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ABSTRACT

One of the strengths of Model Predictive Control
(MPC) is its ability to incorporate constraints in
the control formulation. Often a disturbance drives
the system into a region where the MPC problem
is infeasible and hence no control action can be
computed. Feasibility can be recovered by softening
the constraints using slack variables. This approach
does not necessarily guarantee that the constraints
will be satisfied, if possible. Results from the
theory of exact penalty functions can be used
to guarantee constraint satisfaction. This paper
describes a method for computing a lower bound
for the constraint violation penalty weight of the
exact penalty function. One can then guarantee that
the soft-constrained MPC solution will be equal to
the hard-constrained MPC solution for a bounded
subset of initial states, control inputs and reference
trajectories.

Keywords : feasibility, Lagrange multipliers,
multi-parametric quadratic programming

INTRODUCTION

The success of Model Predictive Control (MPC) in
industry is primarily due to the ease with which
constraints on the inputs and states can be included
in the control problem formulation. However,
sometimes a disturbance drives the plant into a state
for which the control problem is infeasible and hence
a new control input cannot be computed. Heuristic
methods such as removing constraints or repeating
the previously computed input, are not optimal and
could lead to unpredictable closed-loop behaviour.

A more systematic method for dealing with
infeasibility is to “soften” the constraints by adding
slack variables to the problem [1, 2] where the size
of the slack variables correspond to the size of the
associated constraint violations. The slack variables
are added to the MPC cost function and the
optimiser searches for a solution which minimises the
original cost function, while keeping the constraint
violations as small as possible.

It is desirable that the solution to the soft-
constrained MPC problem be the same as the so-
lution to the original hard-constrained MPC prob-
lem, if the latter is feasible. The theory of ex-
act penalty functions can be used to derive a lower
bound for the violation weight [3, Sect. 14.3]. The

problem, however, is that in MPC this weight is de-
pendent on the current state of the system and it is
therefore necessary to calculate the lower bound for
the weight for all possible states that the plant could
be in.

To the authors’ knowledge, a systematic method
for computing a lower bound has not yet been
published. A naive and impractical solution would
be to grid the state space region of interest and
compute the optimal Lagrange multipliers at each
point. This method is computationally demanding
and due to the finite nature of the grid one
cannot guarantee that the true lower bound on the
weight has been found. As mentioned in [4], a
conservative state-dependent upper bound might be
obtainable by exploiting the Lipschitz continuity of
the quadratic program [5]. However, it is unclear as
to how exactly one would proceed to implement this
for the entire feasible state space.

This paper shows how the Karush-Kuhn-Tucker
(KKT) conditions can be used to compute a lower
bound by solving a finite number of linear pro-
grams (LPs). This method is therefore compu-
tationally less demanding than gridding and pro-
vides a guarantee that the lower bound has been
found.

Once a lower bound has been computed, the
soft-constrained MPC problem can be set up. This
new MPC problem will produce a result where the
original hard-constrained MPC problem would have
been infeasible. The important result is that one can
guarantee that the soft- and hard-constrained MPC
problems will produce the same result for the region
in which the latter is feasible.

The paper starts by defining a standard reference
tracking formulation of MPC. It is shown that
the cost function and constraints of the resulting
quadratic program (QP) are dependent on the
current plant state, previous control input and
current reference trajectory. More precisely, the
MPC problem can be treated as a multi-parametric
quadratic program (mp-QP) [6]. This allows one
to gain additional insight into the structure of the
problem.

Following this, exact penalty functions are intro-
duced in order to find a condition on the lower bound
for the violation weight. By introducing slack vari-
ables the non-smooth, exact penalty function can be
converted into a smooth, soft-constrained QP prob-
lem.



A procedure for setting up an optimisation
routine for computing a non-conservative lower
bound for the violation weight is described. This
weight guarantees the exactness of the penalty
function over an a priori chosen subset of feasible
states.

A simple example is presented to show how a
soft-constrained mp-QP could be set up to have the
same solution as the original hard-constrained mp-
QP. The paper concludes with a summary of the
results.

