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Controller Parameterization for Disturbance
Response Decoupling: Application to
Vehicle Active Suspension Control

Malcolm C. Smith Fellow, IEEE,and Fu-Cheng Wangtudent Member, IEEE

Abstract—This paper derives a parameterization of the set number of different arrangements from semiactive to fully
of all stabilizing controllers for a given plant which leaves some active schemes has been investigated [2], [16], [25], [27].
prespecified closed-loop transfer function fixed. This result is Tnere has also been interest in characterizing the degrees of
motivated by the need to independently shape several different freedom and constraints involved in active suspension design
disturbance transmission paths in vehicle active suspension . ; . : :
control. The result is studied in the context of quarter-, half-, Constraints on the achievable response have been investigated
and full-car vehicle models, to derive appropriate controller from “invariant point,” transfer-function, and energy/passivity
structures. A controller design is carried out for the full-car case points of view in [7], [9], [10], [18], [19]. In [18], a complete
and simulated with a nonlinear vehicle dynamics model. set of constraints was derived on the road and load disturbance
Index Terms—Active suspension, controller parameterization, response transfer-functions and results on the choice of sensors
disturbance response decoupling,H, loop-shaping, vehicle needed to achieve these degrees of freedom independently were
dynamics. obtained for the quarter-car model (see [4] for generalization
of these results to half- and full-car models). In [19] it was
l. INTRODUCTION shown that the road and load disturbance responses could not

. .be adjusted independently for any passive suspension applied
HIS paper studies the problem of control system desi D a quarter-car model.

when there are independent performance goals for sev-

| disturb ¢ e ths. Wi vated b The need to design the road and load disturbance responses
era disturbance transmission paths. YVe are motivated by mﬁependently has been considered elsewhere in the active sus-
problem of vehicle active suspension control where a key f

ture is th d to insulate th hicle bodly f both road 2nsion literature. For example, in [15] a hardware and sensing
ure IS the need o insulate the vehicle body from both roa rrangement was devised so that the feedback part of the scheme

regularities and load disturbances (e.g., inertial loads induq%uld not affect the response to road disturbances, which were

?Iy tprakmg "’?”d cor?erlnhg). Itis W.e” known thgt these are 30 lesigned to be suitably soft by means of passive elements in the
tI‘IlC N9 ;?threm(le)n S when gasslve Sl,tlfspensuinsl are us? ’ eme. In [24], [25] the actuator was placed in series with a
€ conflict may be removed when active control 1S employ ring and damper, which were chosen to give a suitably soft re-

W'tth appropl;late hzr?wareostructure,.teb?., ﬁhoc;ce of stens;)r yonse to road irregularities in the absence of a feedback signal.
cation, number, and type. nce a suitable hardware struc ur&e"(?ontroller structure using a filtered combination of the sensor

selected, there remains the problem of designing the contro Easurements was then selected so that the road disturbance

to achieve satisfactory responses for all of the disturbance tra Sponses were unaffected by the feedback. The present paper

mission paths. It is this latter problem that is the main subject presents a continuation of this idea by finding in general the

Fh.'s paper. To this e”q'.V.Ve consider the probl_em of param_et?éduired controller structure to achieve this property for any set
izing the set of all stabilizing controllers for a given plant whic f measurements

leaves the transfer function for a given disturbance transmissior]n active suspension design for full-car models, it has been
path the same as when some nominal stapmzmg controllerf&md advantageous to decompose the motion into bounce, pitch
employed. In this way, the design for each disturbance path ¢

: . - . . roll components for the vehicle body and additionally warp
be carried out successively, providing there is sufficient freedc\a& the wheels in contact with the road [6], [12], [13], [19]. This
to adjust the responses independently. ' ’ '

paper will also exploit such transformations, at least to a par-
tial extent. In the full-car case we will exploit symmetry to de-
compose into the bounce/pitch and roll/warp half-cars. In the
The use of active suspension on road vehicles has bdwif-car case we will use our results to determine the feedback
considered for many years [8], [15], [17], [20], [26]. A largestructure to allow road and load disturbances to be shaped inde-
pendently and discuss the simplicity assumptions which allow

_ _ _ a further decomposition of the half-car into two quarter-cars.
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(which allows the response to reference commands and tontrollers which leavéy,, .z, (the transfer function frond; to

return ratio of the feedback path to be optimized independenthy)) the same as for some given stabilizing contraligr

is also standard [21], [29]. The generalization to additional Let P,, = NM~! = M~!N be the right and left coprime

degrees-of-freedom to include some exogenous disturbanfaatorizations of%» overRH,. Then all stabilizing controllers

has also been considered [14]. The parameterization of all stan be parameterized by

bilizing controllers which leaves some prespecified closed-loop

transfer function fixed, as considered in this paper, represents a K=Y -MQ)X -NQ)™ 2

continuation of these ideas and techniques. =(X —QN)*(Y — QM) (3)
Our approach makes use of algebraic properties of the ring of L.

stable, proper rational functions [21]. To facilitate the paramér @ € RHZZ*#* whereX, Y, X, Y are matrices with ele-

terization at the required level of generality we will introduc&ents inRH., which satisfy the Bezout identity

the idea of I_ef_t_and right normal rank factorizations of a rational T v1IM Y ,

matrix (Definition 1). [—N 1\7[} [N X} =1.

