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Abstract— Scalable stability conditions derived so far for
optimization based models of congestion control protocols,
can be shown mathematically to hold for arbitrary networks
provided the underlying protocol is symmetric. In practical
implementations, however, deviation from this symmetry is
inevitable. It is hence crucial to establish whether these models
are fragile with respect to a relaxation of the symmetry
assumption. We prove in this paper that this is not the case by
presenting scalable, decentralized conditions, that guarantee
stability for models of non-symmetric, TCP like protocols, of
arbitrary interconnection. These conditions can be seen as
local perturbations to the symmetric results and we illustrate
how they converge to those derived for symmetric protocols as
the degree of non symmetry becomes smaller. Finally, we show
the way the decrease rule in TCP is associated with robust
stability to non symmetric deviations from the protocol.

NOTATION

σ(M) denotes the spectrum of a square matrixM, ρ(M)
its spectral radius and|M| the elementwise absolute value
of the matrix i.e.|[Mi j ]| := [|Mi j |]. Co(S) denotes the convex
hull of a set S and diag(xi) the matrix with elements
x1,x2, . . . on the leading diagonal and zeros elsewhere.

I. I NTRODUCTION

In [1] an optimization based decentralized model is
introduced as a means to analyze Internet congestion
control protocols. A Lyapunov type proof is given for
global stability of the algorithm in the absence of delays.
This work is extended in [2], [3], [4] by deriving scalable,
decentralized local stability conditions when delays are
present. Along the same lines, scalable control laws are
also suggested in [5].

The main common feature of this work, which makes the
mathematical analysis so elegant, is the symmetry of the
underlying protocol. This enables the exploitation of the
structure of the interconnections between the dynamical
elements of the system. The symmetry lies in the fact
that the resources do not discriminate between users when
producing congestion signals (prices) and equivalently users
do not discriminate between resources when determining
their data flow as function of the aggregate prices they
receive. Nevertheless in practice such discrimination does
occur. Consider, for example, variable packet sizes from
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users in a packet marking scheme for signalling congestion.
Depending then on whether the congested resource at
a router is packet rate or bandwidth, routers will scale
differently the packet rate from various users when they
take it into account to determine the marking probability.
Hence in a scenario where price is set by some routers as a
function of bitrate and different users use different packet
sizes, the stability results in [1], [2], [3], [4], [5] do not hold.

It is known in complex systems that, even though
we may have robustness with respect to parameters of
interest, the system may be fragile when small failures in
the underlying structure occur (e.g. failure of an actuator
on an aeroplane). It is therefore important in the networks
problem to verify that the models we are considering
are not fragile with respect to the protocol structure and
symmetry assumed. This is what we prove in this paper
by deriving decentralized, scalable stability conditions for
arbitrary non-symmetric networks, as an extension of the
ones derived for symmetric protocols. In comparison with
symmetric results, the conditions derived include a more
restrictive condition that affects only non-symmetric paths
and scales with the degree of non symmetry.

II. PROBLEM FORMULATION

We use the notation in [4], [1] and define the following:

xr is the flow rate associated with router.

Ur(xr) is the utility of the user on router, which is
a continuously differentiable, strictly concave, increasing
function of the flowxr .

Tr = τlr + τrl is the round trip delay of therth route,
with τrl being the propagation delay from sourcer to link
l andτlr the return delay from linkl to sourcer.

yl (t) = ∑
r:r usesl

xr(t − τrl ) (1)

is the aggregate flow through linkl .

pl = fl (yl ) is the link price per unit flow, which is a
non-negative, strictly increasing function of the aggregate
flow through the resourcel . We assume, in this paper, link
prices to be static functions of the flow (this is valid for



low length queues, and large capacities) as in [1].

qr(t) = ∑
l :l used byr

pl (t − τlr ) (2)

is the aggregate price along router.

