Controller Discretisation: A Gap Metric Framework for B). Indeed, this paper is by and large devoted to establishing that

Analysis and Synthesis F(R™', Cyq) is stable and contractive if, and only @fq:
(i) lies within a pointwise gap metric distance, closely related to
Michael Cantoni and Glenn Vinnicombe the v-gap metric, fromC'; and

(ii) stabilises any LTI plant with whicl® achieves a certain level

Abstract— Although techniques for directly synthesising sampled-data of closed-loop performance.
(SD) compensators are available in the literature, feedback controller |Importantly, testing if#,(R™*, Csa) is stable and contractive for a

designis perhaps best understqod in a purely co_ntinuous—tir_ne setting. given C.q, or synthesising @.q so that it is, can be achieved via
As such, a feedback controller is often designed in the continuous-time established methods [11], [12], [13].

domain and then discretised for digital implementation. It is important . . . .
for the discretisation step involved to yield a SD approximation which The paper develops along the following line. First, a generalised
captures the essential features of the original controller from the per- frequency domain framework for studying the controller discretisation
spective of closed-loop behaviour. In this paper, a gap metric framework problem is established (cf. Sec. Il). As part of this, a motiva-

is developed for studying the controller discretisation problem for linear  ,na) gap metric robust performance result is also discussed within
time-invariant (LTI) plants and controllers. Importantly, knowledge of a

gap metric distance between an LTI controller and a SD approximation the generalised freque_ncy_ domain fra_me"_vork- Subsequently, a new
permits explicit characterisation of the possible difference in closed-loop signal-based characterisation of a pointwise gap-metric measure of
performance, with any LTI plant for which the LTI controller is known  distance is developed. This characterisation is inspired by the so-
to work well, accounting for inter-sample behaviour. The central result 5164 “strong-necessity” of a robustness result associated with the
of the new framework gives rise to an algorithm for computing a gap tric for LTI t 81 191 by which the dist betw
metric measure of the distance between an LTI controller and a given »~9@P metric for LTI systems [8], [9], by which the distance between
discretisation, and a technique for synthesising a SD approximation which two LTI controllers can be expressed in terms of a stability condition
is optimal with respect to this metric. being satisfied for one of the controllers in closed-loop vaitly LTI
Index Terms— Controller Discretisation, Digital Redesign, Sampled- Plant for which the other controller achieves a certain level of closed-
Data, Approximation, Gap Metric, Robustness, Periodic, Time Varying loop performance (cf. Sec. Ill and Sec. IV). A simple numerical

example is presented to demonstrate the tools developed.

|. INTRODUCTION Il. PRELIMINARIES

. . . A. Basic operator theoretic notation
The dynamics of many engineering systems naturally evolve ‘ifi

continuous time. Correspondingly, control system design is typically Throughout, the symbol®, Z, C, C,, C_, T, D, jR and H
carried out, and perhaps most well-understood, in the continuous-tifhote the real, integer and complex numbers, the open right-half,
domain. This results in control laws with continuous-time dynamicgpen left-half, unit circle and open unit disc of the complex plane,
It is often the case, however, that the implementation of such conttBf imaginary axis, and the intervial, k) CR for k>0, respectively.
schemes will involve a digital computer, which can only process Let V1 and V> be Hilbert spaces over eithé or C. The inner
information discretely in time. Accordingly, system discretisation (iRroduct onVy is denoted by(:, -)v,, and|| - |, denotes the norm
time) has been studied for many years [1], [2], [3], [4], [5]. induced by the inner product. Le&X : dom(X) C Vi — W,
Motivated by established gap-metric robust performance resui8 @ linear operator, wheréom(X) is called the domain ofX.
for LTI feedback system [6], [7], [8], [9], a new framework for The graph ofX, taken with respect to the ambient spagex Vi
studying the feedback controller discretisation problem is develop&@SP.V1 xV2), is defined to be the subspageX) := (%) dom(X)
in this paper. Central to the framework is the use of a gap-liKéeSp-gf(X) = (%) dom(X)).
metric to measure the difference between an LTI controller and aThe Banach spacé(V1,):) is the set of linear operators
SD approximation. Indeed, knowledge of this measure of distan&e : V1 — V2 for WhiCl;(dom(X) = V1 and the induced
permits characterisation of the possible degradation of closed-looprm ||X|| := sup,cy, 420 W < oo. Occasionally, the space
performance with any LTI plant for which the LTI controller is knowns(V;, V;) may be denoted byB(lvl) for convenience. The Hilbert
to work well, accounting for intersample behaviour. adjoint of an operataX € B(V1, V) is denoted byX* € B(V2, V1).
A variant of the following LTI result [9], [10], which permits one If X*X = I thenX is called an isometry. On the other handxXif
of the systems to be periodic SD controller, is established in thisis an isometry theiX is called a coisometry. Two Hilbert spacks
paper as a cornerstone of the framework described above: and ), are said to be isomorphic if there exists a bijective isometry
Proposition 1.1:[9] Given LTI systemsC and C;, and a Y € B(V;,).) such thatV, = YV;. Moreover, two operators
number 3, there exists an LTI systemR (dependent onC X; : dom(X;) C Vi — Vo and X, : dom(X2) C Vs — Vs
and 8 only) such thaté,(C,C1) < B & F(R™',C1) € are said to be equivalent §r(X,) is isomorphic togr(Xy).
H>® and || Z(R™*,C1)|ls < 1, whered, (C,Cy) denotes thes-
gap distance betweefi and 'y, and %(-,-) denotes the standard g Signal and system representations

lower-linear fractional transformation (LFT). . . . ) )
A result of this kind is suggestive of an algorithm for computing the In this section various aspects of the frequency-domain setting of

distance between an LTI controllet and a given discretisatiofl,;, L1l [14]are reviewed. A signal is simply considered to be a function
and a technique for synthesising a SD approximation; i.e. synthedié8PPing from some domain of definition into a Hllgertzipace. Of
Cua S0 thatZ¢(R~1, C.q) is stable and contractive (for some smalP@rticular interest are the signal spaag (C?) and L3(L"), of
square integrable functions giR and T, that take values i©? and
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m.cantoni@ee.mu.oz.au . Corresponding author. L3 (Ly?) are isomorphic, via the Fourier transform (by Whlﬁfk is
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into segments of length according tof, () = (W [)(0) := f(6+ Lp € B(Lk, L) (resp.B(LF, £1)), dom(Lp) = L% (resp.LF)

kh) for 6 € H) and theZ-transform(Zf)(¢) :== >,z @kik_ and |Lp|| = ||Pllo. Moreover, whenP ¢ RHE (resp. DHF’),

