a simple controller. The main inconvenience of this approach is that it is difficult

to keep control on how the approximation introduced in the model reduction step spreads

in the subsequent controller design step. The second approach does not suffer from this

drawback but calls for a close attention to preserve the properties of the original controller.

In connection with this restricted controller complexity issue, it is worth mentioning that

with VRFT the problem disappears because this method allows the designer to select a

controller class of desired complexity at the start. The reason why this is possible is that

VRFT is a direct method that does not call for a plant model identification.

Other direct methods where the controller class is selected at the start have recently ap-

peared in the literature, see e.g. [18, 17, 28, 15, 14, 16]. In contrast, the literature on

indirect methods is truly vast and includes, to cite but a few, the contributions [1, 27, 9, 23,

24, 5, 13, 10, 29, 30, 8].

The paper is organized as follows. The VRFT method is presented in Section 2 and its

application to the benchmark problem is discussed in Section 3. The paper is closed by a

short section of conclusions.
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Figure 1: the control system.

2 A review of the Virtual Reference Feedback Tuning

(VRFT) method

In this section, a review of the VRFT method is presented (the reader is referred to [6, 20,

21, 7, 22] - see also [25, 26, 11, 12] - for a more comprehensive presentation of the method).

VRFT was initially conceived for the shaping of the output-sensitivity of a control system.

Here, motivated by the benchmark application, we also introduce an extension of the method

in order to cope with the input-sensitivity as well. Such an extension is presented in this

paper for the first time.

Consider the control system depicted in Figure 1. It is a 1-degree-of-freedom SISO control

architecture, where P (z) is the plant and C(z, θ) is the controller. θ is a vector of parameters

that has to be selected by the controller designer. P (z) is unknown, that is no mathematical

description of the plant is available.

Our presentation is specialized to the situation where the control goal is to regulate the sys-

tem output to zero (that is no tracking of a reference signal is required) since this is the actual

situation in the benchmark problem. Thus, y0 = 0 in Figure 1. Throughout, the transfer

function form d to y is named the output-sensitivity and that form d to u the input-sensitivity.

2.1 Standpoint in the VRFT method

VRFT is a method for the direct design of a controller when no mathematical description

of the plant is known. This means that knowledge of P (z) in Figure 1 is not required. The

only information the method uses is a set of I/O data {u(t), y(t)}t=1,...,N collected from the

plant. Thus, in the benchmark application (see Section 3), our design will be based only on

the files of input-output data provided, while no use of the plant model will be made.
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2.2 Output-sensitivity shaping

In VRFT, the problem of shaping the output-sensitivity is stated as a model reference control

problem in the 2-norm. Precisely, given a reference-model for the output-sensitivity S(z)

and a class of controllers C(z, θ), the objective is to select the parameter vector θ which

minimizes the cost

JS(θ) =

∥

∥

∥

∥

∥

[

S(z) −
1

1 + P (z)C(z, θ)

]

WS(z)

∥

∥

∥

∥

∥

2

2

, (1)

where WS(z) is a weighting function chosen by the designer (recall that ‖H(z)‖2
2 :=

1

2π

∫ π
−π |H(ejω)|2dω).

VRFT provides a solution to this problem when P (z) is not known and a set of input-output

measurements collected from the plant is available.

The main features of VRFT are as follows:

• requires just a single set of I/O data (in fact, when one also considers the input-

sensitivity, a second experiment is required);

• does not require the identification of a mathematical model of the plant (i.e. it is a

direct method);

• determines the controller parameters in one-shot, with no need for iterations;

• the controller complexity can be fixed in the beginning when the controller class is

selected. So, no controller complexity reduction is required;

• the controller provided by VRFT is only an approximate minimizer of (1). However,

by virtue of the way the method has been designed, such a minimizer is close to the

optimum in standard situations.

We now describe how the VRFT method works.

The selection of θ through VRFT turns out to be particularly simple for linear-in-the-

parameters controllers, namely:

C(z, θ) = βT (z)θ , (2)

where β(z) = [β1(z) β2(z) · · ·βn(z)]T is a vector of linear discrete-time transfer functions and

θ = [ϑ1 ϑ2 · · ·ϑn]T ∈ Rn is an n-dimensional vector of real parameters. Since the adopted
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controller in the benchmark has this structure, here we restrict attention to this situation.