MODEL PREDICTIVE CONTROL

A standard formulation for MPC is described below.
The cost function and constraints are shown to be
dependent on an augmented system state vector,
which includes the current state, previous control
input and reference trajectory. The feasible region
for the MPC problem is defined.

Standard Formulation

Consider the following discrete-time LTI state-space
model:

x̂(k + 1|k) = Ax̂(k|k) +Bu(k) (1a)
ẑ(k) = Cx̂(k|k) (1b)

where x̂(k + i|k) ∈ Rn denotes an estimate of the
plant state at time k+ i made at time k; u(k) ∈ Rm
is the real input to the plant; the controlled variables
are ẑ(k) ∈ Rp. Note that x̂(k|k) = x(k) is the
current plant state.

The cost function to be minimised is:

V (ξ(k),∆U(k)) =
Hp∑
i=1

‖ẑ(k + i|k)− r(k + i)‖2Q(i)

+
Hu−1∑
i=0

‖∆û(k + i|k)‖2R(i) .

(2)

The first term in (2) penalises deviations of the
controlled variables from the reference trajectory
r(k + i) and the second term penalises changes in
the control input ∆û(k) , û(k)− û(k − 1). Hp and
Hu are the output and control horizons; Q(i) � 0
and R(i) � 0 are the weights on tracking error and
control action where ‖α‖2Q , αTQα. It is assumed
that Hu ≤ Hp and ∆û(k + i|k) = 0 for i ≥ Hu.

The cost function can be rewritten as:

V (ξ(k),∆U (k)) = ‖Z(k)− T (k)‖2Q + ‖∆U(k)‖2R
(3)

where

Z(k) ,

 ẑ(k + 1|k)
...

ẑ(k +Hp|k)



T (k) ,

 r(k + 1|k)
...

r(k +Hp|k)



∆U(k) ,

 ∆û(k|k)
...

∆û(k +Hu − 1|k)

 .

Z(k) has the form Z(k) = Ψx(k) + Υu(k − 1) +
Θ∆U(k). The matrices Ψ,Υ,Θ,Q and R are
obtained by substituting (1) into (2) and collecting
terms, before defining Γ ,

[
−Ψ −Υ I

]
. It is

necessary to define the augmented state vector:

ξ(k) ,

 x(k)
u(k − 1)
T (k)

 .

Cost function (3) is usually minimised subject
to linear inequality constraints on the inputs, states
and outputs of the plant, possibly also including the
reference trajectory T (k):

Ω


∆U(k)
U(k)
Z(k)
X (k)
T (k)

 � ω (4)

where U(k), the vector of future control inputs, and
X (k), the vector of future plant states, are defined
in a similar fashion as above; Ω and ω are problem-
dependent. The MPC problem then reduces to the
following strictly convex QP problem:

min
∆U(k)

1
2

∆U(k)TH∆U(k) + ∆U(k)TGξ(k)

+ ξ(k)TFξ(k)
(5a)

subject to

E∆U(k) � f +Gξ(k) (5b)

where F = ΓTQΓ, G = −2ΘTQΓ, and H =
2(ΘTQΘ + R); E, f and G are obtained by
substituting (1) into (4) and collecting terms. The
term involving F in (5a) is usually dropped, since it
does not affect the optimal solution ∆U∗(k).

Only the first part of the solution is used in
accordance with the receding horizon strategy and
the implemented control input is therefore

u∗(k) = u(k − 1) +
[
Im 0m×(Hu−1)

]
∆U∗(k) . (6)

The state at the next time instant x(k + 1) is
measured and the process of setting up the QP and
calculating the new control action is repeated.

Note that both the cost function (5a) and
constraints (5b) are dependent on ξ(k), which
includes the current state x(k), past input u(k −
1) and the reference trajectory T (k). The MPC
problem can therefore be treated as an mp-QP for
which an explicit solution can be computed off-
line [6].