The control law is performed by the users according
to

ẋr(t) = krxr(t −Tr)
(

1− qr(t)
U ′

r(xr(t))

)
(3)

The symmetry of such a congestion control protocol
is best appreciated if we consider the underlying signal
flow graph (as these are used by Mason in [6], [7]) of
the relevant linearized multivariable system. Lethi(s) and
gj(s) be the the Laplace transforms of the linearized user
and link dynamics respectively. In a signal flow graph,
transfer functions are represented as weighted edges,
connecting nodes which correspond to points where a
summation of signals takes place. We consider TCP like
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Fig. 1. An example of TCP like protocols and the relevant signal flow
graph

protocols where users implement the control law based
on the aggregate price from the resources along the route
and the resource prices are generated as functions of the
aggregate flow through the resource. Figure 1 illustrates
the special structure of the signal flow graph for such
protocols i.e. it is a directed, bipartite graph (sources are
connected only to links). Furthermore when an edge exists
between two nodes, an edge between the same nodes but
in opposite direction also exists.

In this paper we derive first stability conditions for
non-symmetric protocols corresponding to signal flow
graphs where some of the directed edges are removed.
We then extend these results to the case where the edges
are weighted by different scalar factors instead of being
eliminated and show how these stability conditions tend
to the ones derived for the symmetric case when the
weighting factors tend to 1.

III. M AIN RESULT

Taking Laplace transforms we can write (1) in the sym-
metric protocol as a vector equation

ȳ = R(s)x̄ (4)

where Rlr =

{
e−sτlr if route r uses linkl

0 otherwise

and (2) as ¯q(s) = diag(e−sTi )RT(−s)p̄(s) (5)

We now consider a non symmetric protocol where some of
the user dynamics weighted edges in the signal flow graph
are removed. We thus definēR, a perturbedR matrix, as

R̄i j = Ri j for all (i, j) /∈ A (6)

whereA= {(i, j) : Ri j 6= 0,R̄i j = 0} is the set of eliminated
edges. We could have equivalently removed price weighted
edges by perturbing theRT matrix (or both price and user
edges) with the subsequent analysis being very similar. For
small perturbations about the equilibrium flow we get

y(t) = ŷ+ δy(t) (7)

δy = R̄(s)δx (8)

δq(s) = diag(e−sTr )RT(−s)δ p(s) (9)

and the equilibrium relations

ŷ = R̄(0)x̂, q̂ = RT(0)p̂ (10)

Linearization of the source law (3) and the static link price
gives

δxr(s) =−kr
x̂r

q̂r

1
s+ αr

δqr(s),

where αr = − x̂r

q̂r
U ′′

r (x̂r) (11)

δ pl (s) = f ′l (ŷ)δyl (s) (12)

Breaking the loop at the source leads to the following return
ratio

G(s) = diag

(
kr

x̂r

q̂r

e−sTr

s+ αr

)
RT(−s)diag( f ′l )R̄(s) (13)

Since the system is open loop stable it is sufficient to show
that the eigenvalues ofG( jω) do not encircle the−1 point,

T

dynamics
user

dynamics
link

R

R

x y

pq

Fig. 2. Block diagram of interconnected network.

using the generalized Nyquist criterion ([8]). The stability
condition in proposition 1 follows from Lemma 1 in the
appendix.



Proposition 1: The interconnection described by (1-
6),(10) is asymptotically stable around its equilibrium if
there existsB such that all inequalities below are satisfied

f ′l (ŷl ) ≤ p̂l

ŷl + ∑r x̂r I((l ,r)∈A)
B ∀l (14)

krTr ≤ 1
B

∀r (15)

0≤ kr ≤ αr

B|λ (S)| ∀(l , r) ∈ A (16)

whereαr = − x̂r
q̂r

U ′′
r (x̂r) > 0, setS is defined as

S= {(v∗1 +v∗2)v1 : |v1|+ |v2| = 1, v1,v2 ∈ C} and

λ (S) = min
x∈S

⋂
C−

ℜ(x)

Remark 1:The first two conditions are the same as the
ones derived in [4] for the symmetric case apart from the
fact that (14) is slightly more strict. Condition (16) is due
to the non-symmetric nature of the network.

Remark 2:SetSand constantλ (S) are fixed (λ (S)=− 1
8

as shown in the appendix) for the case considered, where
elements ofR are eliminated to formR̄. Proposition 1 is
stated in this general form because if elements ofR are
weighted instead of being eliminated, the same proposition
holds but with the setS being replaced by a different
perturbation set that scales with the degree of non-symmetry
(this is discussed in more detail below).

