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Abstract— Scalable stability conditions derived so far for users in a packet marking scheme for signalling congestion.
optimization based models of congestion control protocols, Depending then on whether the congested resource at
can be shown mathematically to hold for arbitrary networks a router is packet rate or bandwidth, routers will scale

provided the underlying protocol is symmetric. In practical . .
implementations, however, deviation from this symmetry is differently the packet rate from various users when they

inevitable. It is hence crucial to establish whether these models take it .into account to determin? the marking probability.
are fragile with respect to a relaxation of the symmetry Hence in a scenario where price is set by some routers as a

assumption. We prove in this paper that this is not the case by function of bitrate and different users use different packet

presenting scalable, decentralized conditions, that guarantee ; i ;
stability for models of non-symmetric, TCP like protocols, of sizes, the stability results in [1], [2], [3], [4], [5] do not hold.

arbitrary interconnection. These conditions can be seen as ) .
local perturbations to the symmetric results and we illustrate It IS known in complex systems that, even though
how they converge to those derived for symmetric protocols as we may have robustness with respect to parameters of

the degree of non symmetry becomes smaller. Finally, we show interest, the system may be fragile when small failures in
the way the decrease rule in TCP is associated with robust yne ynderlying structure occur (e.g. failure of an actuator
stability to non symmetric deviations from the protocol. . . .
on an aeroplane). It is therefore important in the networks
NOTATION problem to verify that the models we are considering
are not fragile with respect to the protocol structure and
symmetry assumed. This is what we prove in this paper
by deriving decentralized, scalable stability conditions for
arbitrary non-symmetric networks, as an extension of the
ones derived for symmetric protocols. In comparison with
symmetric results, the conditions derived include a more
|. INTRODUCTION restrictive condition that affects only non-symmetric paths

In [1] an optimization based decentralized model i&nd scales with the degree of non symmetry.
introduced as a means to analyze Internet congestion
control protocols. A Lyapunov type proof is given for Il. PROBLEM FORMULATION
global stability of the algorithm in the absence of delays.
This work is extended in [2], [3], [4] by deriving scalable, We use the notation in [4], [1] and define the following:
decentralized local stability conditions when delays arg s the flow rate associated with route
present. Along the same lines, scalable control laws a
also suggested in [5].

o(M) denotes the spectrum of a square makfixo(M)
its spectral radius anfM| the elementwise absolute value
of the matrix i.e |[M;j]| := [[Mj|]. Co(S) denotes the convex
hull of a setS and diagx) the matrix with elements
X1,X2,... on the leading diagonal and zeros elsewhere.

U"r(xr) is the utility of the user on route, which is
a continuously differentiable, strictly concave, increasing

The main common feature of this work, which makes théunctmn of the flowx;.

mathematical analysis so elegant, is the symmetry of the = Tir + T is the round trip delay of theth route,
underlying protocol. This enables the exploitation of thavith Tu being the propagation delay from souncéo link
structure of the interconnections between the dynamich@ndTi; the return delay from link to sourcer.
elements of the system. The symmetry lies in the fact

that the resources do not discriminate between users when )= > xt-tm) )
producing congestion signals (prices) and equivalently users rr uses

do _not discriminate betvx_/een resources when d(_aterminir?g the aggregate flow through lirlk

their data flow as function of the aggregate prices they

receive. Nevertheless in practice such discrimination dod$ = fI(¥1) is the link price per unit flow, which is a
occur. Consider, for example, variable packet sizes frof\°N-negative, strictly increasing function of the aggregate
flow through the resourck We assume, in this paper, link

*The work of the author was supported by a Gates Scholarship. prices to be static functions of the flow (this is valid for



low length queues, and large capacities) as in [1]. [1l. M AIN RESULT

a®= Y pt-T) ) Taking Laplace transforms we can write (1) in the sym-
I:l used byr metric protocol as a vector equation
is the aggregate price along route y=R(X (4)
The control law is performed by the users according where R, = {esr” if route r uses linkl
: t 0 otherwise
o X (t) =kx (t—T) (1_ %) 3) i e _
riA and (2) as q(s) = diagle >")R" (—s)p(s) (5)