The main idea behind VRFT is to introduce a new control cost - named JV RFT (θ) - which

exhibits two properties, the first of which is crucial for the applicability of the method:

– it is computable with no knowledge of the plant model P (z);

– it is quadratic in θ, so that the minimization is easy to carry out.

To describe the idea, a little notation is in order. Let

F (z, θ) :=

[

S(z) −
1

1 + P (z)C(z, θ)

]

WS(z);

G(z, θ) := 1 + P (z)C(z, θ) .

Then, the cost function JS(θ) can be written as

JS(θ) = ‖F (z, θ)‖2

2
. (3)

Further, we let

JV RFT (θ) = ‖L(z)G(z, θ)F (z, θ)‖2

2
(4)

where L(z) is a filter, whose choice is discussed below.

The name Virtual Reference Feedback Tuning for cost (4) stems from an interpretation of it

given in terms of a virtual reference constructed from data as explained in [6, 20, 21].

Cost (4) is the asymptotic counterpart (as the number of data points tends to infinity) of a

cost that can be computed from a set of I/O data {u(t), y(t)}t=1,...,N with no use of P (z).

To see this, write

JV RFT (θ) =
∥

∥

∥L(z)S(z)P (z)WS(z)C(z, θ) − L(z)[1 − S(z)]WS(z)
∥

∥

∥

2

2
.

If u is filtered through the transfer function under the sign of norm, we obtain

[L(z)S(z)P (z)WS(z)C(z, θ) − L(z)[1 − S(z)]WS(z)] u(t)

= L(z)S(z)P (z)WS(z)C(z, θ)u(t) − L(z)[1 − S(z)]WS(z)u(t)

= L(z)S(z)WS(z)C(z, θ)y(t) − L(z)[1 − S(z)]WS(z)u(t),
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where in the last step we have used the fact that P (z)u(t) = y(t). Here, one should note

that this equality holds true in the context of the present application since the u − y data

provided in the benchmark have been collected with no noise acting on the system. Should

the experiment be noisy, one could apply the method as well with a bit of additional com-

plication by resorting to instrumental variable techniques, as explained in [6, 20, 21, 7, 22].

From this we see that, under standard stationarity and ergodicity conditions, the data-based

cost

JN
V RFT (θ) =

1

N

N
∑

t=1

(

L(z)S(z)WS(z)Q(z)C(z, θ)y(t) − L(z)[1 − S(z)]WS(z)Q(z)u(t)
)2

, (5)

where Q(z) is the inverse of a canonical spectral factor of u (i.e |Q|2 = 1/Φu where Φu is

the power spectral density of u and Q is stable) converges asymptotically to JV RFT (θ). In

addition, (5) is quadratic in θ if C(z, θ) is linearly parameterized as is in (2).

Now, the question arises naturally as to how we should select L(z) so that minimizing (4)

leads to an approximate minimizer of the original cost (3). The answer is what we could

expect: select L(z) = S(z). As a matter of fact, this choice corresponds to multiplying

F (z, θ) in (4) by S(z)G(z, θ) where the first term is the desired sensitivity that somehow

cancels G(z, θ), the inverse of the true sensitivity. It is important to note that this choice

has a precise mathematical motivation that goes beyond what appears at this superficial

level of description. In order to keep the main body of the paper as thin as possible, we have

been well advised to put the presentation of this mathematical motivation in an appendix

to which we refer the interested reader.

2.3 Shaping of the input-sensitivity

In this subsection we extend the method to the shaping of the input-sensitivity.