Also of interest arez, , the subspace of alf € L% which can be Mp € B(HZ, ,HE, ) (resp. B(H3, H3)), dom(Mp) = HZ,

continued analytically intaC.. so that they are uniformly bounded (resp.H3) and |[Mp|| = || P| [15].

in the usual way, and{?, the subspace of alf € £% which can If a (transfer) functionP € RHZ, (resp. DHF’) is such that

similarly be continued analytically int@. H%+ and H2 are also P(y) is an isometry for allp € jR (resp.T), then P is called

isomorphic via the FourierY- andZ-transforms. The intermediate inner. On the other hand, iP € RH, (resp.DHp’) is such that

time-domain signal space involved in this case£§ ={feLi: P(p)is a coisometry for allp € jR (resp.T), then P is called

f(t) =0for¢ < 0}. coinner. If P € RH, (resp.DHp’) also holds, thenP is called
Characterising systems as multiplication operators on the spacesner. HenceforthP™ is used to denote the function that satisfies

defined above, is adequate to address the SD approximation pr&B{y) = P(y)* for (almost) ally € jR (resp.T).

lem outlined in the introduction. Most would be familiar with the

equivalence (via the Fourier transform isomorphism) between a timg- Feedback systems

domain representation of a finite-dimensional LTI state-space systen|1 thi bsecti d th ¢ attention is directed t d
and multiplication by a corresponding transfer function in: n this subsection, an € next, atiention 1s direcied towards

(i) R?»™, defined to be the set of functiod3: jR — B(C™,CP) I?’;L%“;z éﬁe:zzzgscfju:éi;:;n;;er functionsTin Recall that this
_ _ A1 :
(a.g.)ﬂgf \tlafhfimgpléfz; Clpl —A)7"B+D for (almost) all Consider the standard feedback configuration, shown in Fig. 1.
IR ’ When it exists (in an appropriate sense), the transfer function from

It is also true, that a time-domain representation of a finitet-d1 da) 10 (ye, ue, yp, up) is denoted by P, C]. Now suppose that
. . . o . . . . b Cy Cy b bl .
dimensional lineaperiodically time-varyingstate-space system (in- P

cluding LTI systems) is equivalent to multiplication by a correspond- dq do

ing frequency-domain symbol in:

(i) D>™, defined to be the set of function® : T — r Ye ue Yo up Yp
B(Ly™, L5") (a.e.) of the formP(p) = pC(I —pA)~'B+D | C | P |

for (almost) allp € T, with A € R™*".

In particular, given a finite-dimensional LTI filteF' : v — up,
governed by the system of differential equatidns= Arxzr +Bru
andur = Cpzr, with spec(Ar) C C_ (wherespec(-) denotes the
spectrum of an operator), and &nperiodic SD systen$ : ur —  Fig. 1. Standard feedback configuration
y, governed by the difference equations(k + 1) = Aszs(k) +

Bsur(kh) andy(kh + 0) = Csxs(k) + Dsur(kh) for 6 € H, it p ¢ D™P andC € DP™. When (I — PC) and (I — CP) are
follows, by considering the evolution of these equations over intervalsertible in D™™ and DP? respectively (i.e[P, C] is well-posed),

of time of durationh, that the£2-graph (respﬁfg-graph) of the pre- the transfer function from the Signa(sgl> to (%) is
filtered periodic SD systenCg4 := SF' is isomorphic (viaW and 2 )

Z) to the L3 (LE)- h HE(LE)- h) of multiplication b
) to the L4 (L5)-graph (respHp(Li)-graph) of multiplication by T\(P,C) = (C) (prC)’l(—P 1) )
N \ I
(e a) | (5))
Caa(p) = | \BsCr_As 0 €D, and the transfer function fron{ 5! ) to (y2) is Tx(P,C) :=
\ (€ ) ‘ o/ T1(P,C) — I. Note thatT' (P, C) and Tz (P, C) capture all closed-
where Ap : 2 — exp(hAr)z, Br : u — j()h exp((h — loop transfer functions commonly employed in robustness and per-

7)Ap)Bru(r)dr, C; : x — DsCrz, Co : 2 — Csz and formance analysis [16], [9]. WhefP, C] € DLy (resp.DHy), it
A1 8 denotes a realisationC(I — wA)~'B + D € D. Similarly, ~¢an be shown that

multiplication by anyP € R is _equwalen_t (via the Four_le_r tra_nsform, b(P,C) == |Ty(P, C)||;o1 = |Ta(P, C)H;ol <1

Z-transform andW -transform isomorphisms), to multiplication by a

P e D. Throughout, an underline is used to denote the “time-liftedf [P, C] ¢ DLY (resp.DHF’) thenb(P,C) := 0. In the so-called

equivalent of a transfer function iR. ‘H* loop-shaping paradigm for feedback compensator design [16],
Given P € R (resp.D), Lp denotes the Laurant operator defined9], b(P, C) is used as a generic measure of closed-loop performance

by (Lru)(¢) := P(p)u(yp) for all u € dom(Lp) C L% (resp.£?) and robust stability.