Proof: [of Proposition 1] In order to use Lemma 1 we
need to reduceG( jω) to a similar formFR̂T(− jω) ¯̂R( jω)
s.t. ρ(|R̂|T |R̂|) ≤ 1 andF is a diagonal matrix. This can be
achieved by appropriate scaling by observing that

ρ
(

diag

(
1
q̂r

)
RT(− jω)

diag

(
p̂l

ŷl + x̂r I((l ,r)∈A)

)
R( jω)diag(x̂r)

)
≤

wwwwdiag

(
1
q̂r

)
RT(− jω)diag(p̂l )

wwww
∞wwwwwdiag

(
1

ŷl + x̂r I((l ,r)∈A)

)
R( jω)diag(x̂r)

wwwww
∞

≤ 1 (17)

The final inequality follows from the fact that each term
has row sum≤ 1 using the equilibrium relations (10) and
noting that ˆyl + ∑r x̂r I((l ,r)∈A) = [R(0)x̂]l . Now

ρ(G( jω)) = ρ
(

diag

(
Bkr

e− jωTi

jω + αr

)
R̂T(− jω) ¯̂R( jω)

)

where R̂T(− jω) = diag

(√
x̂r

q̂r

)
RT(− jω)diag

(√
f ′l
B

)

and ¯̂R( jω) = diag

(√
f ′l
B

)
R̄( jω)diag

(√
x̂r

q̂r

)

Using (17) and condition (14) it is deduced thatρ(R̂TR̂)≤ 1
and similarly ρ(|R̂|T |R̂|) ≤ 1 (max row sums remain the
same). Using Lemma 1 a sufficient condition for local

stability with positive gainskr , is that both (14) and the
condition below are are satisfied:

−1 /∈Co

(
0∪
{

Bkr
e− jωTr

jω + αr
:

ω ∈ R+, αr = − x̂r

q̂r
U ′′

r (x̂r), (l , r) /∈ A ∀l

}
∪{

Bkr
e− jωTr

jω + αr
S: ω ∈ R+,

αr = − x̂r

q̂r
U ′′

r (x̂r),∃l s.t.(l , r) ∈ A

})
(18)

whereS is the set defined in Lemma 1. For the symmetric
case, setS in Lemma 1 becomes[0,1] hence condition (18)
is satisfied for allαr > 0 provided thatkrTr < π/2 for all r,
as this is illustrated in [4]. Note, however, that in the non
symmetric case the boundary ofS crosses the negative real
axis at−1/8, therefore the factor multiplyingS at ω = 0
must be bounded, i.e. we need a condition at least as strict
as (16). It turns out, as shown below, that bounds (14 - 16)
are sufficient for (18). Condition (15) ensures that

ℜ(x) > −1 for all x∈

Co

({
BkrTr

e− jωTr

jωTr + αrTr
: ω ,αr ∈ R+,krTr ≤ 1

B

})
(19)

and conditions (15), (16) ensure that

ℜ(x) > −1 for all x∈

Co

({
Bkr

e− jωTr

jω + αr
S: ω ,αr ∈ R+,

krTr ≤ 1
B

,Bkr ≤ αr

|λ (S)|
}) (20)

Therefore (18) is satisfied.

To see statement (20) note that

Co

{
Bkr

e− jωTr

jω + αr
S: ω ,αr ∈ R+,krTr ≤ 1

B
,Bkr ≤ αr

|λ (S)|
}
⊆

Co

{
e− jxBkrTr

jx+ p
S: x∈ R+, p≥ |λ (S)|,BkrTr ≤ 1

}
(21)

Figure 4 shows the extreme case whereBkrTr = 1 and
p = |λ (S)| = 1/8 and it is clear that−1 is not included in
the hull. (19) and (20) can be easily verified analytically,
by deriving parameterized expression of the real part of
elements in the sets. This is omitted here and illustrate
instead their validity in figures 3 and 4 respectively.

As noted in Remark 3 in the appendix, if instead of
eliminating edges we scale them by factors in[0,1], the
perturbation setS tends to [0,1], as these factors tend
to 1. Therefore condition (16) becomes less strict since
λ (S)→ 0 and the conditions in Proposition 1 tend to those
for the symmetric case, as these are stated in [4].