C. Outline of Paper For our first result (Theorem 1) it is convenient if the factor-

Section Il sets up in generality the problem of parametégalions are chosen so th@t = 0 corresponds to the desired
izing all stabilizing controllers which leave some prespecifiedfabilizing controller, i.e. Ko = Y X1 = XY (This as-
closed-loop transfer function fixed. Our basic results, whictHmption will be relaxed in the corollary to Theorem 2.)
characterize the required structure of the YoGlparameter, .The result's we will gstabllsh in this section makg use of cer-
are given in Theorems 1 and 2. Section Il considers &N @lgebraic properties of the $&l.., namely its ring struc-
standard quarter-car model employing a “Sharp” actuator withre. _The rgader is referr_ed to [21] for the necessary background
various choices of measured variables. The required controff} this topic. Here we will be content to recall a few facts. The
structures to leave the road disturbance responses the sameeH8 1 has the property of being a Euclidean domain with de-
in the passive case are derived using the results of Sectiordfié® function defined by the total number of zeros of the element
Section IV considers a simple half-car model with acceleratidh th€ closed right half plane and at infinity (counting multiplic-
and strut deflection measurements, and again derives the cfs)- The invertible elements RiH. are calledunits and are
trol structure required to keep the road disturbance respont2&€lements with degree equal to zero. A makiie RHZ™
the same as in the passive case. “Simplicity” conditions whi¢hcalledunimodularif it has an inverse whose elements belong
allow the design to be carried out for two separate quarter-cidtHzo, Or equivalently, if its determinant is a unit RH...
are presented. Section V considers a simple linearized full-cdt¢ normal rank of a matri) ¢ RHZ™, denoted normal
model and shows how this may be separated into two half-¢8PK@(s)), is the maximum rank af(s) for anys € C which
models under a mild symmetry assumption. Section VI preseffd10t @ pole. Equivalently, the normal rank is equal to the rank
a design for the full-car model with acceleration and strut ¢&2r aimost alls € €. We now introduce a type of matrix factor-
flection measurements. The bounce/pitch half-car is treatg@tion which will be useful in proving the subsequent results.
according to the theory in Section IV. The roll and warp modes Pefinition 1. LetT" be a matrix with elements ... 7'is
are each treated as quarter-cars with the warp mode be to have a left normal r/ank factonzgﬂon (Inf) if there exist
handled in a special way. The controller design is simulat@@@tricests andV’ = (V/, V;) overRH.. with £ of full column

with a nonlinear vehicle model using the multibody simulatioRermal rank and” unimodular such tha” = EV,. 7" is said
packageAutoSim to have a right normal rank factorization (rnf) if there exist ma-

tricesF andU = (Uy, Us) overRH, with F of full row normal
rank andl/ unimodular such thdf’ = U, F.

Lemma 1: For anyl’ € RH. ¢, there exists an Inf and an rnf
We consider the LFT (linear fractional transformation) modejf 7.

Il. CONTROLLER PARAMETRISATION RESULTS

in Fig. 1, where the Laplace transfer function of the generalized Proof: See the Appendix. O
plantP is partitioned as We return to the problem of parameterizing all stabilizing
controllers which leave the transfer functiéi, .z, the same
P= {Pll Pl?} as when the controllei{y = Y X! = X 1Y is applied. From
oy Poo [5], the closed-loop transfer function in Fig. 1 can be expressed
" . . . S
and further partitioned conformably with the disturbance S|gna?s
as T< 1211) <21> :Tl - T2QT3 (4)
[731} [Pu,u P11,12} [Pm,q |:UA]1:| wa 22
£ =||Pu,a P Pio» Wo . .
g [Poi Pro] Py i " whereTi, 15, T35 have elements iRH ., and are given by
1 -
wherew; € R™ ,ws, € R™2,u € R™,2, € RP*, 2, € RP2, T =P + Py MY Py
y € RPs atany time instant denotes the Laplace transform of 1y =Pa M

u(t) etc. We considerthe problemofparameterizingall stabilizing Ty =M Py,
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W "3 allows the controller parameterization of Theorem 1 to take a

wy ——————+ P 22 simplified form, and it turns out that a further useful structural
simplification can then be made. It will be convenient to summa-
u y rize these simplifications in the theorem below, which will then
be applied directly throughout the paper. (The first two special
K assumptions on the open-loop plant arise because of some pas-
sive elements in the suspension system which ensure that the
road disturbance responses are satisfactory without any feed-
back control. The third assumption is a rather technical one
which says that the number of outputs to be left invariant is no

maller than the number of actuators and that this transmission
path has full normal rank.)

Theorem 2:Let (i) P be (open-loop) stable, (if{o = 0,
(III) m3 = T2.

1) There existé/, € RH(Ps—"2)XPs gych that all stabilizing

Fig. 1. Generalized model in LFT form.

Thus the problem reduces to parameterizing all stabilizing con-
trollers which leave,, .z, = (71)11. These are characterize
by all Q € RHZ?XPS such that(TQQTg)ll = T271QT371 =0,
wherels; = Pip 1 M andis; = J\Z/Pﬂ,l. We now introduce
an Inf of 75 ; and an rnf off3 ; as follows:

151 :=EV; (5) controllers which gively;, .z, = (Z1)1,1 can be param-
Ty :=UF (6) eterized as
where £ € RHIS ™™, I € RHZ™™, Uy € RHE™™, V € K = —(I - Q:lhPo) ' Qi ®)
RHZ2*™3, ro andrs are the normal rank oty ; and7s ; re-
spectively. Note that, andr; are also the normal rank &, ; for Q; € RH/2Xws—r3),

and P»; 1, respectively. Furthermore, we have the inequalities
ro < min(py,m3), r3 < min(my, p3).