and ¢ € jR (resp.T). Similarly, the multiplication operatoM p is Using the geometric framework of [17], the following proposition

defined by(Mpu) () := P(p)u(yp) for all u € dom(Mp) C 7—((%+ (which is used in the proof of Thm. 4.1) is readily established:

(resp.H2) andy € jR (resp.T). The space of function® € R that ~ Proposition 2.1:Given P € D™" and C € D»™, let G :=

satisfy || Pl|oo := sup, j | P(¢)] < oo, is denoted byRL3. The gr(Lp) (resp.gr(Mp)) and K := gr(Lc) (resp.gr(Mc)), where

symbolRngr denotes the Hardy space of @l € RL3; that can the graphs here are taken with respect to the ambient space

be continued analytically int6 > Similarly, the space of functions £%(£%") X ﬁ%r(ﬁ;fm_) (resp.Hﬁ(L_ﬁH’p) x HE(L5™)). Then[P, C] €

P € D that satisfy|| Pl := sup ey || P(¢)]| < oo, is denoted by DLT (resp.DHE’) if, and only if, KNG = {0} andK +§G = L.

DL, andDHP denotes the Hardy space of &le DL that can Furthermore, given € D™* and F' € D™™, with p + m =

be continued analytically int®.? When P € RL3 (resp.DL), P + m, such thatLrK = gr(Lr) (resp. MK = gr(Mr)) and

LrG =gr(Lg) (resp.MgG = gr(My)), for someR, R™'c DL

INote that this corresponds to thog@ € R for which a realisation (resp. DHSF), where the graphs here are taken with respect to the

%‘%y with spec(A) C C—, exists. partitioning £2(L37) x L2(LE™) (resp. HE(L2P) x HR(LE™)) of
2Note thatDHZ® corresponds to thos® € D for which a realisation L, the following equivalence holds:

%‘%, with spec(A) C D, exists. [P,C] € DL (resp.DHEY) < [F,Q] € DLY (resp.DHLY).



D. A key gap metric robustness result Then for a system with transfer functidn € D, it follows that

Important feedback system robustness results, which provide sub- C .
stantial motivation for using a gap metric to quantify approximation Fu(H, P) = (7> (I-PC)" (=P 1I)e€D,
error, are now established in the frequency domain framework
developed thus far. Recall that thé2-gap between two systemsprovided (I — PC) is invertible in D> Given a 3 > 0,
C1,Cy € D is defined to be the gap (or aperture [18]) betweefote that [P,C] € DLy and b(P,C) > §f <
K1 :=gr(Le,) and Ky := gr(Le,) [9], [19]: F«(H,P) € DLY and || F¢(H, P)||~ < 3. In fact, defining
Hg:= (é %OI) H(ﬁof ;I), it follows that [P,C] € DL and
o _ b(P,C)> B Fu(l 5, P) € DL and || F(H, P)||ls< 1. For a
where Ilc denotes the orthogonal projection onkd Using the given controllerC’ € R, it can be shown by following an argument

fact (cf. Appendix A) that the£3-graph of anyC' € D can be presented in [22, Sec. VI, that faf<bop:(C):=suppe b(P, C),
characterised as the range (resp. kernel) of a multiplication operator

with (i) inner (resp. coinner) symbol, anii)(left (resp. right) inverse Hg =M x M R, (4)
corresponding multiplication by transfer functions ®<5°, it can whereM € RHZ. is inner with Moy, My, € RHE‘;, e RMZ,

be shown (cf. Appendix B) that is coinner withM1o, M;,' € RHZ,, and R is invertible inR with

gap(Klvlc?) = HH)Cl - H’C’zH,

gap(K1, K2) = sup k(Ci(p), C2(p)), Ry, Ry € RHE, . Details of this factorisation are in Appendix C.
pel Remark 3.1:The factorisation (4) can be used, as is done
where for anyX,Y € B(V1, V2), implicitly in [22], to characterise allP € R that satisfy

Iz = yllv Iz — yllv Fo(Hp, P) € RLG, (resp.RHE,) and||F,(Hg, P)||«< 1. Indeed,
#(X,Y):= sup inf Wl: sup  inf Wl (2 Q:=Fu(R,P)eRLS (resp.RHE,) and||Ql|~< 1, for all such
112’01 %0 V2 Izifol s yiiva P € R. This parametrisation can be combined with the so-called
The final equality in (2) is established in [20, Appendix]. As such, itstro_ng-necessny L_le/-'gap robustnes_s re_sults described n [9], to
. obtain the characterisation of thregap given in Prop. 1.1. A different
follows from the central results of [21, Sec. III], that givei, C1] € . ? . ,
DL (resp.DH) and [P, (o] € DL (resp. DHY) approach, however, is needed here, since the “standard” proof (cf. [22,
T P-27to 2 T P-Et), Lemma 15]) of the required parametrisation fails to carry through at
0(C1,Cy) several points. In light of this, a new signal-based framework, which
0(Ch, Co) <||T1(P,C1)—T1(P, C2)||o< , (3 . ' - RV
(@1, C) < T2 (P ) =Ta (P, Co)oo= b(P,C1) - b(P,C2) ®) may also be useful in contexts beyond the discretisation problem
considered here, is established belaw.