Feasibility and Invariance

The QP constraints (5b) define the set of feasible
control sequence and augmented state pairs:

F , {(ξ,∆U) : E∆U � f +Gξ} (7)

and the assumption that F 6= ∅ is made. Often some
of the constraints on ξ and ∆U in F are redundant
and removing these will improve computation time
both on-line and when computing the constraint
violation weight, as described later . The values of ξ
for which the QP problem is feasible, i.e. for which a
feasible control sequence exists, is therefore defined
as:

ΞF , {ξ : ∃∆U such that (ξ,∆U) ∈ F} . (8)

The MPC problem is not defined for any other
combination of past control input, current state
and reference trajectory, i.e. if ξ /∈ ΞF then the
QP problem is infeasible. The set ΞF can be
seen to be the orthogonal projection of F onto the
ξ subspace and can therefore be computed using
standard techniques, such as the Fourier-Motzkin
elimination method [7].

In general, even for the case with no distur-
bances and model uncertainty, the set ΞF is not nec-
essarily positively invariant for the closed-loop sys-
tem. Since constraints can be satisfied if and only
if the initial condition ξ(k) is in a set which is pos-
itively invariant [8] for the closed-loop system, it is
important to design the controller such that ΞF is in-
variant. If Hp = Hu, one can guarantee nomi-
nal feasibility for all time by requiring that the pre-
dicted terminal state ξ̂(k+Hp|k) lie in a control in-
variant set, as discussed in [9]. For simplicity, it is as-
sumed that ΞF is positively invariant for the nomi-
nal closed-loop system and that a feasible sequence
of reference trajectories is always chosen.

Assuming the above, it is still possible that a
disturbance or modelling error could result in the
system being driven to a state where the problem is
infeasible and hence no solution exists. One possible
way of dealing with this situation is to soften some
or all of the constraints.

SOFT CONSTRAINTS

A straightforward way for softening constraints is
to introduce slack variables which are defined such
that they are non-zero only if the corresponding
constraints are violated. If the original, hard-
constrained solution is feasible, one would like
the soft-constrained problem to produce the same
control action. In order to guarantee this the
weights in the cost function have to be chosen large
enough such that the optimiser tries to keep the
slack variables at zero, if possible. Exact penalty
functions can be used to guarantee this behaviour [3,
Sect. 14.3].

Exact Penalty Functions

The general non-linear, constrained minimisation
problem can be stated as:

min
θ
V (θ) (9a)

subject to

c(θ) � 0 . (9b)

This optimisation problem can be recast into the fol-
lowing equivalent unconstrained, non-smooth penal-
ty function minimisation:

min
θ
V (θ) + ρ‖c(θ)+‖ (10)

where ρ is the constraint violation penalty weight,
the vector c(θ)+ contains the magnitude of the
constraint violations for a given θ and c+i ,
max(ci, 0).

The concept of a dual norm is used in the
condition on ρ for which the solution θ∗ to (10) is
equal to the solution to (9). The dual of a norm ‖ · ‖
is defined as

‖u‖D , max
‖v‖≤1

uT v . (11)

It can be shown that the dual of ‖ · ‖1 is ‖ · ‖∞ and
vice versa, and that ‖ · ‖2 is the dual of itself.

If θ∗ denotes the optimal solution to (9) and
λ∗ is the corresponding optimal Lagrange multiplier
vector, then the following well-known result gives a
condition under which the solutions to (9) and (10)
are equal:

Theorem 1. If the penalty weight ρ > ‖λ∗‖D and
c(θ∗) � 0, then the solution θ∗ to (9) is equal to the
solution to (10).

Proof. See [3, Thm. 14.3.1].

If ρ > ‖λ∗‖D, then (10) is called an exact penalty
function. The cost function (10) is non-smooth and
therefore not as easy to solve for as, say, a QP. One
way to overcome this difficulty is to introduce slack
variables into the problem.