Theorem 1: Consider any stabilizablE in the configuration
of Fig. 1. All stabilizing controllers such that the closed-loop
transfer functioril, .z, = (71)11 are given byK expressed
in the form of (2) and (3) with

2) A particularU, € RHe~"¢)*?s for which (8) param-
eterizes all stabilizing controllers such thgf, ., =
(Tl)]L 1 can be calculated as follows: chood¢ = I,
M=IN=N=PFPy,X=1X=1Y =0,
Y =0 andV; = I, definel/; from the rnf (6), and cal-
culatel/,, U, as in Theorem 1.

— ~ ~ ~ —1
0= <V1> ' <Q1Ug> ) 3) Consider any/) such thatk’ = — (I - QlUQTPQQ)
Ve Q2 Q. UJ parameterizes all stabilizing controllers which give
for O, € RH™2*@s—7%) andQ, € RH(™—"2)XPs V, andl); Tg,—z = (11)1,1. Then there exist a unimodular matrix

rrt
defined from the Inf and rnf factorizations (5) and (6}, V> W such that’; = WUz, wherel, is defined in 2).
are chosen such thl; , Us) and(V/, V)’ are unimodular, and 4) Let Us be deflned in 2) and le’; be any stabilizing con-

(72 c RH%—m)xps is a partition oft/— troller for UQPQQ ThenK1U2 is a stabilizing controller
_ for Py, for which Ty, .z, =(T1)11-
U™t = (1, 1,)" = <Q1> ) 5) LetU; be defined in 2) and consider any stabilizing con-

2 troller K for Psy for which Ty, .z, = (Z1)1,1. Then we

Proof: See the Appendix. 0 canwriteK = KlﬁQ, wherekK is a stabilizing controller

The control structure given in (7) is arrived at by completing for Uz Py.

the matrix/; to a unimodular matrix and then extracting Proof: See the Appendix. U

from the resulting matrix inverse. Sinég and the completion ~ Corollary 1: Let conditions (i) and (iii) of Theorem 2
are not unique then neitherli. It will be useful to characterize hold and suppose tha&, = —(I — QP»)~*Q for some

this nonuniqueness in terms of the parameterization of the &t€ RHZZ*??. Then all stabilizing controllers which leave

OvUy: O € Rng(pg—,,g)} directly. This is done in the fol- (T4, -z, the same as wheld, is applied can be parameterized

lowing lemma. as

Lemma 2: Given two setsd = {QlﬁQ:Ql S R[H]Qjc} and _ ~ -1 __ ~
N - K= ( —(Q@+ Q1U2)P22) (Q+ilUz) (9
B =1{qiUj.0l ¢ [R[H]gjc} wherelly, U € RHZX are full
row normal rank, then _ _ for someQ; € RH'2*¥s="%) andl/, defined in Theorem 2 (2).

1) B C Aifand only if U2T is a left multiple ofU; over Proof: See the Appendix. O
RHe, i.e., there exists & € RHZX“ such thal’] =  The controller structure given in (8), which is a special case
WUs,. of the general parameterization given in Theorem 1, may be rep-

2) B = Alif and only if there exists a unimodular matrixresented in the block diagram form shown in Fig. 2(a). Theorem
W € RHZX® such thal’j = WTs. 2(4, 5) shows that the essential feature in this controller struc-

Proof: See the Appendix. O ture is the presence &f; as the rightmost term in (8). This is

Throughout this paper the vehicle dynamics examples willustrated in the block diagram Fig. 2(b) whekg may be any
satisfy some special assumptions on the open-loop plant. Tsiabilizing controller for the transformed plaRf .
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: : path. In effect, this gives the choice Af, = 0. We now write

P P the system in the form of Fig. 1 withy = [z,, z.], w1 = 2,
j 1 g wy = Fs,y = [%,%s — 2], w €quals the actuator command
% ; Efﬂ . signal as in (10) and, omitted. The corresponding dimensions
o - i EP arem; =mg =ms =1,p1 =2,p =0, p3 = 2. Equation
L S Ry Iy ' (1) then takes the form
1779 29 K Zs 3
Zu _[ P Pel|
@ (0) 523, Py Pyl |
Fig. 2. (a) General controller structure. (b) Equivalent controller. Zs — Zu
l P with the transfer functions being given by
17 ki(css + ks) p1(s)
Zs —_—
™, = Pu Td(s) [kt (mast s+ ks)  (cos+ k) (16)
Za _7(3) —ks (mu32 + k't)
Ce i Pz Td(s) | —kames? (17)
5 ke po— L [ Ki(cos + ks)s? pi(s)s? }
my 1’" 2 d(s) | —ky(mss?) (mus2 + kt)
P :’y(s) [k (mus? + k) s?
%k, I’ 22 7 d(s) | ks ((m +my)s® + k)

wherep;(s) = mys? + css + ks + k; and

Fig. 3. The quarter-car model. 3

d(s) = (msmu)s4 + cs(ms +my)s
2
l1l. THE QUARTER-CAR MODEL s (ks + ke) +muks)s” + eokes + koke. (18)