where §(C1,C2) = sup ey £(Ci(p), Ca(p)). Furthermore,
arcsinb(P,C2) > arcsinb(P,C1) — arcsin(C1,Cs2), which is 2
important from the perspective of robust stability in the face of plant I M <
uncertainty. These results clearly indicate thdt,-) is a sensible AN
pointwise measure of distance, from the perspective of capturing the
difference between two closed-loop systems. = fe—" > z

u Hﬁ ‘ Yy Mch < W
I1l. SIGNAL-BASED CHARACTERISATION OF THE POINTWISE GAP

The v-gap distance between two LTI controllers can be charac- S le—Y—

terised in terms of a stability condition being satisfied for one of t Ren ‘ U
the controllers in closed-loop witany LTI plant for which the other "

co_ntroller achieves_ a_certain Igvel of clqsed—loop performanc_e [9]. H?g. 2. Chain-Scattering representation/a,
this section, a variation of this result is established, by which one

of the controllers can be periodically time-varying. This is achieved . ) . i o
in two steps. The first step involves a new characterisation of “pIantBy_ virtue _Of the of properﬂesﬂ:%, M andR_de_scrlbed apove, it 'S_
signals” that would be consistent with a specified level of closed-loé}frss'ble to interpret the factorisation (4) within the chain-scattering

performance for a gived' € R. This, in turn, leads to the required malism [23] — see Fig. 2. Define

characterisation of the pointwise gap. Mz — My My  Mas My Myt
) . . . My = i) i ER,
Central to the development of the first step is an inner-coinner- — My, Moo M,
outer factorisation that is implicitly established in [22]. Before —1 r—1 77
this can be presented, some additional notation is required. Given Mg = M M M ER
' ' Mas My, May — Moo M, My

H=: (7' 72) € R (resp.D) andQ € R (resp.D), if (I —
H22Q)™ ' € R (resp.D), the lower linear fractional transformation gng
(LFT) Zo(H, Q) := H11 + H12Q(I — H22Q) ™" Hoy. Furthermore,

—1 —1
given© =: (g1 §12) € R (resp.D), the Redheffer star product R = <R12 RﬂR” Rz R“ﬂ“ ) €R,
*R21 Rao R21
OxH:= ( F0(©,H11) @12(1—922H11)71H12> . 1 . 1 ~
: Hoy (I-H110422) " 104, Fu(H,022) ) noting thatR_,~ € R. SinceM,;” € RHE‘; and M, € RH&‘;,

where Z,(H, Q) := Haz + HaQ(I — H11Q)71H12, provided the it follows that M, € RH{E"+ and Mg, € RH&. Moreover, it can

required inverses exist i (resp.D). be shovyn .thaRch, R, e~72.HC+. - see' Appendix C. Using the fact
Now, for a given controller with transfer functiofi € R, let that M is inner and that\/ is coinner, it also follows that
0o ¢ cC M () JiMen(p) = J2 and Men(0) J2 My (p) = Js,  (5)
H:= o I I

-1 C C SRecall that an underline is used to denote the “time-lifted” equivalent.



for all ¢ € jR, whereJ;, J> and Js are signature matrices of the ||s(¢)||%. and hence, in view of (5), that

form (4 ), partitioned conformably with\/., and M, as ap- B B B

propriate. To summariséy/., is J-inner, Mch is J-coinner andR.;, () 1)@ ez = ((5)(0)s J2(§)) ez

is outer. Now, given any signalg u € L, define({) := Ren(Y). S A{E@)s J3(7)) ez

Slr_lce m_ultlpllcatlon byM., is surjectlve there exists at least one = (R, (Y)(), Jchh(u)(@»ﬁz <0,

pair of signals?,w € L%, such that(;) = Mch( ). Furthermore, o ) H ]
the corresponding signals;, ) := Mcn( %) € L satisfy (;) = Wher? the final inequality holds because of (7) and the hypothesis
Hgs (%), as illustrated in Fig. 2. that (ii) holds. Therefore,

G @ 2=l Z2 < (@) Z2=F1(52)() = (o) Ez.

as required. [ ]
Corollary 3.3: GivenC € R and0 < 8 < bopt(C), let R € R
(and correspondinglyi., € RHE ) be as defined above. Fah €
D, the following are equivalent:
(i) (Ban(2)(9). 3R (1)(@)) 2 > 0, for all o € T and all
() eer(Ley);
Fig. 3. Signals in the standard feedback configuration (it) supg,er k(C(p), Ci(p)) < B.
Proof: For any fixedp € T, it follows by Theorem 3.2, that

Fig. 3 shows the relationship between the signals,u andy (Ben(2)(9), JsB, (7)(9)) 2 >0 is equivalent to the existence of
introduced above, and the signals in the standard feedback conf@tﬁ-ub € gr(L¢) satisfying

ration of Fig. 1. Note, in particular, that 105 (@) — (e )( )Hﬁfﬂ 5
w u wey (= e uy_ 1w (e ) (@)l 22 -
Bas)=(2)=(2)— (), (zé):(yc)and(y):B(yﬁ)- (6) Y “i
Thus, the result holds by the definition &f-,-) — see (2). [ ]
With this, the properties oM.y, M. Von and Ren, give rise to the fol-
lowing characterisation of “plant signals” consistent with a specified IV. SD APPROXIMATION IN THE POINTWISE GAP
level of closed-loop performance for a givéhe R. This section serves to present the main result of the paper. This

Theorem 3.2:GivenC € R and0 < 8 < bopt(C), let R € R result leads directly to a procedure for computing the gap between a
(and correspondinglyzc, € RHE,, ) be as defined above. Then forgiven LTI controller and a particular discretisation, and a procedure

any (%) € £ and anyy € T, the following are equivalert: for synthesising an optimal SD approximation. Note that the main
H(UP)M “ W)H ) result dogg ta!<e into account the “standard” rgquirement of closed-
(i Lh B forall (%) ¢ gr(Le); loop stability (i.e. all closed-loop transfer functions #r®).
RIS Theorem 4.1:GivenC' € R, a pre-filtered, periodic SD controller