Given a reference-model U(z) for the input-sensitivity, the goal is to minimize the following

cost

JU(θ) =

∥

∥

∥

∥

∥

[

U(z) −
C(z, θ)

1 + P (z)C(z, θ)

]

WU(z)

∥

∥

∥

∥

∥

2

2

where WU(z) is a weighting function chosen by the designer.
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Again, the idea is to build a data-based cost function, which approximates JU(θ). Similarly

to JV RFT (θ), such a cost is obtained by multiplying the transfer function under the sign of

norm in JU(θ) by 1 + P (z)C(z, θ) and further allowing for a filter action L(z) (this L(z) is

different from the one used in JV RFT (θ)). This leads to

JV RFT−U(θ) =
∥

∥

∥L(z)U(z)WU (z) − L(z)[1 − U(z)P (z)]WU (z)C(z, θ)
∥

∥

∥

2

2
.

The data-based counterpart of JV RFT−U(θ) is given by:

JN
V RFT−U(θ) =

1

N

N
∑

t=1

(

L(z)U(z)WU (z)Q(z)u(t) − L(z)WU (z)Q(z)C(z, θ)[u(t) − U(z)y(t)]
)2

.

(6)

In (6), the filter L(z) that provides the best matching of JU(θ) and JV RFT−U(θ) (in the sense

that it equalizes the Hessians of an extended version of these two costs - see the Appendix

for a discussion on this matter in the case of JS(θ)) is

L(z) = 1 − U(z)P (z) (7)

(the reader can verify this by resorting to arguments similar to those developed for JS(θ) in

the Appendix).

Notice that, differently from the output-sensitivity, L(z) in (7) contains P (z) explicitly, so

that it cannot be directly implemented. Yet, we can spot a way to circumvent this difficulty.

Suppose we make a second experiment on the plant by feeding the plant with y(t). Then,

the new output is

y′(t) = P (z)y(t).

Now, cost JN
V RFT−U(θ) with L(z) = 1 − U(z)P (z) can be rewritten as

JN
V RFT−U(θ) =

1

N

N
∑

t=1

(

[1 − U(z)P (z)]U(z)WU (z)Q(z)u(t)

− [1 − U(z)P (z)]WU (z)Q(z)C(z, θ)[u(t) − U(z)y(t)]
)2

=
1

N

N
∑

t=1

(U(z)WU (z)Q(z)[u(t) − U(z)y(t)]

− WU(z)Q(z)C(z, θ)[u(t) − 2U(z)y(t) + U 2(z)y′(t)]
)2

.
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The JN
V RFT−U(θ) above is the data-based cost for the input-sensitivity shaping problem.

It is perhaps worth emphasizing that, similarly to the JS(θ) case, the plant is assumed to be

noise-free here (in fact the relation y′(t) = P (z)y(t) contains no noise term). Should the plant

be noisy, the method could still be applied by resorting to an instrumental variable variant

as we sketch in the following. Note that JN
V RFT−U(θ) is a quadratic cost, whose minimizer is

obtained by standard normal equations. In instrumental variable techniques, the regression

vector is substituted in the normal equations by a surrogate observation vector, correlated

with the original observation vector but uncorrelated with the noise part contained in it.

In our context, the surrogate observation vector can be constructed by feeding the plant a

second time with the same input u(t), and subsequently feeding back the plant with the

measured plant output. If the surrogate observation vector is constructed from the signals

collected in these extra experiments, the noise part will exhibit the desired uncorrelation

property with the noise part in the original observation vector. The cost paid, of course, is

that one needs to experiment four times on the plant, instead of two.

The idea of re-injecting the system output in the control system has been previously used

in [18, 17, 15], though to a different scope.

2.4 The design algorithm

When the design of the controller has to be performed with joint specifications on the input-

and output-sensitivity, a cost combining the two partial costs JN
V RFT (θ) and JN

V RFT−U(θ)

can be used. The corresponding VRFT method can then be summarized in a ready-to-use

algorithmic form as follows.

The design parameters which must be a-priori selected by the designer are the following:

• C(z, θ): the parametric controller class;

• S(z): the output-sensitivity reference model;

• U(z): the input-sensitivity reference model;

• WS(z): the weighting factor for the output-sensitivity;

• WU(z): the weighting factor for the input-sensitivity.