A. The Quarter-Car With Two Measurements As expected, all roots af(s) are in left-half plane, which can
L ) be confirmed by the Routh—Hurwitz criterion.
We begin with the quarter-car model of Fig. 3 where the \ne now observe thaPy», = P>, which has normal rank

sprung and unsprung masses:areandm,, and the tire is mod- equal to one, i.eq» = ms. SinceP is open-loop stable and
eled as a linear spring with constdnt The suspension consistsK0 — 0. the conditions of Theorem 2 are satisfied. We can

of a passive damper of constaptin parallel with a series com- 1ap apply Theorem 2(2) to find the matfi% which defines the

bination of an actuatad and a spring of constah (Sometimes eqyired control structure. Following the definitions in Theorem
referred to as a “Sharp” actuator [27]). Following [16] the aCtLQ(Z) we first find

ator is modeled so that the relative displacement across the ac-

2
tuator will be a low-pass filtered version of the actuator's com- Ty, =MPy | = ks {CSS + ks}
mand signal, i.e., d(s) [ —ms
. . . which has normal rank equal to one, ixg,,= 1. Hence we can
Zs — 2o = y(s)it. (10)  select
. . . <2
As in [16], we use a second-order filter to represent the actuator F :kté’ (s+a)
dynamics d(s)
1
UJ2 Ul — CsS + ks
Y (s)= —"—— (11) (s+ ) —M

s2 + 26wps + Wi’ .
for any« > 0, to give arnf of 75 ;. We can choosé/, to

The external disturbances are taken to be a lgadnd a road complete a unimodular matri&{ as follows:

displacement;,., and the measurements are taken te pand csths
zs — 2,. The dynamic equations of the model are given by U=(U,U) = [ iﬁ J
Meds =F — up (12) T
e =y + I (13) which givesU ! = [U{,Ué} and
where U, = [ 1 (19)
Uy =C5 (25 — 20) + ks(za — 24) (14) Thus, all stabilizing controllers which leavg, ., -y the
Fy —ky(zr — 20). (15) same as in the open-loop can then be expressed as shown in

Fig. 4 where
We wish to parameterize all controllers which leave the trans- _ ~ 1
mission path from the road disturbancezandz, the same as Ky =—(I—QulzaPn)™ s (20)
in the open-loop, i.e., withk = 0. This assumes that, andc, for@; € RH.*! or equivalentlyk; is any stabilizing controller
are chosen to give satisfactory responses for this transmissionl/, P> (see Theorem 2).
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2s } 5 zZ -2z 1“0—4 F$—>zs
mg m 0.8
css+ks 1 06
+
U 0.4} |~
A K; 05 \
Cg + 0.2 AN
k
? %z 3 % 1 2z 3 4
my Zs ~ Zu 15 2% e ik
{\
0.8
kt 1 r\
0.6
. . 05 0.4
Fig. 4. Controller structure for the quarter-car with two feedbacks. 0.2
0 o

Example 1: We now apply the above result to a specific case 1oz A

in which we make the suspension stiff to load disturbances i} 5. passive suspensiof{ = 0, solid) and active suspensiof( =
soft to road disturbances. We select the following parameterss, dashed).

for the quarter-car model as in [19] which correspond roughly

to a small saloon car [3}n; = 250 kg, m,, = 35Kg, ky = e Fy — 2z,

150 kN/m. We choosev,, = 100 rad/s andé = 0.7071 as o8
the parameters for the actuator dynamics. We also chiapse ’
12kN/m, ¢, = 4kNs/m as the spring-damper coefficients which 08
we consider to give a suitable “soft” response from the road 04
disturbances in the passive implementation. Itis now required to 02
design the active controller to achieve desirable responses from R
the load disturbances. s 4, s 2

A simple approach is to tak@; to be constant in (20) and to

minimize the steady-state response from load disturbanced b 6. Passive suspension (solid) and active suspension ufingloop
. . . shaping design (dashed).

sprung mass position. A straightforward calculation shows thaf'

Ty . (0) = (ks + kit — Quky)/(ksk:) which can be made to

equal zerowhey); = (ks +k;)/k = 1.08. The step responses

for the passive and active suspensions are shown in Fig. 5,

which clearly illustrates the zero steady-state response to loads -

achieved by the active controller. The following closed-loop

eigenvalues were obtained:3.00, —3.95, —21.18 + 13.09j,

—83.97,—70.71 + 70.71j.