(i) (Ro,(up)(9), J3Rch( 7)(®)) 2 <0, where Js is a matrix  with corresponding transfer functiafia € D,° and 0<3<bopt (C),
of the form(O ), partitioned conformably WMRC}, let R € R (and correspondingly?s, € RHE) be as defined in
Proof: (|):(u) Let(3):=R,(¥)and(%):=JoM., Js(;), Sec.llland Appendix C. Then for an§ € R, that satisfiesP, C] €

— ==h

where(y) = ﬁ( vb). ThenM , (2) = (3), and using (5), it follows RHE, andb(P,C) > 3, the following are equivalerft:
that (i) Fe(R™',Cw) € DHEY and | Fe(R™, Cud)|loo < 1;
, , (ii) p C(p),Csa(p)) < B and [P, Cua] € DHE'.
(2)0) T2l )@z = (DT a(3)(@), Mos () (@) ) o e and given
= ((2)(#), J3(1) (@) 22 any () € gr(Le,,), let s:=(10)R, (%) € L£3. Now, since
HFsdHoo <1,
Now note that( ;) =M, satisfies( ) = H;4(y ). Hence, in
view of (5), (o) = e (2) ) 5( : (Rey,(1)(9), JaRoy (1) (@) 2=(( £,)8(9), I (L, )5()) 22 >0,

, for all ¢ € T, where J; is a signature matrix partitioned
(Ben(2)(0): JsBen (2)(0)) ez =((5)(0), Man 1Mo, (5)(0)) e conformably with R, . In view of this, Corol. 3.3 implies that
((2)e), (5 (@) 2 <0, sup 1 k(C(p), Csa(ip)) < B. So it remains to show théP, Cua] €
, DHp". To see this, first note tha® := #¢(R,P) € DHp and
22 = see (6). ||Q|| < 1, sinceb(P,C) > 3 (cf. Rem. 3.1). Then using a standard

since () may be rewritten agjz(¢)||%. < |lw(¢p)
H

Finally, note that small gain argument (cf. [24]), observe thiD, Fua] € DH5 .
Finally, sinceMg_, gr(Mc,,) = gr(MF,,) and Mg gr(Mp) =
{Ben(2)(0), JsBen (3)(#)) ez <0 gr(Myg) (cf. Fig. 4), it follows by Prop. 2.1, that?, C.a] € DH.
& (B (up)(9), J3Be, (uf ) (#)) 2 <O ©) (il)=(i): Corol. 3.3 guarantees thavir, is contractive on
dom(Mg,,) C H3. To see this, consult Fig. 4 and note that for any

(i)=(): Fix z = () € gr(Lc) and letw = 5 [(45) — (32)], () €gr(Mp,,) there exists & ;) € gr(Mc,,) C gr(Lc,,), such
(y) = 5(y) and (§) = Ry, (%) Then, (7)) = Hy(y) and it that(;) = R, (%). Now the part of i) which ensure§P, C.a] €
follows that there exists a pair of signdl§ ) € £2 such that( ) = DHy’, is used to show thaiom(Mp,,) = H3, and hence, that

M, (%) and(%) = M(%) — see Figures 2 and 3. Now, sindé Fua € DH5® With |[Fullsc < 1. Supposelom(Mp,,) # H3 and

is coinner it follows that] ()2 + [t |22 < |lw()|)%2 +
| (w)Hclﬁ | (‘P)Hcﬁ < (W)”Lﬁ 5See the end of Section II-B for details regarding the construction of this

from a time-domain representation.

4Recall that the underline denotes “time-lifted” equivalentin 6Again, recall that an underline denotes the “time-lifted” equivalent.



define Q := % (R, P), noting thatQ € DH3 with ||Q]l < 1, It can be seen that the discretisations obtained via approaihes (
sinceb(P,C) > 3 (see Rem. 3.1). Moreover, singg(Mc_,) = and (i) are very similar. Of note though, is the slightly lower gain
MB;} gr(Mpg,,) and gr(Mp) = Mﬂghl gr(Mg), it follows by (cf. Fig. 5_) obtained viaif. This seems to r_esult in significa_ntly less
Prop. 2.1, thafFu4, Q] € DHg®. Accordingly, by the Large Gain degradation ofb(P,C), at the cost of a slightly greater difference
o between nominal closed-loop performance, and that achieved with
the SD controller. It would be interesting to investigate the use of
appropriate weights (perhaps relatedRpto direct the gap approxi-

Theorem [25], 5up, cqomnay ) |QFa 2 /||x||H[2D > 1. This,
however, contradict§|Q|l. < 1 and Mg, being contractive on

. . 2 .
its domain. Sodom(Mp,,) = H5 must hold, as required. " mation procedure, in order to maintain a handle on this phenomenon.
gr(Mpr,,) The example also demonstrates tifashould be factored out off
| LS ' (if possible), before discretising via a bilinear transform. The anti-
R y s aliasing filter is automatically taken into account in appro&agh (
j| C ¢ R-1 < The closed-loop characteristics for the discretisations obtained
y u ° NG when the sampling frequency is increased to 500 rad/sec (with the
Cisa *u ¢ same fixedF'), are summarised in Table Il. Note that near nominal
closed-loop characteristics are recovered via approachesd (i),
gr(Me,,) ar(Mp) whereas the discretisation obtained viid is still relatively poor. In
S |t ' B fact, for this sampling frequency, the closed-loop step responses for
R s y the discretisations obtained vig @nd {ii) are identical to the LTI
|: :—| “~r. P controlled case (see Figure 6).
Uu, Yy — ==ch > =
P t X [ 102
gr(Mg) ©

Log Magnitude
S

Fig. 4. gr(Mc,,), er(MF,,), gr(Mp) andgr(Mg) relationships

Theorem 4.1 provides the required characterisation of the pointwise w0, - - -
gap metric distance between a given LTI controller and a SD ap- Frequency (radiansisec)
proximation, accounting for closed-loop stability with any LTI plant 180 : : :
for which the LTI controller achieves a certain level of closed-loop -
performance. Indeed, it gives rise to the following two procedures
for analysis and synthesis.