7



The algorithm is then as follows (here y(t) is assumed to be noise-free):

Design Algorithm

1. Perform an open-loop experiment on the plant and collect a set of I/0 data {u(t), y(t)}t=1,...,N ;

2. Perform a second experiment by feeding the plant with {y(t)}t=1,...,N and collect the output
{y′(t)}t=1,...,N ;

3. Identify a (high-order) model R(z) of {u(t)}t=1,...,N . Let Q(z) = R(z)−1;

4. Select the parameter vector θ̂N which minimizes the cost:

JN(θ) =
1

N

N
∑

t=1

(

S2(z)WS(z)Q(z)C(z, θ)y(t) − S(z)[1 − S(z)]WS(z)Q(z)u(t)
)2

+
1

N

N
∑

t=1

(

U(z)WU (z)Q(z)[u(t) − U(z)y(t)] − WU (z)Q(z)C(z, θ)[u(t) − 2U(z)y(t) + U 2(z)y′(t)]
)2

(8)

A few comments on the algorithm are now in order.

i) The JN(θ) cost is obtained as the sum of JN
V RFT (θ) and JN

V RFT−U(θ). Clearly, weights

different from 1 can be given to either terms in order to place more emphasis on the output-

or on the input-sensitivity shaping.

ii) As it has been noted in previous contributions, the output-sensitivity shaping can be

easily performed in a closed-loop experimental set-up. Instead, shaping the input-sensitivity

with data collected in closed-loop is not possible along the indicated approach since the plant

cannot be directly fed by y(t) so as to generate y ′(t).

iii) Though the asymptotic VRFT cost is not affected by the frequency content of the input

(provided that Φu is invertible), the finite sample cost does depend on the input content. As

a consequence - and as it is expected - VRFT exhibits better performance when the input sig-

nal is rich corresponding to frequencies of interest for control, such as the crossover frequency.

iv) If P (z) has a large gain, y(t) can be large as compared to u(t). At step 2 of the algorithm,

y(t) is re-injected in the plant to collect y′(t), and, should the plant be nonlinear (i.e. P (z)

only represents a small signal linearization), this might move the plant out of the linear
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region. In this case, a suitable scaling of y(t) can be performed: first y(t) is multiplied by a

factor ρ < 1 and ρy(t) is injected in the plant. The collected output is then multiplied by

1/ρ so as to obtain y′(t).

v) In the algorithm, C(z, θ) is kept fixed as the controller class is chosen before running

the algorithm. On the other hand, in a real application the quality of the selected con-

troller can be tested only a-posteriori by observing the control system behavior with the

controller placed in the loop. If the performance is unsatisfactory, one may have to change

the controller order and run the algorithm again. Thus, the final choice of the controller

class may come as a result of compromising performance versus complexity by trial and error.

3 Design of the controller for the active suspension

This section is devoted to the presentation of the results obtained by applying the VRFT

approach (as described in the previous section) to the benchmark active suspension system.

Specifically, in Subsection 3.1 the system and control specifications are briefly summarized,

whereas in Subsection 3.2 the VRFT design procedure and the experimental results are il-

lustrated.

3.1 Benchmark problem: system description and control specifi-
cations

The plant considered in the benchmark control problem is an active hydro-suspension system

(see e.g. [19]). This benchmark laboratory set-up is located at the Laboratoire d’Automatique

de Grenoble (Figure 3).

The main parts of the suspension system are (Figure 2):

• an elastomere cone that encloses the main chamber filled with silicon oil (1);

• an inertia chamber enclosed with a flexible membrane (2);

• a piston (3) that is fixed on a DC motor. When the position of the piston is fixed, the

suspension system is passive;

• an orifice (4) that allows oil flow between the two chambers.
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Figure 2: Representation of the benchmark
active suspension system.

Figure 3: A picture of the benchmark active
suspension system (LAG - Grenoble).

The principal idea of the active suspension is to change the elasticity of the system in or-

der to absorb the vibrations generated by the machine that we want to isolate. For the

experimental purposes the machine is replaced by a shaker which is driven by a computer

generated control signal. The output of the system is the measured voltage corresponding

to the residual force. The control input drives the position of the piston via an actuator.