As a second approach we can employ the loop shaping
design procedure [11], [30] to the plabt P>. We select a
weighting functioniv; = 10(s + 80)/(s + 8), so that the
open-loop loop shapéi;Us P, has a gain crossover fre- % ke
quency at about 44 rad/s, somewhat below the actuator cutoff
frequency of 100 rad/s. The use of a lag compensatd#in
allows the gain to be increased relatively at low frequencies f#§- 7-  Controller structure of Williamet al.
order to achieve a smaller value 6f. _ . (0). This choice of _ _ _ _ _
weighting function gives a stability margin of 0.3864. The fina!- in [25]. The stated aim of their controller is to provide a

controller takes the fornk = K, Us (see Fig. 4) where rapid closed-loop levelling system which does not respond to
nwanted road disturbances, and this is achieved “by filterin
| —23.87(s + 25.37)(s + 72.55 % 75.70;) unw ISt 'S 1S achieved by fIternng

K, = - and summing the sprung mass acceleration and suspension
(s +8.10)(s +92.22 + 108.18) displacement signals to eliminate the effects of the road in-

which has been reduced to third order by balanced truncatiguits.” A block diagram of the scheme in [25] is shown in
For this controller the step response frdi to 2, is shown Fig. 7 whereT'(s) is a phase lead compensator. Although the
in Fig. 6, which exhibits an improved transient response olamper is placed in series with the actuator this is not an
comparison to Fig. 5 but inferior steady-state behavior. Thssential difference. It may be observed that the ratio between
following closed-loop eigenvalues were obtained3.95, the two filters /1 and F5 is equal tom,/(css + k5) so the
—21.18+13.095, —35.52+25.755, —83.97,—56.52+ 64.31§, scheme operates in a similar way to that of Fig. 4. In fact it
—76.44 + 93.06;. O can be shown that, if the denominatorsiin and 5 are both

At this point it is instructive to compare the control strucreplaced by(s + «), and T(s) is any stabilizing controller,
ture shown in Fig. 4 with a scheme presented by Willisehs then the scheme parameterizes all controllers which leave the

%
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road disturbance responses the same as in the open loop. % A

Thus the scheme lacks full generality only by virtue of the ¥

fact that the filtersF; and F» have an extra order of roll-off e

at high frequency, which is a minor difference since it may

be useful to provide some high-frequency roll-off i, in C’H’j
My

- cFaik.
mesdtc,8+ks

practice. .
We point out that our chosen scheme, as well as the approach ¢
of [25], assumes that the ride performance is satisfactory with
Ko = 0. If this is not the case, a controlléf, = 0 may first z
be design to give any other desired road disturbance responses. % .
Thereafter, Corollary 1 may be utilized to shape the load distur- '
bance responses as well.
Finally, it is useful to comment on the full set of performancgig. 8. Controller structure for the quarter-car with three feedbacks.
requirements that are usually considered in suspension design.
In addition to the sprung mass position as a function of roaghich givesr; = 1. Hence we can select

+
+ | mysitc,stk,

Zs — 2y

disturbances, which can be analyzed with regard to driver com- Fers2pa(s)

fort, there are also issues such as tire normal loads (i.e., tire de- F=—=,

flection) and rattle space (i.e., strut deflection). It was shown stk

in [7] that if the transfer function from,. to z, is determined, I = 1 s 8
. . . . 1= —myg

then there is no additional freedom left in the road disturbance pa(s)

2
o . . mss™ +css+ k
transmission path, i.e., the transfer functidis_.: -, and ° ° °

T, _.-._-. can be deduced directly. A similar fact was showkherepa(s) is any second-order Hurwitz polynomial, to give a
in [18] for the load disturbance transmission path. Thus, in thigf of 73,1 We can choosé, = [/2x2,02x1]" to complete a
above approach to active suspension design, it is assumed thatnodular matrix/ to givel/—* = [[7{7 [74 with

for each disturbance transmission path that is being dealt with,

all the relevant factors (e.g., comfort, tire loads, suspension de- U, = [1 0 —%} ' 1)
flection) are taken account of together. 0 1 v
Thus, all stabilizing controllers which leavg, ;. .. the
B. The Quarter-Car With Three Measurements same as in the open-loop can then be expressed as shown in
Fig. 8 where
We continue to illustrate our basic theory by considering the ~
guarter-car model with the additional measuremgniVe now Ki=-(1- Q1U2P22)_1Q1 (22)

write the system in the form of Fig. 1 with= [%,, 2, — zu, 2" for anyQ, € RHLX2 or equivalentlyk, is any stabilizing con-
and all other variables the same as in Section IlI-A. The genefgljier for i7, Py, (see Theorem 2).

plant of (1) then ha$’,, P, the same as (16), (17) and 1) Alternative Controller StructuresAs pointed out in
) Lemma 2 the exact form df’; in (21) is not unique. Let us
1 ki(css + ky)s® pi(s)s® suppose that we prefer a structure with
Py =—— —ky(m,s?) (M s? + ky)
d(s) | Kt (mSSQ—i—ch—i—ks) 52 (css+ks)s? [7; = [J(c)l 1 ]? }
[ ka(mys® + ky)s? . ’ )
Pyy :’Y(S) Feo( (00 + )82 + ket wheref, fo € RH,, are strictly proper, motivated by a prefer-
d(s) —kymast ence to use low-pass filters for the acceleration sigéaksnd

%, while keeping the strut deflection unfiltered. Réy given by

whered(s), p1(s) are given in and before (18). (21) the identityl/; = WL, implies that

As before we wish to parameterize all controllers which leave o [ e 1}
the transmission path from the road disturbance tand z, 0
the same as in the open-loop, i.e., with= 0, which assumes and
thatk, andc, are chosen to give satisfactory responses for this .
transmission path. We can check that the conditions of Theorem Ul = [ e n? } ]
2 again hold, so that we can follow the procedure to obtain the 0 P
required controller structure.