The symmetry of such a congestion control protocol id : [ wh f
is best appreciated if we consider the underlying sign%ile how consider a non symmetric protocol where some o

flow graph (as these are used by Mason in [6], [7]) ofhe user dynamics Weightgd_edges in the signa! flow graph
the relevant linearized multivariable system. lgfs) and are removed. We thus defifi; a perturbeR matrix, as
gj(s) _be the the_LapIace tra_msforms of the linearized user ﬁij =R; for all (i,j) ¢ A (6)
and link dynamics respectively. In a signal flow graph, — ) o
'Rj #0,Rj =0} is the set of eliminated

transfer functions are represented as weighted edgddereA={(,])

connecting nodes which correspond to points where eadges. We could have equivalently removed price weighted

summation of signals takes place. We consider TCP [ikgd9€s by perturbing the" matrix (or both price and user
edges) with the subsequent analysis being very similar. For

finkt destination? small perturbations about the equilibrium flow we get
sourcel
network y@ = )7_"‘ 5_)/('[) (7)
source2 _ link2 _6y = R(s)6X _ (8)
O—— 3q(s) = diage *F)R"(~5)3p(s) ©)
l destination2 and the equilibrium relations
§=RO% 4=R'(0)p (10)
hi
soureel link1 Linearization of the source law (3) and the static link price
O gives o 2 1
g1 signal flow graph 5Xr(S) == qu_: s+ a; 6Qr (S),
gl h2 )A(r .
ink2 @ where oy = —EUr (%) (12)
L 0O (9 =1/ (9B (9 (12)

source2

Breaking the loop at the source leads to the following return
Fig. 1. An example of TCP like protocols and the relevant signal flowratio
graph . % e St o =

G(s) =diag (k'“_s+ o ) R' (—s)diag(f/)R(s)  (13)
protocols where users implement the control law based. _qr r - -
on the aggregate price from the resources along the roﬁ@ce the_system is open loop stable |t_ is sufficient tp show
and the resource prices are generated as functions of At the eigenvalues &(jw) do not encircle the-1 point,
aggregate flow through the resource. Figure 1 illustrates 7
the special structure of the signal flow graph for such f R
protocols i.e. it is a directed, bipartite graph (sources are
connected only to links). Furthermore when an edge exists
between two nodes, an edge between the same nodes but s dynamics
in opposite direction also exists.

<|

In this paper we derive first stability conditions for

non-symmetric protocols corresponding to signal flow 3 R
graphs where some of the directed edges are removed.

We then extend these results to the case where the edges Fig. 2. Block diagram of interconnected network.

are weighted by different scalar factors instead of being

eliminated and show how these stability conditions tendsing the generalized Nyquist criterion ([8]). The stability
to the ones derived for the symmetric case when theondition in proposition 1 follows from Lemma 1 in the
weighting factors tend to 1. appendix.
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Proposition 1: The interconnection described by (1-stability with positive gaing;, is that both (14) and the
6),(10) is asymptotically stable around its equilibrium ifcondition below are are satisfied:

there exists such that all inequalities below are satisfied —jwTy
. —1¢Co<0u{ka.w a :
() < g8 ¥ (14) o
Y Zr r ((',T)EA)l wE ]R+; ar = _q_rUrIl()?r)’ (I,r) ¢A VI} U
r
kT < B vr (15) { ) o o . .
ay - we Ry,

0<k <——— VIl A 16 w+a
—k'*B|/\(S)| (Ir) e (16) jw+ar

wherea; = —£U/(%) > 0, setSis defined as
S={(vj+Vy)v1:|vi|+|vo| =1, vi,v2 € C} and

AS =, i O

ar = _gur”(f(r),ﬂl st(l,r) eA}) (18)

whereS is the set defined in Lemma 1. For the symmetric
case, seSin Lemma 1 becomef®, 1] hence condition (18)
is satisfied for alla; > 0 provided that; T, < 11/2 for all r,