The transfer function P (z) between the control input and the residual force is called the

secondary path. The magnitude Bode diagram (experimentally estimated) of the secondary

path is depicted in Figure 4. Notice that the plant has zero DC-gain, and that it is charac-

terized by many resonance peaks; the first two (main) resonance peaks are at about 30 and

170 Hz, respectively. The controller is implemented in a Matlab/Simulink PC-based digital

environment. The sampling frequency is 800Hz.

The main goal of the control system is to minimize the residual force. More in detail, the

specifications given in the benchmark are:

• the closed-loop output- and input-sensitivity functions must be bounded by the frequency-

domain functions depicted in Figure 5;

• the control architecture must have a standard 1-degree-of-freedom structure;

• the controller gain should be equal to zero at the Nyquist frequency (hence, the term
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Figure 4: Bode diagram (experimentally estimated) of the secondary path.

1 + z−1 should be incorporated in the controller);

• the order of the controller must be as low as possible (in the benchmark the issue of

tuning ”reduced-complexity” controllers is emphasized).

3.2 Controller design using VRFT and experimental results

With reference to the VRFT design algorithm summarized in Subsection 2.4, the following

design choices have been made:

• Controller structure. The selected parametric controller has a very simple all-zeros

transfer function, including the (1 + z−1) factor, namely:

C(z; θ) = (ϑ0 + ϑ1z
−1 + ϑ2z

−2 + ϑ3z
−3 + ϑ4z

−4 + ...ϑKz−K)(1 + z−1).

where K is the number of free parameters in the controller;

• Output-sensitivity reference model. The design of the output-sensitivity reference

model S(z) has been done by fitting in the frequency domain the bound defined by
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Figure 5: Bounds on output- and input-sensitivity (specs of the benchmark).

the specs with a high-order model (a 30-poles – 30-zeros IIR filter has been used). The

design of the filter has been done using standard frequency-shaping signal processing

techniques. Note that the so-obtained filter has been multiplied by a suitable gain in

order to guarantee a monic numerator and a monic denominator (it is easy to see that

the sensitivity function must have this property). The magnitude Bode diagram of the

output-sensitivity reference model used for the controller design is depicted in Figure

6;

• Input-sensitivity reference model. Similarly to the output-sensitivity, the design

of the input-sensitivity reference model U(z) has been done by fitting in the frequency

domain the bound defined by the specs with a high-order model. Even in this case the

so-obtained filter has been multiplied by an attenuating gain, in order to enforce the

fitting to a value lower than the required bound. The magnitude Bode diagram of the

input-sensitivity reference model used for the controller design is depicted in Figure 7;

• Output-sensitivity weighting function. The output-sensitivity weighting function

WS(z) has been designed to emphasize the fitting around the two ”notches” at about

30Hz and 170Hz. As a matter of fact, the shaping around the notches is the most im-

portant and critical. The magnitude Bode diagram of the output-sensitivity weighting

function used for the controller design is depicted in Figure 6;
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Figure 6: Reference model and weights for the output-sensitivity.

• Input-sensitivity weighting function. The input-sensitivity weighting function

WU(z) has been designed to emphasize the fitting at high frequency. As a matter of

fact, the fulfillment of the bound at high frequency is the most critical and challenging.

The magnitude Bode diagram of the input-sensitivity weighting function used for the

controller design is depicted in Figure 7.

The above reference models have been obtained by simply scaling the bounds for the input-

and output-sensitivity given in the benchmark specs. The weighting functions have instead

been selected so as to emphasize the frequency regions where the reference models are low

in magnitude. The reason is that a large percentage error where the reference is small has

little impact on the control cost. Moreover, these regions cover narrow bandwidths so that

they have marginal importance in the integral 2-norm cost. With these selection criteria in

place, the various choices have been readily made.

Using the design choices described above, the controller has been straightforwardly designed

using the I/O data measured on the plant and made available for the benchmark. Specif-

ically, the input signal used for open-loop excitation is a PRBS signal sampled at 800Hz.