It should be emphasized that the importance of the
bounds in proposition 1 lie on the one hand in the
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fact that they are decentralized and hold for arbitrary
interconnections like the results for symmetric protocols.
Once we deviate from symmetry, the symmetric bounds still
hold, i.e. feedback gain depends on delay and the nature
of the price functions. An extra bound is, however, also
introduced, that depends on the degree of non symmetry
as well as the nature of the utility functions of the users.
Notice that this bound only affects users behaving in a
non-symmetric way. It also turns out that along a certain
path, the worst case non symmetric behaviour determines
the bound of the corresponding user gain (follows from
remark 3 in the appendix).

Finally, it is important to mention that examples can
easily be generated, where stability of the algorithm in [1]
fails for large enough gains in a nonsymmetric network,
when no delays are present (omitted from the paper due to
length limits). This shows the importance of bound (16)
which gives an upper bound on the gainkr , even in the
absence of delays.

IV. W INDOW BASED TCP-LIKE ALGORITHMS

We now investigate how proposition 1 can be interpreted
within a TCP like algorithm, where the source maintains a
window cwnd of sent but not yet acknowledged packets.

We parameterize the control law at the source, such that
the window is incremented byacwndn for each unmarked
acknowledgement and decremented bybcwndm for each
marked acknowledgement (assumem > n). TCP in its
current form, as given in [9], uses increments of 1/cwnd
and decrements ofcwnd/2. Neglecting dynamics at the
links, a continuous approximation of the TCP algorithm is
described in [10]. It takes the form below :

xr(t) = cwnd/Tr

wherexr is a continuous time approximation of the sending
rate, and

d
dt

cwnd(t) =
acwndn(1−qr(t))−bcwndmqr(t)

Tr/cwnd(t −Tr)

whereqr is now interpreted as the probability a packet is
marked along router. In terms ofxr this becomes

Tr ẋr = xr(t −Tr)(a(xr(t)Tr)n(1−qr(t))−b(xr(t)Tr)mqr(t))

When the marking probabilities are small,qr(t) takes the
form of a weighted aggregate price which does not affect
the proof of proposition 1, since row sums in the open
loop transfer function can still be scaled in the same
way (see [4] for the detailed analysis). Hence, the same
stability conditions hold. Linearizing about the equilibrium
and taking Laplace transforms we get the following transfer
function

δ x̄r = −ax̂r(x̂rTr)n

q̂r

1
(sTr +a′r)

δ q̄r

where a′r = b(m−n)(x̂rTr)mq̂r > 0

Comparing with (12), bounds (15-16) take the form

a(x̂rTr)n <
1
B

∀r (22)

a < b(m−n)(x̂rTr)m−nq̂r
1

B|λ (S)| ∀(l , r) ∈ A (23)

As mentioned above, in current TCPn = −1 and m = 1,
so both bounds illustrate that large equilibrium windows
favour stability, but make TCP sluggish in its response.
This is the reason whyn = 0 is being proposed in [4]
and investigated through practical implementation in [11],
as a scalable TCP variant. An interesting observation is that
bound (23) which is due to the nonsymmetry, tends to be
violated for small values ofb and m which correspond to
the decrease rule. It might be tempting to reduceb, as this
reduces the coefficient of variation in the sending rate (see
[12]). Nevertheless this turns out to reduce robust stability
to protocol non symmetries.

V. CONCLUSIONS

We have proved that the widely used optimization models
for Internet congestion control are not fragile with respect
to the symmetry of the underlying protocol. This was
established by deriving scalable decentralized conditions
for the stability of non symmetric TCP like protocols in



arbitrary interconnections. These conditions preserve the
bounds for symmetric protocols and are extended by a
condition that affects only non symmetric paths and scales
with the degree of non symmetry. Finally, we show that
a more aggressive decrement rule in TCP favours robust
stability to deviations from the protocol symmetry.