Slack Variables as Soft Constraints

The non-smooth, unconstrained minimisation (10)
can be cast into the following equivalent smooth,
constrained problem which is a lot easier to compute:

min
θ,ε

V (θ) + ρ‖ε‖ (12a)

subject to

c(θ) � ε (12b)
0 � ε (12c)



where ε are the slack variables representing the
constraint violations, i.e. ε = 0 if the constraints
are satisfied. If V (θ) = V (ξ(k),∆U(k)) as in (3),
c(θ) = E∆U − f −Gξ, θ = ∆U and ‖ε‖1 or ‖ε‖∞ is
used in (12), then the problem can be formulated as
a QP and solved using standard techniques [1, 2].

Note that even though the l2-norm ‖ε‖2 ,
√
εT ε

will result in a non-smooth penalty function, one
cannot formulate the soft-constrained MPC problem
as a QP because V (ξ(k),∆U(k)) is quadratic and
‖ε‖2 has a square root. Using the l22 quadratic norm
‖ε‖22 , εT ε one can express the problem as a QP,
but this does not result in an exact penalty function
since (10) will be smooth; it is the non-smoothness
of the penalty function which allows it to be exact1.

COMPUTING A LOWER BOUND FOR
THE PENALTY WEIGHT

In MPC, the optimal solution ∆U∗ is dependent on
the current augmented state ξ as can be seen in (5)
and hence the corresponding Lagrange multiplier λ∗

is also dependent on ξ. The lower bound for ρ is
therefore dependent on ξ.

One would therefore have to calculate a lower
bound for ρ which guarantees that the soft-con-
strained MPC will produce the same solution as
the original hard-constrained MPC for all ξ ∈ ΞF.
Duality in optimisation theory provides some insight
into the relation of the Lagrange multipliers to ξ.

KKT conditions for mp-QP Problems

The Lagrangian of optimisation problem (5) is

L (∆U , λ) =
1
2

∆UTH∆U + ∆UTGξ + ξTFξ

+ λT (E∆U − f −Gξ) .
(13)

A stationary point for the Lagrangian occurs
when ∇∆UL (∆U , λ) = 0, hence the corresponding
KKT optimality conditions are:

H∆U + Gξ + ETλ = 0 (14a)
λ � 0, λ ∈ Rq (14b)
E∆U − f −Gξ � 0 (14c)
diag(λ)(E∆U − f −Gξ) = 0 (14d)

where q is the minimal number of linear inequalities
describing F. Provided H � 0 (as is the case when
R � 0), one can solve for ∆U = −H−1(Gξ + ETλ)
and substitute it back into (14).

1In [2], ‖ε‖2S is added to the cost function, together with
a weighted l1-norm; the l1-norm guarantees an exact penalty
function and S is an extra tuning weight used to penalise the
constraint violations.

A Non-conservative Lower Bound

The condition on the lower bound on ρ over all
feasible ξ can now be stated as:

ρ > max
ξ,λ
‖λ‖D (15)

with the maximisation subject to the KKT optimal-
ity conditions (14) with ∆U as above. This is the
lowest bound on ρ that guarantees that the soft- and
hard-constrained QP problems produce the same so-
lution for all feasible ξ, since all points (∆U , λ)
which satisfy the KKT conditions for a given ξ
solve the corresponding strictly convex primal QP
and dual problem. It can be shown that the op-
timal ∆U∗ and λ∗ are uniquely defined continu-
ous, piecewise affine functions of ξ [6]. The op-
timisation in (15) is difficult, since it is the max-
imisation of the norm of a piecewise affine func-
tion, which is not necessarily convex or concave.

It is also possible that the maximisation is
unbounded. If the region ΞF is bounded, then
the maximisation is bounded. However, ΞF is
not necessarily bounded. From this point on, the
optimisation is subject to the additional constraint
ξ ∈ Ξ0, where Ξ0 is a polyhedron of initial conditions
which is chosen such that Ξ0 ∩ ΞF is bounded. If Ξ0

is a polytope2, then Ξ0∩ΞF is also a polytope, hence
the maximisation is bounded.