Reﬂar!( 1c:jThe fir?t twr? conditions are the sam$ as tr;]%s this is illustrated in [4]. Note, however, that in the non
ones derived In [Af] or the symrr_1etr|c case apart rom t gymmetric case the boundary 8fcrosses the negative real
fact that (14) is shg_htly more strict. Condition (16) is dueaxis at—1/8, therefore the factor multiplying at = 0

to the non-symmetric nature of the network. must be bounded, i.e. we need a condition at least as strict

. : 1
Remark 2:SetSand constand (S) are fixed 8 (S)=—5 55 (16). It turns out, as shown below, that bounds (14 - 16)
as shown in the appendix) for the case considered, whegg, ' ricient for (18). Condition (15) ensures that
elements ofR are eliminated to fornR. Proposition 1 is

stated in this general form because if elementRodre
weighted instead of being eliminated, the same proposition e iwT 1
holds but with the setS being replaced by a different C°<{BkrTrm rw,ar € Ry kT < g}) (19)
perturbation set that scales with the degree of non-symmetry .
(this is discussed in more detail below). and conditions (15), (16) ensure that

Proof: [of Proposition 1] In order to use Lemma 1 we
need to reduc&(jw) to a similar formFR" (—jw)R(jw)
s.t. p(JRT|R|) <1 andF is a diagonal matrix. This can be
achieved by appropriate scaling by observing that

P (diag(q%) R (—jw) = %BK : |/\C(rr5)| })

. Therefore (18) is satisfied. [ |
. P . . ~
diag| ———— | R(jw)diag%) | <
g<y|+xr|((|,r)eA)> (Je)diag r)>

O(x)>—1 forall xe

O(x)>—1 forall xe

e*jG)Tr
Co({Bkr T d S:w,ar € Ry,
J r (20)

To see statement (20) note that

g ol 1 Iot
. 1 e : <z < Lc
Hdla9<qf) RT(— je)diag(p) CO{Bk’ fwora o @0 SRk T s g Bl < |)\(S)|} <
r .
« e—JXBkrTr

- S xXeR,,p>[A(S)],BkT, <1 21

diag(ﬁ) R(jw)diag®)| <1 (17) s P2ISIBT <1} @D
P TAneA) e Figure 4 shows the extreme case wh&ieT, =1 and

The final inequality follows from the fact that each termp=|A(S)|=1/8 and it is clear that-1 is not included in

has row sum< 1 using the equilibrium relations (10) andthe hull. (19) and (20) can be easily verified analytically,
noting thatyi + 3, Xl (1 r)ea) = [R(0)X];. Now by deriving parameterized expression of the real part of
elements in the sets. This is omitted here and illustrate

—jwT; . : L .
instead their validity in figures 3 and 4 respectively.

plotia) = (dag (B 25, | Fioiio)

eliminating edges we scale them by factors[@yl], the
perturbation setS tends to[0,1], as these factors tend

(jo)
. R £/ As noted in Remark 3 in the appendix, if instead of
where R'(—jw) = diag 3 R (—jw)diag EI
r
X

and R(jw) = diag <\/§> R(jw)diag <\/;>

Using (17) and condition (14) it is deduced thgR™R) < 1

to 1. Therefore condition (16) becomes less strict since
A(S) — 0 and the conditions in Proposition 1 tend to those
for the symmetric case, as these are stated in [4].

and similarly p(JR|T|R|) < 1 (max row sums remain the It should be emphasized that the importance of the
same). Using Lemma 1 a sufficient condition for locabounds in proposition 1 lie on the one hand in the



We parameterize the control law at the source, such that
1 the window is incremented bacwnd"” for each unmarked
R acknowledgement and decremented bdmyvnd™ for each
marked acknowledgement (assume> n). TCP in its
current form, as given in [9], uses increments gtwnd
and decrements ofwnd/2. Neglecting dynamics at the
links, a continuous approximation of the TCP algorithm is
described in [10]. It takes the form below :