APPENDIX

Lemma 1:Let R∈Cm×n satisfyρ(|R|T |R|)≤ 1 andR̄ be
such that

R̄i j = Ri j for all (i, j) /∈ A

whereA = {(i, j) : Ri j 6= 0,R̄i j = 0}
and also∀i ∈ {1,2, . . . ,m} ∃ j ∈ {1,2, . . . ,n} s.t.R̄i j 6= 0

Then givenF = diag( f1, . . . , fn), fi ∈ C, we can bound the
spectrum ofFR∗R̄ as follows:

σ(FR∗R̄) ⊂Co(0∪{ fl : (i, l) /∈ A ∀i ∈ {1,2, . . . ,m}}∪
{ fkS: ∃i ∈ {1,2, . . . ,m} s.t. (i,k) ∈ A})

where S= {(v∗1 +v∗2)v1 : |v1|+ |v2| = 1, v1,v2 ∈ C}
Proof:

σ(FR∗R̄) = σ(R̄FR∗)

if we ignore zero eigenvalues. This is not a problem since
the bounding region in Lemma 1 always includes zero.

ρ(|R||RT |) ≤ 1⇒ v∗|R||R|Tv≤ 1 ∀v∈ C
m s.t. v∗v = 1

since ρ(|R||R|T) = ‖|R|‖2
2 = sup

v∈Cm,v6=0

‖|R|Tv‖2
2

‖v‖2
2

expanding|R||RT | we get

∑
j

(|v1|R1 j |+v2|R2 j |+ . . . |)2 ≤ 1 ∀v∈ C
m s.t. v∗v = 1

And since this is true for all suchv

∑
j
(|v1R1 j |+ |v2R2 j |+ . . .)2 ≤ 1 ∀v∈ C

m s.t., v∗v = 1 (24)

We then bound the spectrum with the field of values of the
corresponding matrix.

σ(R̄FR∗) ⊂ F(R̄FR∗) := {v∗R̄FR∗v : v∈ C
m v∗v = 1} (25)

For convenience in the analysis we consider first anR̄ that
is identical toR apart from a single non-zero elementRpq

which vanishes i.eR̄pq = 0. The result can be then easily
generalized to the form in the Lemma 1, where multiple
elements ofR vanish.

v∗R̄FR∗v = ∑
k

fk(v∗R̄•kR
∗
k•v)

= ∑
k6=q

|v∗R•k|2 fk + fq

(
m

∑
i=1,i 6=p

v∗i Riq

)(
m

∑
i=1

viR
∗
iq

)

= ∑
k6=q

|v∗R•k|2 fk+

(
∑
i
|viRiq|

)2

fq

(
∑m

i=1,i 6=pv∗i Riq

)(
∑m

i=1viR∗
iq

)
(∑i |viRiq|)2

(26)

The complex number multiplying(∑i |viRiq|)2 fq turns out
to belong to a set which is invariant with respect to the size
of R andv as well as the number of vanishing terms on the
same column ofR, as this is shown in Lemma 2.

Lemma 2:Let

Sn,A(n) :=

{(
n

∑
i=1

vi

)∗(
∑

i /∈A(n)
vi

)
: vi ∈ C,

n

∑
i=1

|vi | = 1

}

S:= {(v∗1 +v∗2)v1 : v1,v2 ∈ C, |v1|+ |v2| = 1}
where A(n) ⊂ {1,2, . . . ,n}

ThenSn,A(n) = S for all n≥ 2,A(n).
Proof: Note first that(v∗1+v∗2)v1 = |v1|2+v1v∗2. Hence

S= {r2 + r(1− r)ejθ : r ∈ [0,1],θ ∈ [0,2π ]}
So S is an uncountable union of circles on the complex
plane, which are symmetric about the real axis and with
centre in [0,1]. As r varies from 1 to 0, the radii of the
circles vary continuously from 0, vanishing again only at
r = 0, and their centre also translates continuously along
the real line from 1 to 0.S is hence a simply connected set.
More formally the continuous map

h : [0,1]× [0,2π ]→ S ; h(r,θ ) = r2 + r(1− r)ejθ

is a homotopy and each circle inS

hr : [0,2π ]→ S ; hr(θ ) = h(r,θ )

is null-homotopic to the constant curvesh1(θ ) andh0(θ ).