The length of the data vector is 4096 (corresponding to 5.12 seconds of data acquisition). A

sample of 0.5s of the I/O signals measured on the plant is displayed in Figure 8. Accordingly
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Figure 7: Reference model and weights for the input-sensitivity.

to the characteristics of the measured input signal, the filter Q(z) used by VRFT has been

set to 1. Finally, for the sake of simplicity, signal y ′(t) = P (z)y(t) has been obtained by

filtering y(t) through a high-order model of the secondary path provided in the benchmark.

In this connection, it is important to point out that this choice has been made in this specific

context since such a high-order model was made available, but in real applications where a

model is not available one can directly feed the real plant with y(t) to obtain y ′(t).

The design of the controller parameters has been performed by minimizing the performance

index (8). As already pointed out, being (8) quadratic in θ, the minimization is straight-

forward. The tuning procedure has been repeated three times, in correspondence of three

different controller orders: K = 22, K = 14, and K = 6. These three controllers have been

sent to Grenoble for testing on the real plant. The results of these experiments are displayed

in the frequency-domain in Figure 9 (controller with 22 parameters), in Figure 10 (controller

with 14 parameters), and in Figure 11 (controller with 6 parameters).

From the results, the following conclusions and remarks can be drawn:

• the performance obtained by the 22-parameters controller is very good: the bound

on the output-sensitivity is almost perfectly fulfilled, and the bound on the input

sensitivity is slightly violated only at about 200 Hz;
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Figure 8: Sample of 0.5s of the I/O signal measured on the plant.

• the performance obtained by the 14-parameters controller is still quite good: notice

that the bound on the input-sensitivity is completely fulfilled, whereas the bound on

the 30Hz notch in the output-sensitivity is only slightly violated;

• the performance obtained by the 6-parameters controller is not as good as for the 22

and 14-parameters controllers, but they are still acceptable. We believe that this can

be considered a very good result, given the very low complexity of the controller.

4 Conclusions

In this paper, an application of the VRFT method to an active suspension system has been

presented. The corresponding results show that the method has been able to provide satis-

factory controllers in this context.

Among other features, VRFT allows to come up with a controller by the simple minimization

of a quadratic cost with no need for iterations (so that no repetitive experiments on the real

plant are required). Moreover, the controller complexity can be freely chosen by the designer

at the start so that one need not go through a controller complexity reduction so as to meet

specific constraints on the controller structure.
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Figure 9: Closed-loop results obtained on the benchmark system (controller with 22 parameters).
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Figure 10: Closed-loop results obtained on the benchmark system (controller with 14 parameters).
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Figure 11: Closed-loop results obtained on the benchmark system (controller with 6 parameters).
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Appendix

We discuss why and to what extent JV RFT (θ) approximate JS(θ).

We need the following definitions:

• The ideal controller C0(z)

The ideal controller C0(z) is the controller that realizes perfect matching between the

output-sensitivity and reference-model S(z), namely:

C0(z) =
1

P (z)

1 − S(z)

S(z)
.

The controller C0(z) is only used as an analysis tool. In general, it is a high-order

controller and does not belong to the selected controller class. Even more so, it is

allowed to be an improper rational function, so that, strictly speaking, it is not a

transfer function.

• The extended class of controller C+(θ+)

Let

∆C(z) = C0(z) − βT (z)θ̄

where θ̄ is the parameter vector which minimizes JS(θ) and introduce the following

extended vectors:

β+(z) = [β1(z) β2(z) · · ·βn(z) ∆C(z)]T

θ+ = [ϑ1 ϑ2 · · ·ϑn ϑn+1]
T .

Then, define an extended family of controllers as follows:

C+(z, θ+) = β+T
(z)θ+ .

Notice that C0(z) = C+(z, θ+
0 ) with θ+

0 = [θ̄T 1]T .

• The extended costs

The extended cost J+

S (θ+) is defined as
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J+

S (θ+) =

∥

∥

∥

∥

∥

[

S(z) −
1

1 + P (z)C+(z, θ+)

]

WS(z)

∥

∥

∥

∥

∥

2

2

.

Note that the difference between JS(θ) and J+

S (θ+) is that J+

S (θ+) is parameterized by

the extended family of controllers {C+(z, θ+)}. Clearly, the parameter vector θ+
0 is the

global minimizer of J+

S (θ+).