Following the definitions in Theorem 2(2) we find that

We can see that¥' fails to be unimodular as required
by Theorem 2(3). Moreover, it is straightforward to show

ok that the set{QIff;:QI € R[H]if} is equal to the set
Cs8 5 ~
m, Q1U2: Q1 € RHL?,Q1.1(00) = 0¢, i.e., the full parameter-

Mss® + 5+ ks ization but with the first element i), being strictly proper.

~ ky 52
T3, =MP 1 = @
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TABLE |
THE U3 STRUCTURES AND THE TRANSFORMED PLANTS OF THE
QUARTER-CAR MODEL WITH VARIOUS MEASUREMENTS

measurements Uy Uy Poy
23 m, 1 ] ka'Yﬁsl
Zs — 2y Ca8+ks cas+tk,
r v 1
Zg ¢ 8tk 2
s8%+cz8tk,
Eu 0 ms84+cgs+ks MastTCe 1
s 0 10 1
2 — 2g m, 01 7(5) —Cs$
2 —2 Cos+ks css+ks
a U

Thus a controller parameterization with, replaced byl~f2T Fig. 9. The half-car model.

does not give all possible stabilizing controllers which leave

the road disturbance responses the same as in the open-lggre~(s) is defined as in (11). The linearized dynamic equa-
(see Lemma 2 and Theorem 2). However, the restriction of thens can be expressed as follows:

Q-parameter amounts only to an increased roll-off requirement

of the controller at high frequency. MsZs =15 — Up, — Up, (25)
Referring to Fig. 8, let us consider another possible controller Lpzy =Fy — up by + up,lo (26)
structure M1 Fy, =tp, 4+ Fry (27)
fji = i 10 mQéuz =Up, + ‘F7‘2 (28)

2 1 0 fo

where the passive suspension foregs u,, , and the tire forces
where f1, f» € RH. are strictly proper. The identity/; = F,, I, are given by

WU, now implies that . . .
2 p Up, =c1(Zs + 112y — 20y ) + k1(2a, — 2uy)

wt = { cs-ka (1)} Up, =C2(2s — laZy — Zuy) + ko(Zay — 2uy)
‘F?‘l :ktl (27’1 - Zul)

and ‘F7‘2 :ktz (27’2 - Zuz)'
. nls 1 0 . . ) )
Uk = | costho _ ‘ . We now write the system in the form of Fig. 1 with
2 1 0 _—fessths) , , ,
m.stc,stk, 21 = (%, 2, Zugs Fusls W1 = (2, 20| w2 = [Fs, Fyl
N N _y , o -
SinceW'* is unimodular, thed/, can be replaced by} inFig.8 ¥ = (25,24, D1, Do] where Dy - = 2, + Lizy — Zul,

. _ R 1 _ / H
to give a parameterization of all stabilizing controllers [Theoreri2 = % lazy — 22 are strut deflectionsy = [uy, up]’ asin

23)] 23), (24) andz, omitted. As before we wish to parameterize
' all controllers which leave the transmission path from the road
C. Quarter-Car Control Structures and Design disturbances$z,, , z,]' 10 [z, 2y, zu, , 24, |" the same as in the

open-loop, i.e., withu; = us = 0, which assumes thdt;,

For direct controller design using Theorem 2, it is instru%2 ¢, and ¢, are chosen to give satisfactory responses for

tive to comput@(NJQPQQ for the given choice of measurements o -
Table | showsl7, Py, for three different cases. It is interestin these transmission paths. We can check that the conditions of

Yrheorem 2 again hold, so that we can follow the procedure to

thatU, P», takes a particularly simple form, which is mdepenb tain the required controller structure.

dent of the sprung and unsprung masses, in the case when't ) o i
feedback signalg; andz, — z, are used, which means that th ollowing the def|n|2t|ons In Theorem 2(5) we C%&ghoose a
i 3 w ! %1 = T371 X pg(s)/s = P2171 X pg(S)/S c RHOO and

controller design would be rather simple in this case. F = & /pa(s) x Ioxs € RH2X? whereps(s) is any third-order

Hurwitz polynomial, to give anf of 13 1, and complete this/;
to a unimodular matrix wit/s = [02x2, IQXQ]’ to give

In this section, we shall apply the controller parameteriza- mls I
tion method to the half-car model shown in Fig. 9. Asin the 7 _ [(C1s+k1)(11+12) ErEEay e B 29)

IV. THE HALF-CAR MODEL

quarter-car model, the actuatots and A, are modeled so that (CZS+Z?)I(111+12) (ch+1:2§QE11+12) 0 1|’
the relative displacement across each is equal to a low-pass fil-

tered version of the actuator’'s command signal, i.e., We observe that/, “constructs” two combinations of measure-
. . . . ments, each of which is a suspension deflection plus a low-pass
Zs + 2y — 2oy =y(s)l (23) filtered version of a sum of the two acceleration signals. A block

Zs — laZy — %oy, =7(8)12 (24) diagram of this control structure is shown in Fig. 10.
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Dy TABLE I
DECOUPLEDHALF-CAR BY SMPLICITY
+
—li =+ —— 2 Quarter-car || Half-car (bounce) | Half-car (rotation)
) [ mb Iy ] e e Iy
1 1T mgly =y % My mi+mg mll% + m2l§
T e [T ‘_ ks ki + ko kll% + kzlg
+ Cs ¢+ ¢ Cll% + 6213
D2 kt ktl + ktg ktl l% + ktz l%