Procedure 1:(Analysis) Given a strictly proper LTI controller

140 -

]

S
\

\

Phase (degrees)
\

C and a pre-filtered periodic SD controll€rsy, find the small- W
est B < bop(C) such that (R, Csa) € DHF and 0 - = -
| Ze(R™", Caa)lloo < 1, whereR is defined in (16) of Appendix C. Frequency (radians/sec)

By Theorem 4.1, this smallest value férbounds the gap betweenFi9- 5. Ca Frequency responses — samp. rate 60 rad/sec: (solid) gap

- . . . pproximation; (dot) Cayley transform without factoring out the aa-filter;
%2”255‘1' Flmd_mg thti s(;na[l_!l_elsi@ E:laZr]] b[i;icmeved using establishe dash) Cayley transform first factoring out the aa-filter
analysis metnods , , .

Procedure 2:(Synthesis) Given a strictly proper LTI controller

C, a fixed sample rate and an anti-aliasing filferfind the smallest [_Approach [ sup,cr £(C,Csa) | B2, Csa) | Al |
B < bopt (C'), such that there exists a SD controligyy = 7#Cq. F 0] 0.295 0.276 2.06
satisfying (R, Cea) € DHE and || Zo(R™", Ced)loo < 1, (i) gggg 8gg§ 23421
where . is an ideal samplerZ is a zero-order hold and is (i) - : :
defined in (16) of Appendix C. The value 8 and the corresponding TABLE |

optimal Csq, can be obtained using establishef® SD synthesis CLOSED-LOOP CHARACTERISTICS- SAMP. RATE 60 RAD/SEC

methods [11], [12], [13]. Note that the state-space dimension of
Cq is at most that ofC' plus that of F. Finally, observe that the

SD approximation obtained would only be useful if the smallest [ Approach | sup et £(C, Csa) [ b(P, Caa) [ Al ]
(B achieved is less thah(P, C). If not, the fixed pre-filter and/or [0) 0.040 0.312 0.306
sampling period should be re-designed. (ii) 0.316 0.156 3.67
(i) 0.042 0.302 0.157
V. CONCLUDING EXAMPLE TABLE I
Consider the LTI plantP(s) = % and an LTI controllerC(s) = CLOSED-LOOP CHARACTERISTICS- SAMP. RATE 500RAD/SEC

—5. s 2 H H
% for which b(P,C) = 0.312. Figure 5 shows the

frequency response of the discrete-time component of three SD

approximations ofC, for a fixed anti-aliasing filterF’ = 19 APPENDIXA

and sampling frequency dforad/sec. The discretisations shown areNORMALISED COPRIME FACTORISATIONS AND GRAPH SYMBOLS
the result of: i) Proc. 2; {i) Taking the Cayley transformz(= Given arealisatioré%‘% of a functionC € R”"™ (resp.DP'™),
{272 with h the sampling period) of (s); (iii) Taking the Cayley that is stabilisable and detectaBlehere exists (by definition) an
transform of C(s) = —2:25(+D°O1s+1) (o ¢ with F factored

; s(s+1.5)(s43.5) o ) _’Such realisations can be constructed from any realisation in the usual way
out). The resulting closed-loop characteristics are summarisedyjg a Kalman Decomposition — see [24, Sec. 3.3] fdrc RP>™ and [26,

Figure 6 and Table I, in whick\ := T3 (P, C)—T1(P, Csa). Sec. 2.4.1] forC € DP-™,



18f q

aa-filter 10/(s+10)

samp. freq. 60 rad/sec

5 6 7 8

4
time [sec]

equation

(A—BD*R™'C)Y +Y(A-BD*R™'C)"
— YC*R™'CY +BR™!B* =0,

that satisfiespec(A + LC) C C_ (resp. the solution to the discrete-
time algebraic Riccati equation

Y

(A—=BD*RT'Q)Y(I + C*"R'CY) (A - BD*R'C)*
+ BR™'B*,

that satisfiespec(A + BF)  D).° Finally, settingV := Rz (resp.
V= (R+B*XB)"2) andS := R~ 2 (resp.S:= (R+CYC*)"2) it
follows that () and (~D  N), defined in (8) and (9), are inner
and coinner, respectively — See [24, Corol. 13.29]Gbe R”"™ and
[26, Lemma 5.4] forC € D™,

Fig. 6. Closed-Loop step responses: (solid) gap approximation; (dot) CayleyGiVen coprime factorisation§' = ND™ ! = DN ¢ Rp™

transform without factoring out the aa-filter; (dash) Cayley transform fir

factoring out the aa-filter; (star) Continuous-time LTI control

F € B(R™,R™) (resp.B(R", £™)) and anL € B(R?,R") (resp.
B(L%P,R™)), such thaspec(A+BF) C C_ (resp.spec(A+BF) C
D) andspec(A + LC) € C_ (resp.spec(A + LC) C D). Defining

D _v (A+BF | BV LS\
(N x > = F V 0 € RHE, (8)
C+DF |DV S!