The last constraint in (14) is the complementary
slackness condition. Let λ̆j and λ̃j denote the La-
grange multiplier vectors for the j’th set of inac-
tive and active constraints as in [6]. Let Ĕj , f̆ j , Ğj

and Ẽj , f̃ j, G̃j be the corresponding matrices ex-
tracted from E, f andG. Adopting the above the op-
timisation in (15) becomes3:

max
j,ξ,λ̃j

‖λ̃j‖D (16a)

subject to

λ̃j � 0, ξ ∈ Ξ0, j ∈ {1, 2, . . . , N} (16b)

(ĔjH−1G + Ğj)ξ + f̆ j � 0 (16c)

λ̃j = −(ẼjH−1(Ẽj)T )−1(f̃ j + (G̃j + ẼjH−1G)ξ)
(16d)

where N is the number of possible active and
inactive constraint combinations. The norm ‖λ̃‖D =
‖λ̃‖∞ is used if ‖ε‖1 is used to penalise the constraint
violations and ‖λ̃‖D = ‖λ̃‖1 if ‖ε‖∞ is used.

Remark 1. Note that λ̃j � 0 for each combina-
tion of active constraints. If ‖λ̃j‖∞ , maxi |λ̃ji | =

2A polytope is a bounded polyhedron.
3As in [6], it is assumed that the rows of Ẽj are linearly

independent in order to guarantee that (ẼjH−1(Ẽj)T )−1

exists. The fact that λ̆j = 0 allows one to eliminate it from
the equations. Note that one can also eliminate λ̃j from the
cost function and constraints.



maxi λ̃
j
i is used in the maximisation (16a), a se-

quence of LPs solves maxi,j,ξ,λ̃j λ̃
j
i . Similarly, if

‖λ̃j‖1 ,
∑
i |λ̃

j
i | =

∑
i λ̃

j
i is used, a sequence of LPs

will solve maxj,ξ,λ̃j
∑

i λ̃
j
i .

For large systems with many constraints, this
approach might seem computationally impractical,
because of the large number of possible combinations
of active constraints (2q − 1). In practice, however,
far fewer combinations of active constraints can
actually occur over the feasible set, e.g. it is not
possible for an input or state to be at both its upper
and lower bound.

A method for computing the possible active
constraint combinations that can occur over Ξ0 ∩ΞF
is given in [6]. The authors outline a method where
the feasible space is divided into polytopes in which
the same constraints on ∆U become active at the
solution. By solving the above-mentioned LPs over
the corresponding polytopes, one can compute a
lower bound for the penalty weight.

The authors of [6] also make some comments re-
garding the computational complexity and maxi-
mum number of possible active constraint combi-
nations. However, for off-line design and analy-
sis of the system computation speed is less of an is-
sue. The method outlined here is more efficient
than the “brute force” method of gridding and pro-
vides a guarantee that the lower bound has been
found.

EXAMPLE

This section demonstrates how a soft-constrained
mp-QP problem can be designed given a hard-
constrained mp-QP. A simple example was chosen,
in order that the reader can work out the solutions
analytically and visualise the results easily. Consider
the following hard-constrained mp-QP:

min
θ∈R

θ2 + θξ + ξ2 (17a)

subject to

θ ≤ 1 + ξ (17b)
θ ≥ −1 (17c)

where the inequalities describe the feasible set F.
The feasible set for ξ is therefore given by ΞF =
{ξ : ξ ≥ −2}, i.e. the hard-constrained mp-QP
problem is infeasible for ξ < −2.

For the soft-constrained problem one can take
‖λ‖D = ‖λ‖∞. If ρ > maxξ≥−2 ‖λ‖∞ then the soft-
constrained mp-QP4

min
θ,ε

θ2 + θξ + ξ2 + ρ‖ε‖1 (18a)

4Since ρ‖ε‖1 = ρ1T ε if ε � 0, problem (18) can be written
as a QP.

subject to

θ ≤ 1 + ξ + ε1 (18b)
θ ≥ −1− ε2 (18c)
ε � 0 (18d)

has the same solution as the hard-constrained mp-
QP (17) for ξ ≥ −2.