X (t) =cwnd/T;

wherex; is a continuous time approximation of the sending

rate, and
d ~acwnd"(1—q(t)) —bcwnd™q (t)
grownd(t) = T Jownd (t—Tp)

whereq; is now interpreted as the probability a packet is
marked along route. In terms ofx, this becomes

Teke = % (t—T7) (a0% (0)T)"(1— Gr(t)) — b(x (1)T;) e (1))

When the marking probabilities are smai,(t) takes the
form of a weighted aggregate price which does not affect
the proof of proposition 1, since row sums in the open
loop transfer function can still be scaled in the same
way (see [4] for the detailed analysis). Hence, the same
stability conditions hold. Linearizing about the equilibrium
- ‘ ‘ - ‘ ‘ and taking Laplace transforms we get the following transfer
L function

. i — ax%(%Tr)" 1 &
Fig. 4. Co({m&xeﬂh}) O% = —— q: : (STr-FaQéqr

where & =b(m—-n)(%T;)™G >0

fact that they are decentralized and hold for arbitrargomparing with (12), bounds (15-16) take the form
interconnections like the results for symmetric protocols.

Once we deviate from symmetry, the symmetric bounds still aXT)" < 1 vr (22)
hold, i.e. feedback gain depends on delay and the nature 1 B
of the price functions. An extra bound is, however, also a<b(m—n)&XT)™ "G =~
introduced, that depends on the degree of non symmetry BIA(S)]
as well as the nature of the utility functions of the usersAs mentioned above, in current TQP= —1 andm= 1,
Notice that this bound only affects users behaving in ao both bounds illustrate that large equilibrium windows
non-symmetric way. It also turns out that along a certaifavour stability, but make TCP sluggish in its response.
path, the worst case non symmetric behaviour determinghis is the reason why = 0 is being proposed in [4]
the bound of the corresponding user gain (follows fronand investigated through practical implementation in [11],
remark 3 in the appendix). as a scalable TCP variant. An interesting observation is that
bound (23) which is due to the nonsymmetry, tends to be
Finally, it is important to mention that examples carviolated for small values ob and m which correspond to
easily be generated, where stability of the algorithm in [1lhe decrease rule. It might be tempting to redbcas this
fails for large enough gains in a nonsymmetric networkieduces the coefficient of variation in the sending rate (see
when no delays are present (omitted from the paper due {b2]). Nevertheless this turns out to reduce robust stability
length limits). This shows the importance of bound (16}o protocol non symmetries.
which gives an upper bound on the gdin even in the
absence of delays.

V(I,r eA  (23)

V. CONCLUSIONS

We have proved that the widely used optimization models
IV. WINDOW BASED TCP-LIKE ALGORITHMS for Internet congestion control are not fragile with respect
We now investigate how proposition 1 can be interpretetb the symmetry of the underlying protocol. This was
within a TCP like algorithm, where the source maintains &stablished by deriving scalable decentralized conditions
window cwnd of sent but not yet acknowledged packetsfor the stability of non symmetric TCP like protocols in



arbitrary interconnections. These conditions preserve tfighe complex number multiplyingy ; |viR;q|)2 fq turns out
bounds for symmetric protocols and are extended by ta belong to a set which is invariant with respect to the size
condition that affects only non symmetric paths and scaled R andv as well as the number of vanishing terms on the
with the degree of non symmetry. Finally, we show thasame column oR, as this is shown in Lemma 2.

a more aggressive decrement rule in TCP favours robust

stability to deviations from the protocol symmetry.
APPENDIX

Lemma 1:Let Re C™" satisfyp(|R|T|R|) < 1 andR be

such that
Rj =R;j for all (i,j) ¢ A
whereA={(i, ) : Rj 7£O,Rij_:0}
and alsovi € {1,2,....m} 3je{l1,2,...,n} s.tRj #0

Then givenF =diag(fy,...,fn), fi € C, we can bound the

spectrum ofF R*R as follows:

o(FR'R) c Co(OU{fj: (i,1)¢ A Vie{l,2,....m}}U
{fkS:Ji€{1,2,...,m} s.t. (i,k) € A})

where S= {(Vi+V5)v1 : |vi|+ V2| =1, vi,vp € C}
Proof: _ _
0(FR'R) = 0(RFR))