(resp.DHp")

and
% ¥ A+LC | —(B+LD) L N
Y V-IF V-1 0 | € RHc, 9)
- e -sD S

(resp.DHy’),

for invertible S € B(R?,R?) (resp. S € B(L3?,Ly")) and
V € B(R™,R™) (resp.V € B(LE™, Lx™)), it follows that P =
ND~! = D™'N are coprime factorisations, in that

(v 5)(F %)= 7)

Moreover, an appropriate choice d¢f,L,V,S yields normalised
factors, in the sense thdty ) is inner and(—D N) is coinner.
In particular, letR := (I + D*D) andR := (I + DD*), and define
F:= —R!(B*X+D*C) (resp.F := —(R+B*XB) ' (B*XA+D*())
andL:= — (BD* + YC*)R™! (resp.L:= — (BD* + AYC*)(R +
CYC™)), where0 < X = X* € B(R",R") is the stabilising solution
to the continuous-time algebraic Riccati equation

(A—BR'D*C)*X + X(A —BR™'D*()
— XBR™'B*X+ C*R™'C =0,

which satisfiespec(A+BF) C C_ by definition (resp. the stabilising

solution to the discrete-time algebraic Riccati equdtion

X = (A=BR'D*C)*X(I +BR'B*X)""(A—BR'D*(C)
+ C*R7'C,

which satisfiespec(A+BF) C D by definition), and) <Y =Y~ ¢

?tresp.Dp*m), defining

N oo o0
K := (D) € RHZ, (respDHg")

and

K:=(-D N)e¢ RHE, (respDHZ’),

it follows that gr(Mc) ran(Mk) ker(Mg) C H%+
(resp. H3) and gr(Lc) ran(Lxg) = ker(Lgz) C ﬁfR
(resp.£3). Similarly, for almost afl® frequenciesy € jR (resp.T),
ran(K (p)) = ker(K(p)) € C™*? (resp.£L5™ 7). The functions

K and K are called right and left graph symbols, which are said to
be normalised ifK*K = I and KK* = I. When K and K are

normalised,
K* — (I 0
(o #9=( %)

Correspondingly,ran( Igf:’)) ) = C™*P (resp. £o™17) at any
¢ € jR (resp.T). Moreover, for almost allp € jR (resp.T),
ker(( ) = ker(K(9)") N ker(K(9) = ran(K(¢))* 1)
ran(K(¢)) = {0}, where L denotes the orthogonal complement
of a Hilbert spacé! So I;(“") is bijective for almost allp € jR
(resp.T), and hence, in light of (10), it follows that

&) () =

(10)

11
i) -
In fact this is true for allp € jR (resp.T), since K and K are
continuous omyR (resp.T).*

APPENDIXB
EQUIVALENCE OF THE POINTWISE AND,C%-GAPS

Before the link between the pointwise gap and fifegap can be
establisehd, the following technical result is required:

Lemma 1:Let V1, V> and Vs be Hilbert spaces. Whe4) €
B(V1, V2 x V3) is an isometryu(B)? = 1 — 7(A)?, where for any

9The required solutionX andY exist since(A, B, C,D) is a stabilisable
and detectable realisation. See [24, Corol. 13.8] dbre RP:™ and [26,
Prop. 2.20] forC' € DP-™.

10Except for possibly finitely many points at whidB(¢) (or D(y)) may

B(R™,R") is the solution to the continuous-time algebraic Riccatiot be boundedly invertible; i.e. at poles ©fon jR (resp.T).

8Note that this is a standarfinite-dimensionalRiccati equation, since

(A — BR1D*C) € B(R",R"), BR—1B* € B(R",R") and C*R~!C €
B(R™,R™).

Note thatcl(ran(K (¢))) = ran(K (¢)) since K (i) is left-invertible.
2In the C € R*case, such delicate arguments are not required, since at
each frequenc I;{ )) is square and finite-dimensional, which combined

with (10) is enoughq{o imply that it is unitary.



X € B(V1,V2), the notationu(X) is used for the induced norm of C;. Indeed I, = L,

|IX|| and

[ Xullvy

X) = .
T(X) weViu£0 |ul|yv,

Similarly, if (A B) € B(Vi x V»,Vs) is a coisometry, then
u(B)’ =1-7(A)%

Proof: If (4) is an isometry, it follows that for angy # u € V4
(Bu, Bu)y,

<u7 U>V1

(Au, Au)y,

1=
<u7 u>V1

(12)

by which it is immediate that:(B)? = 1 — 7(A)?. The coisometry

analogue follows similarly. [ ]
Now, givenC; andC> € D, with normalised right and left graph

symbolsK; and K>, and K; and K, respectively, define

&(C1(p), C2(p)) u([:(lfﬁ(@))
p(K2K1(p))
K(C2(p), Cr(p)).

(13)

A
C
The second equality here follows by Lemma 1 and the fact th&le

for all ¢ € T, the operatorK; (K, K3)(p) is a coisometry and
(2) Ks>(y) is an isometry (cf. (10) and (11)), which yields

p(K2K1(p))
1 —7(K}K2(p))?
R(K1Ka2(p)).

B(KT K5 (9))

(14)

Moreover, since for any € T, the K;(¢) and K;(y) are isometries
and coisometries, respectively,

K(C1(#), Ca (%)) (K1 K> (9)
= p(KTKI KK (9))
= Mgoy o+ Hareaeon |l
e = yllz2
= sup mn T T
xegllgé(¢))y€glry(g(2)(w)) ”xHLH?H

Furthermore, it can be shown that(Ci(p), C2(y)) 0 if,

and only if, Ci(¢) = Ca(p), and that k(Ci(p),Cs(p)) <

£(C1(p), C2(¢)) + k(Ca(p), Cs(y)) for any otherCs € D [8],

[9]. As such, with (2), it follows thak(-,-) is a metric pointwise in
frequency.

andl‘I,CiL =Lg:g,- In light of this,
it follows that

gap(Ki, K;) 1K KKK oo
1K Koo
1K K|
K7 KKK oo
gap(K;, Ks),

where the third equality holds because of (14). Hence, by the

definition of k(-,-), and in view of (15), the following relationship
holds:

sup £(C1 (), C2(¢)) = [ K1 Kzl = gap(K1, Ka)-
pe

APPENDIXC
INNER-COINNER-OUTER FACTORISATION

Details of the factorisation (4) are given here in the notation of
[22]. SupposeC' € R has a stabilisable and detectable realisation

5. Furthermore, leX = X* > 0 be the stabilising solution to
generalised control Riccati equation (GCARE)

A*X + XA — XBB*X + C*C =0,

andZ = Z* > 0 be the stabilising solution to generalised filtering
Riccati equation (GFARES

AZ +ZA" —ZC*CZ+BB* = 0.