In a similar way, we define J+

V RFT (θ+) as

J+

V RFT (θ) =
∥

∥

∥L(z)F +(z, θ+)G+(z, θ+)
∥

∥

∥

2

2

where

F+(z, θ+) :=

[

S(z) −
1

1 + P (z)C+(z, θ+)

]

WS(z)

G+(z, θ+) := 1 + P (z)C+(z, θ+) .

Notice that, the two extended performance indices J+

S (θ+) and J+

V RFT (θ+) share the

same global minimizer (i.e. θ+
0 ).

Using the notation introduced above, one could think of the problem of minimizing JS(θ) as

the problem of minimizing J+

S (θ+) subject to the constraint given by the controller structure

(i.e. θ+ = [θT 0]T ) and the same thing holds for the minimization of JV RFT (θ). Thus, the

VRFT method corresponds to a constrained minimization problem where the cost shares

the same unconstrained minimizer with the original control cost.

In the following proposition, we show that if L(z) is chosen to be equal to S(z), the Hessians

of J+

S (θ+) and J+

V RFT (θ+) computed in θ+
0 coincide. In this way, the two costs not only

share the minimizer, but they also have the same shape around their common minimizer

so that the constrained minimization of J+

V RFT (θ+) leads to an approximated constrained

minimization of J+

S (θ+).

Proposition 4.1

If

L(z) = S(z),
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then:

H[J+

S (θ+)]|θ+=θ+

0

= H[J+

V RFT (θ+)]|θ+=θ+

0

.

where H denotes the Hessian. 2

Proof. In the following ∇ denotes gradient and ¯ denotes complex conjugate. Moreover, we

drop the argument ejω in order to simplify the notation.

We have

H[J+

S (θ+)] =
1

2π

∫ π

−π
H

[

∣

∣

∣F+(θ+)
∣

∣

∣

2
]

dω

=
1

2π

∫ π

−π
2Re

{

H
[

F+(θ+)
]

F̄+(θ+) + ∇
[

F+(θ+)
]

∇
[

F̄+(θ+)
]T

}

dω,

so that, being F +(θ+
0 ) = 0, we obtain

H[J+

S (θ+)]|θ+=θ+

0

=
1

2π

∫ π

−π
2Re

{

∇
[

F+(θ+)
]

|θ+=θ+

0

∇
[

F̄+(θ+)
]T

|θ+=θ+

0

}

dω. (9)

As for J+

V RFT (θ+), we have:

H[J+

V RFT (θ+)] =
1

2π

∫ π

−π
|L|2H

[

∣

∣

∣F+(θ+)G+(θ+)
∣

∣

∣

2
]

dω

=
1

2π

∫ π

−π
|L|22Re

{

H
[

F+(θ+)G+(θ+)
]

F̄+(θ+)Ḡ+(θ+)

+ ∇
[

F+(θ+)G+(θ+)
]

∇
[

F̄+(θ+)Ḡ+(θ+)
]T

}

dω,

from which, using again the fact that F +(θ+
0 ) = 0, we obtain

H[J+

V RFT (θ+)]|θ+=θ+

0

=
1

2π

∫ π

−π
|L|2|G+(θ+

0 )|22Re

{

∇
[

F+(θ+)
]

|θ+=θ+

0

∇
[

F̄+(θ+)
]T

|θ+=θ+

0

}

dω .

(10)

Comparing (9) and (10), we conclude that, if L(z) = G+(θ+
0 )−1, then the two Hessians

evaluated in θ+
0 are equal. On the other hand, by using the definition of C0(z) we also have

G+(z, θ+

0 ) = 1 + P (z)C0(z) = S(z)−1,
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and this concludes the proof. 2

A point is perhaps worth noticing in the previous proof. In principle, the filter that equalizes

the two Hessians, viz. L(z) = G+(θ+
0 )−1, depends on the unknown θ+

0 . However, such a

dependence shows up in such a fashion that L(z) actually coincides with the known S(z), a

crucial fact for the filter implementability.
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