The boundary ofS can easily be derived analytically
(derivation is omitted here due to space limits). A pointz
on the boundary satisfies

Y2 =
(1+2X)3

27
−X2, where X = ℜ(z), Y = ℑ(z)

It crosses the real axis atX =−1/8,1 and forX ∈ [−1/8,1],
(X,Y) defines the boundary of a convex set which is
symmetric about the real line (see figure 6). The fact thatS
is simply connected, convex and includes zero implies that
µS⊂ S for µ ∈ [0,1). Hence

{(v∗1 +v∗2)v1 : v1,v2 ∈ C,

|v1|+ |v2| = µ , µ ∈ [0,1)} ⊂ S (27)

We now continue with the proof of lemma 2. Let

k = ∑
i∈A(n)

vi , l = ∑
i /∈A(n)

vi , then

Sn,A(n) =

{(
n

∑
i=1

vi

)∗(
∑
i /∈A

vi

)
: vi ∈ C,

n

∑
i=1

|vi | = 1

}

=

{
(k+ l)∗l : vi ∈ C,

n

∑
i=1

|vi | = 1

}



but since |k|+ |l |=
∣∣∣∣∣ ∑
i∈A(n)

vi

∣∣∣∣∣+
∣∣∣∣∣ ∑
i /∈A(n)

vi

∣∣∣∣∣≤ ∑
i

|vi | = 1

So Sn,A(n) ⊆ S from (27).
Conversely, letS= {(k∗+ l∗)k : k, l ∈C, |k|+ |l |= 1}. Then
we could findvi such that

k = ∑
i∈A(n)

vi , l = ∑
i /∈A(n)

vi , ∑
i
|vi | = 1

So S⊆ Sn,A(n) and thusS= Sn,A(n).

Therefore continuing from (26)

σ(R̄FR∗) ⊂ ∑
k6=q

|v∗R•k|2 fk +

(
∑

i
|viRiq|

)2

fqS

⊂

∑

k6=q

|v∗R•k|2 +

(
∑
i
|viRiq|

)2



Co
({

fk, fqS: k∈ {1,2, . . . ,q−1,q+1, . . .,n}})
⊂Co

({
fk, fqS: k∈ {1,2, . . . ,q−1,q+1, . . .,n}})

where the last inclusion follows from (24). This result can
be trivially generalized to the case whereR and R̄ differ
with more than one elements, to give the form in Lemma
1. This is because the perturbation setS is the same for all
fi ’behaving’ in a non symmetric way and independent of
the number of elements deleted along the same column of
R, as this was proved in Lemma 2.
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Fig. 5. An example illustrating Lemma 1.

Figure 5 shows an example of Lemma 1.R∈ C3×3 with
R12 = 0. R̄ is equal toR apart fromR22 which vanishes.
F = diag( f1, f2, f3) with f1 =−1, f2 =−1− j, f3 = 5−0.5 j
. We plot the eigenvalues of 1000 random matricesFR∗R̄.
The boundary of the hullCo({ f1, f3, f2S}) is also plotted
and shown to include the eigenvalues, even though
Co({0, f1, f2, f3}), which is a bound forσ(FR∗R) (this is
proved in [3]), does not.

Remark 3: If instead of eliminating one element ofR we
scale it by a factorµ ∈ [0,1] so as to formR̄, Lemma 1 is

still true but with the perturbation setS being replaced by

S(µ) := {(v∗1 +v∗2)(µv1 +v2) : v1,v2 ∈ C, |v1|+ |v2| = 1}
and I((l ,r)∈A) in condition (14) replaced by(1−µ)I((l ,r)∈A).
Note that the corresponding area enclosed by the boundary
of S(µ) shrinks such thatS(µ)→ [0,1], asµ → 1 (see figure
6). In a similar way to Lemma 2, we can prove invariance
of S(µ) to the size ofR. Furthermore, if more than one
elements of a column ofR are being scaled, it is conjectured
that the corresponding perturbation set only depends on the
smallest and largest scaling factors.
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Fig. 6. The boundary ofS(µ) = {(v∗1 +v∗2)(µv1 +v2) : v1,v2 ∈ C, |v1|+
|v2| = 1} for µ = 0,0.5,0.8,1. Observe thatS(µ)→ [0,1], asµ → 1.
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