Lemma 2:Let

S, n:—{ Vi> < w):weC,nlvil—l}
o i= i¢;(n) i;
+

S:={(Vi +V5)v1 Vi, Vo € C, V1| +|vo| =1}
where A(n) C {1,2,...,n}

=}

-

Then§, om) = Sfor all n>2,A(n).
Proof: Note first that(v} +vi)vq = |v1|?+vyvs. Hence

S={r’4+r(1-nef:rel0,1,6 c0,2m}

So S is an uncountable union of circles on the complex
plane, which are symmetric about the real axis and with
centre in[0,1]. As r varies from 1 to O, the radii of the
circles vary continuously from 0, vanishing again only at
r =0, and their centre also translates continuously along
the real line from 1 to 0Sis hence a simply connected set.

if we ignore zero eigenvalues. This is not a problem sincgore formally the continuous map

the bounding region in Lemma 1 always includes zero.

p(RIR") <1= V|RIRTv<1iWweCMstvv=1

: [IRv||3
since p(IRIRT) =|[R|5= sup 5%
vecmyo (V3

expandingR||R"| we get

Y (Va|Ryj| +valRej| +...[)? < 1Wwe CM st viv=1
]
And since this is true for all such

Y (ViRj |+ [VoRej +...)2 < 1We CMsit, viv=1 (24)

J

We then bound the spectrum with the field of values of the 27

corresponding matrix.

0(RFR) C F(RFR) := {V'RFRVv:ve C™ v'v =1} (25)

For convenience in the analysis we consider firsRahat
is identical toR apart from a single non-zero elemeRyy
which vanishes i.&Rpg = 0. The result can be then easil
generalized to the form in the Lemma 1, where multiple

elements oR vanish.
V'RFRV = Z )

— Y VR4 T[S ViR 3 139
k§q| et q<i§#p Rq) <iZ‘VR|q>

= z}_ IV Rek | fic+
k#q

(Z " aq|> L (ZMaip¥Ra) (32 viRG)

(%i [ViRq))?

h:[0,1] x [0,2r] — S ; h(r,8) =r2+r(1—r)e’
is a homotopy and each circle &
hr:[0,2m — S ; h(6)=h(r,0)

is null-homotopic to the constant curvlg(6) andhy(0).

The boundary ofS can easily be derived analytically
(derivation is omitted here due to space limits). A paint
on the boundary satisfies
1+2X)3

y2= AE207 w2 here x = 0(2), Y =0(2)
It crosses the real axis &t=—1/8,1 and forX € [-1/8,1],
(X,)Y) defines the boundary of a convex set which is
symmetric about the real line (see figure 6). The fact $hat
is simply connected, convex and includes zero implies that

yuSC Sfor pu €0,1). Hence

{(Vi+va)viivi, v €C,
Vi|+|vo| =, H€[0,1)} CS (27)

We now continue with the proof of lemma 2. Let

k= Z vi, |I= Zvi, then
icA(n) i2gA(n)

() (3] e

= {(k—H)*l VRS C,_§1|vi| = 1}

San =



but since |kl +|I|= z Vi| +

ieA(n)
S0 S am) € S from (27).
Conversely, leB= {(k*+1")k: k,1 € C, |k|+|lI| =1}. Then
we could findv; such that

5 v

<>vil=1
i¢A(n) |Z

k= Z vi, |I= z Vi, Z|Vi|:1
icA(n) i2gA(n) I
SoSC S1,A(n) and thusS= anA(n)' |

Therefore continuing from (26)

o(RFR)C Y
k#q

2
C ; WR. 2—|— E ViR,
y q| k| <| | Q|>

Co({f.fqS:ke{1,2,...,a-1,g+1,....n}})
cCo({fx,f¢S:ke{1,2,....,a-1,9+1,...,n}})

2
VR fi+ (z |viaq|> 1S

where the last inclusion follows from (24). This result can -o2f

be trivially generalized to the case whdreand R differ

still true but with the perturbation s&being replaced by
S(u) =={(v1+Va)(Hvi+V2) 1V, v2 € C, |vi[+[v2| = 1}

andl(( r)ea) in condition (14) replaced byl — p)l( r)ea)-

Note that the corresponding area enclosed by the boundary
of S(u) shrinks such tha®(u) — [0,1], asp — 1 (see figure

6). In a similar way to Lemma 2, we can prove invariance
of S(u) to the size ofR. Furthermore, if more than one
elements of a column d® are being scaled, it is conjectured
that the corresponding perturbation set only depends on the
smallest and largest scaling factors.