F F, F,

Fig. 10. Controller structurgl; ) for the half-car model. Zs Zs 2y
Zyy Zay 2r (zu)b, (za)ba (zr)b (zu)pa (za)py (zr)p
For direct controller design using the transformed pihin u (w)e (u)p
Fig. 2(b), itis interesting to note thak I, takes a particularly
simple form in the half-car case whéh is determined by (29), (36)
namel . . .
’ ) (i +-ma)(u)o =(er +e2)(2 — ()
r7 _1 0 —(k k “aq — \*u
Uz Py = (5) {wg’“ k } (30) U+ ko)((za)s = ()
it + (ky + E)((22) = (2u))

This fact will be exploited in the design example for the full-car (37)
model in Section VI. (milf +mal3) (34), = (alf + e213) (24 — (24)))

+ (kll% + kQ@) ((2a)p = (2u)p)

2 2
Under certain conditions, the half-car model can be struc-  (buli + kil) ((20)p = (2u)):
turally decoupled into two quarter-cars, and in such cases it is (38)
useful to exploit the simplified structure. In [19] and [22], as- Comparing with (10), (12) and (13), we find that (33), (35)
sumptions such dd-simplicitywere used, in a mechanical netand (37) representtzouncequarter-car, and (34), (36) and (38)
work setting, to perform energy-preserving transformations present aotation quarter-car, which are decoupled from each
the external disturbance variables to achieve decoupling. In i, The relevant correspondences between variables is sum-

setting we ‘.N'” need to usea similar trar)sformatlon on all of tr\%arized in Table Il. Furthermore, we can show that, in order to
system variables (but will not necessarily be able to respect the.

energy-preserving property). For the half-car model shown firive ata decoupled form for (35) and (36) (e, ,being ab-

Fig. 9, we define it asimpleif the following equation holds: ~ S€Nt from (35) etc), then we need both (31) to hold andZfpr
m kL ok Iy to be defined by (32) up to scalar multiplication of each row.
M __h_ 2 (31)
Mo ]{}2 Co k'tQ ll

Note that half-car roll models are typically symmetric (i.e., _ _ _

my = ma, etc.) so that (31) holds automatically in this case. In this section we shall introduce a standard full-car model

Condition (31) may sometimes be satisfied also for half-caith a similar suspension strut arrangement at each wheel-sta-
pitch models. We introduce a transformation matfix as tion to the quarter- and half-car cases in Figs. 3 and 9. We

A. Decoupling by Simplicity

V. THE FuLL-CAR MODEL

follows: assume deft-right symmetrywhich allows a decoupling of
the full-car model into two half-cars, namely tbeunce/pitch
1 L Iy - ,
L, = L+hL |1 —1 (32) androll/warp half-cars. In preparation for a controller design
in Section VI we will highlight the special form of the warp
and define guarter-car, which has no “sprung mass dynamics.”
(@) | _ Ly, | 1 A. The Dynamic Equations
()p T2

_ _ Referring to Fig. 11, the actuatord,,..., A, are again
wherez may represent any of the following variables; z., modeled so that the relative displacement of each is equal to a

za, OF u, and the subscripts and , represent the bounce andgyy-pass filtered version of the actuator's command signals,
rotation modes, respectively. ie

Under the assumption of simplicity, we can then rewrite

(23)—(28) as follows: Zs —lp2o + 1524 — 2o, =7(s)l
2 — (Za)o =7(s) (@) (33) 2 = lpze — triy — Za, =(s)l2
2o — (o), =7(s)(0), (34) Zs + 2o + tp2g — 2o, =(s)ls
My =F, — (c1 + 2)(Zs — (2)) Bo o Lpip — tody — Fay =(5)ily
— (k1 +k2)((2a)o — (2u)p)  (35) wherey(s) is defined as in (11). The linearized dynamics of the
L2y =Fy — (a1lf + e203) (25 — (2u)p) full-car can be expressed as
+ (/ﬂllf + kglg) ((za)p — (2u)p) MsZs =Fs — up, — Up, — Up, — Up, (39)
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TABLE 11l
DECOUPLED(SYMMETRIC) FULL-CAR
Half-car || Full-car Full-car
(bounce/pitch) | (roll/warp)
Mg Mg —
Iy Iy Iy
my 2my 2my
mo 2m, 2m.,
ky 2k; 2ky
ko 2k, 2k,
c1 2¢y 2cy
co 2¢, 2¢,
ki, 2ky, 2k,
ke, 2k, 2k;
I l f ty
Fig. 11. The full-car model. l}}r",s ll?'s tl
fan Ty Ts
ToZe =T + up, Ly +up,ly — up, I — up, 1y (40) Zg Zs —
quéqg Iqu — upltf =+ upztf — upgt,, —+ umt,, (41) 2y (—29) ( ) ,(Z¢ ) ( )
. Zuy s Fug Zujbss\Zu )b, 2u)psr —\2u)p,
mf?ul =uy,, + Iy (42) P (Zr)b,f, (zr)o, (z'r)p:, —(z)
MfZuy =tp, + Fry (43) Zays Zas (2a)by+ (2a)b, (2a)ps> —(Za)pr
m,,éug =gy —+ ‘F?‘s (44) Uy , U2 (u)b_f 3 (u)br (u)pf 7_(u)Pr