Lety:=4 > boptl(c) = /1 +rad(XZ) and define:
A+ BFoo (0 %B) Vi-lg \
C 0 0 0
(i) M:= Foo 0 i1 7\/7541 , Where
0 I 0 0
0 0 M=ip —11
Foo i= — B*X; !
(ii)
Atmp +7LtmpC (_Ltmp 12 B) éth F
. A VAror P
M := e = (0 0 (-1 0 }
~C 1 0

WhereAtmp =A— ﬁBFm, Ltmp = *’YthpC*, thp =
Yoo(I =XYoo) ™1 >0, Yoo := ﬁz; and

iji
The relationship between the pointwise metric just described an(d )

the £2-gap can now be established. In particular, recall thatdhe
gap between two systems with transfer functisghsandCs € D is

defined to be the gap (or aperture — see [18] for example) between

K1 :=gr(L¢,) and Kz :=gr(Le, ) [9], [19]:
gap(K1, K2) = [k, — Ik, ||

max gap(Ki, IC;),
z‘,je{l,z}g P( J)

(15)

whereIlx, denotes the orthogonal projection ori and

e~ yllez

sup  inf
B

gap(KC;, j) = HHKJ.LHIQH = e,
zEK;,x J

Now, since K;K;K;q = Kiq for any ¢ € £2 and K;K} +

/ AR ‘ _Ltmp BQR \
R:= K \/%Foo 0 \/’;27_1[) ER, (16)
~C I 0
whereAr := Aunp + 3 YimpF i Foo andBap 1= 521 B —

77 YempFc.
That, Hg = M + M R follows directly by substitution. It is now
shown that:
(i) M € RHZ, is inner, with M, € RHZ, ;
(i) M € RHE, is coinner, withM;;" € RHZ, ; and
(i) Ry, Ry, Ren, Ry € RHE,.
SinceX > 0 is the stabilising solution to GCARE, it follows that
spec(A — BB*X) = spec(A + BF ) C C_

K;K; = I see (10) and (11)) it follows that the projections required
to calculate the directed gaps can be expressed in terms of th&The required stabilising solutionX and Z exist since (A, B,C) is
normalised right and left graph symbols; and K, respectively, stabilisable and detectable [24, Corol. 13.8]



and hence, that\/ ¢ RH@‘;. Defining Ar_, := A + BF» and
rearranging GCARE to obtain
Af_X+XAr, + CCHFiFou =0, (17)

it also follows thatX is the Observability Gramian a#/. Further-

more,
0
(%)
vy

0 0
(v 1)
VAP olp.
vy

(o)

and therefore, by [24, Lemma 13.29Y/ is inner. Finally, note that

_ A+BFsx | @
Mml:(.‘Hv

and hence, thab/,;* € RHE, .
Now consider

()} ().

0)

i

W — 1LtmpB* <0> <—I>
e 0 0
—2—FooYimp I 0
y<—1

and note that¥ is inner if, and only if, M is co-inner, sincé¥V
RHE, & M € RHE and W (@) W (@) M () M*(y) for

any ¢ € jR, where the bar denotes complex conjugate. Now define

Yoo = ﬁz and rearrange GFARE to obtain

AYoo + Yoo A™ + 21 1BB* —(7* = 1)YoC'CYo = 0. (18)
2

Applying the similarity transformatlor(

< A* —(v* - 1)C*C)
L BB* —A ’
721

) to the Hamiltonian

associated with the algebraic Riccati equation (18), yields the Hamil-

tonian

—-BB*

_Atmp

*
< Atmp
™

P FiFo — 72c*c>

which may be associated with the algebraic Riccati equation

Atmthmp + thpA:mp =+ BB*

-1

F:O FOO ’YQC*C)thp = 0 (19)

2
N
+thp(ﬁ
Sincey > /1 + p(XZ), Yimp = Yoo (I — XYoo) ™! > 0is thus a
solution of (19) and hence (cf. [24, Thm. 13.5]),

2

bpec('Atmp + F F thp 72c*CYttylp) cC._. (20)

From this one can deduce tha\/t%Fwthp,AZ‘mpoo) is de-

tectable, wher@\},,.,o := Afmp +7C Limp = Afmp — 7> C*CYtmp,

and thus, that(( ltn;fytn,p ,Afmpoo | 1S detectable, where
¥2-1
1 .
Bitmpoo := ( —Ltmp \/ﬁB) Indeed, rearranging (19) to be-
come

*
Atmpoc thp + thpAtmpoo

+Bltmp<x> Bltmpoo + thpF F thp — 0

it follows that Y¢mp, > 0 is the Observability Gramian oft” and
hence thatV € RHZ, — see [24, Lemma 3.19]. In fact,

(((_01 0())) é)( . MF;thp) + <\/W;C1 >thp =0.
Vye—1

So bx [24, Lemma 13.29], it also follows th&@ is inner, and thus,
that M is coinner, as required. Furthermore,

(Atmp vy thpc C+ thpF F ‘ °

“r—1
My =

k]

which in view of (20), implies thaf\/;,' € RHZ", .
Finally, observe that

Rl — (Atmp+ ; F=YimpFacFoo — 7 YempC*C ‘ .\
21 — )
[ ] .}
Atmp + ; —F— YimpFioFoo — 72 YimpC*C .\
-1
Ry = ° o o |>
L4 ° o)
_ A+BF | e
- (1)
and
[A+BFs | o o)\
Ren = ° o o |.
L] [ ] [ ]
Hence, in view of (17) and (20), it follows that

Ry, Ry, Ren, R € RHZ,, as claimed.
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