Im()
o
T

with more than one elements, to give the form in Lemma 02 o oz oa o5 o5 1

1. This is because the perturbation Sd¢ the same for all

Re(2)

fi 'behaving’ in a non symmetric way and independent OFig. 6. The boundary of(ut) = {(V; +V5)(v1 +V2) : vi,v2 € C, |vi|+
the number of elements deleted along the same column Iyl =1} for 4 =0,05,08,1. Observe tha§y) — [0,1], asp — 1.

R, as this was proved in Lemma 2. ]

0.4

0.2

Imz)

Re(z)

Fig. 5. An example illustrating Lemma 1.

Figure 5 shows an example of LemmaR<c C>3 with
Ri12 = 0. R is equal toR apart fromR,, which vanishes.
F =diag(f1, f2, f3) with f1=—1,f,=—-1—j,f3=5-0.5j
. We plot the eigenvalues of 1000 random matrieés R.
The boundary of the hulCo({f1, f3, f»S}) is also plotted

and shown to include the eigenvalues, even though

Co({0, f1, f2, f3}), which is a bound foro(FR'R) (this is
proved in [3]), does not.

Remark 3:If instead of eliminating one element Bfwe
scale it by a factou € [0,1] so as to formR, Lemma 1 is

REFERENCES

[1] F. Kelly, A. Maulloo, and D. Tan, “Rate control in communication
networks: shadow prices, proportional fairness and stabilityirnal
of the Operational Research Societol. 49, no. 3, pp. 237-252,
March 1998.

[2] R. Johari and D. Tan, “End-to-End Congestion Control for the Inter-
net: Delays and Stability,JEEE/ACM Transactions on Networking
vol. 9(6), pp. 818-832, 2001.

[3] G. Vinnicombe, “On the stability of end-to-end congestion control for
the Internet,” Cambridge University Engineering Department, Tech.
Rep. CUED/F-INFENG/TR.398, 2000.

[4] ——, “On the stability of networks operating TCP-like congestion
control,” in IFAC, 2002.

[5] F. Paganini, J. Doyle, and S. Low, “Scalable laws for stable network
congestion control,” irProceedings of Conference on Decision and
Control, December 2001.

[6] S. Mason, “Feedback theory: Some properties of signal flow graphs,”
in Proc. IRE vol. 41, Sep. 1953, pp. 1144-1156.

[7] ——, “Feedback theory: Further properties of signal flow graphs,”
in Proc. IRE vol. 44, July 1956, pp. 920-926.

[8] C. A. Desoer and Y. Yang, “On the generalized Nyquist stability
criterion,” IEEE Transactions on Automatic Contrebl. 25, pp. 187—
196, 1980.

[9] V. Jacobson, “Congestion avoidance and contréiCM Computer

Communication Review; Proceedings of the Sigcomm '88 Symposium

in Stanford, CA, August, 1988ol. 18, 4, pp. 314-329, 1988.

F. Kelly, “Mathematical modelling of the internet,” Bjorn Engquist

and Wilfried Schmid (Eds.), Mathematics Unlimited — 2001 and

Beyond@ Springer2001.

T. Kelly, “On engineering a stable and scalable TCP variant,”

Cambridge University Engineering Department, Tech. Rep. CUED/F-

INFENG/TR.435, 2002.

A. Misra and T.J.0Ott, “Jointly Coordinating ECN and TCP for rapid

adaptation to varying bandwidth,” ifroceedings of IEEE MILCOM

2001.

[10]

(11]

(12]