The first step is to define the regions in which
the different combinations of constraints become ac-
tive, using the KKT conditions (14). Consider-
ing all four possible combinations of active and inac-
tive constraints, the analytic expressions for the La-
grange multipliers for all feasible ξ ≥ −2 are:

λ =


[
−3ξ−2

0

]
if −2 ≤ ξ ≤ − 2

3[
0
0

]
if − 2

3 ≤ ξ ≤ 2[
0
ξ−2

]
if ξ ≥ 2

The fourth combination, when both constraints are
active, occurs only at ξ = −2 and this combination
is therefore redundant.

The next step is to calculate max ‖λ‖∞ for the
areas in which constraints are active. For ξ ≥ 2,
λ2 = ξ − 2, hence maxξ≥2 ‖λ‖∞ is unbounded. One
therefore has to bound ξ from above if ρ is to be
finite. Restricting our search to −2 ≤ ξ ≤ 4 gives:

max
ξ
‖λ‖∞ =


4 if −2 ≤ ξ ≤ − 2

3

0 if − 2
3 ≤ ξ ≤ 2

2 if −2 ≤ ξ ≤ 4

The lower bound of the violation weight for the soft-
constrained mp-QP is therefore

ρ > max
−2≤ξ≤4

‖λ‖∞ = 4 .

Choosing ρ > 4 guarantees that the soft-constrained
mp-QP (18) solution θ∗soft is equal to the solution
θ∗hard of the hard-constrained mp-QP (17) for all
−2 ≤ ξ ≤ 4.

Figure 1 is a plot of the actual Lagrange multipli-
ers of the hard-constrained mp-QP at the optimal so-
lution as ξ is varied from -2 to 4, confirming that λ
is a piecewise affine function of ξ. Figure 2 shows
that the difference between the soft-constrained op-
timal solution and the hard-constrained optimal so-
lution is zero for ρ > 4 over the range −2 ≤ ξ ≤ 4.
The soft-constrained and hard-constrained solutions
will differ for ξ > 4, depending on the actual value
used for ρ. For ξ < −2 the hard-constrained mp-QP
does not have a solution, while the soft-constrained
mp-QP solution minimises the constraint violations.

CONCLUSIONS

A standard reference tracking formulation of MPC
was given. The set of states for which the MPC
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Figure 2: Plot showing that the difference between
θ∗soft and θ∗hard for −2 ≤ ξ ≤ 4 is zero if ρ > 4

problem is feasible was defined. The importance of
ensuring that the feasible set is positively invariant
for the nominal closed-loop system was briefly
discussed.

It was shown that both the cost function and
the constraints of the resulting QP is dependent
on the current state, previous control input and
reference trajectory. This implies that the Lagrange
multipliers are also dependent on these variables.

Exact penalty functions require that the con-
straint violation weight be larger than the norm
of the Lagrange multiplier of the original optimi-
sation problem. It is therefore necessary to com-
pute the upper bound on this norm for all feasi-
ble combinations of current states, previous con-
trol inputs and reference trajectories.

A method for computing the upper bound on the
norm of the Lagrange multipliers over a bounded
subset of the feasible states was presented. The
region of interest can be divided into polytopes in
which different combinations of constraints become
active at the solution. The problem of finding the
maximum norm of the Lagrange multipliers reduces
to solving a finite number of LPs. The maximum
norm therefore lies at one of the vertices of these
polytopes.

If the constraint violation weight that is used in
the soft-constrained cost function is larger than the
maximum norm, the solution is guaranteed to be
equal to the hard-constrained solution for all feasible
conditions that were considered.

FURTHER REMARKS

Thus far, in all examples, the authors have found the
norm to be convex over ΞF and hence the maximum
is obtained at one of the vertices of Ξ0 ∩ ΞF. This
might be related to the fact that the optimal value
of the MPC cost function is convex over ΞF. It
might be that the Lagrange multipliers are related
to the partial derivatives with respect to ξ of the
optimal cost function , since the mp-QP is similar in
structure to a perturbed QP when performing a local
sensitivity analysis. The authors will appreciate
any correspondence which confirms this or suggests
otherwise.
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