mré'lm :U’IM + E’4 (45)

where the passive suspension foregs, ... ,u,, and the tire SUDSCIIPtS, .4, representthe frontand rear bounce components

forcesF, . ..., F,, are given by o pr represent. the front and rear roll cqmponents.
) 1) Bounce/Pitch Half-Car:After applying theL,; trans-
tp, =cyDi + kf(2a; — 2u;) formation, (39), (40), and (42)-(45) can be rearranged as
Up, =Cr Dy + kr(2a; — 2u;) follows:
Fri :ktf (z’l’i - Z’Ui) (46) Myss — Fy = — 2Cf(z.s _ le‘(-) _ (Zu)bf)
E’j :kt'r‘ (z’l’j - Z’u_j) (47)
— 2k4((2a)t, — (2)ey)
fori =1,2, j = 3,4, and the strut deflection®,, ..., D4 are — 2 (3 + g — (Zu)o,)
Dy =2, — lfze +irzy — Zu, - 2k1v((za)br - (zu)br)a
Doy =z, — sz — tpzg — 24, Igzg — Ty = {2Cf(7;5 —lpzg — (éru)bf)
D3 =Zs + er@ + trqu — Zug +2kf((za)bf - (zu)bf)} lf
Dy =z + 129 — trzg — 2u,. —{2¢,. (s + 126 — (2u)b,)
+2kr((2a)o, — (Zu)b, )} r
B. Symmetric Transformation 2mp(3a)y, =2cf(% — Lpte — (2u)s,)
Since the full-car model is symmetric, we can decouple it into + Qkf((za)bf - (Zu)bf)
two half-car models. First, we introduce a transformation matrix o
Lyq: + t_/((zr)b_/ - (zu)b_[)
' 2mr(73u,)b,, 2261,(7;s + 1,29 — (7;“,)(,7,)
L1 0 + 2k (20, — (2)s.)
L. L]0 0 11 48
=311 -1 0 o0 (48) + 2k, (2 )e, — (Zu)s,)-
0O 0 1 -1

It can be observed that the above equations take the same form as
such that (25)—(28) under the transformations listed in the first column of

, ,  Tablelll. To decouple into two quarter-cars requires a simplicity
[(x)bf (x)b'r‘ (x)Pf (x)ﬂr ] = Lf71 [.’L’l L2 T3 $4] assumption

(49)
wherex may represent any of the following variables; z,., kp ey ke  omy (50)
za, Strut deflectionD or actuator command signal while the T R P
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TABLE IV [ ] Zop ]
DECoOUPLEDROLL AND WARP MODES OF THEFULL-CAR BY SMPLICITY - Pop Ybp
Upp =
Uz’bp
Quarter-car || Full-car (Warp) Full-car (Roll)
bp
Me o I¢ 2 2 w Wroll Zyolt 2
my 2(mf + mr) 2(mftf + mrtr) | Prot Yroll
ks 2(kf + kr) 2(kft§ + krtg) (W — }
Cs 2(0f + cr) 2(Cftf + Crtg) Unrott
k; 2(ks, + ke, (ke 1% + ke, £2) i
Fs _ T¢ Wwarp p Zwarp
Zg -_ Z¢ [ s v
Zuy 2q (zu)warpa (Za)wa'rp (Zu)rolly (Za)roll (W e _—
Kwarp
Zry U (Zr)warp, (u)warp (zr)roll; (u)roll -

Fig. 12. Control scheme for the full-car model.
2) Roll/Warp Half-Car: After applying thel s ; transforma-

tion, (41)—(45) can be rearranged as follows: the bounce/pitch half-car will make use of the theory outlined
s, . —_ {2C (t120 = (Zu)o)) in Section IV. The approach for the roll/warp half-car will make
¢re T 1o JAMRe T ey use of asimplicity assumption which allows it to be decoupled
+2k¢((2a)p; — (zu)/’f)}tf into the two corresponding quarter-cars, namely rble and
—{2¢:(tr 26 — (Zu)p,) warp quarter-cars. The roll quarter-car will be treated in the
2k ((20) p. — (Zu)p) } same way as the quarter-car of Section IllI-A. As pointed out

. _ . . in Section V-B2, the warp quarter-car has a different form than
2my(Fupy =24(ts2o = (Gudp) + 265 ((%a)py = (#u)o)) e standard quarter-car in that the “sprung mass” is effectively

+ 2k, (), — (2u)p, ) infinite. Furthermore, in warp motion there is good reason to
2my(Z4)p, =26(tr2e — (2u)p,) + 2k ((2a) p. — (Zu)p,) use the active controller to make the road disturbance responses
+ 2k, () p. — (2u) ). even softer than they would be with the default passive param-

eter settings. Thus the warp mode will be handled in a different

We observe that one equation is missing in this half-car comvay to the other three modes.
pared to (25)-(28). This is because the chassis is modeled aBor the controller design the available measurements are as-
being infinitely stiff under torsion, so that there is no dynamisumed to b€, %s, Z4, D1, D2, D3, andD,. The control struc-
equation corresponding to warp dynamics of the car bodyre will be chosen to have three independent loops, consisting
However the above three equations do take a similar form @b the roll quarter-car, the warp quarter-car, and bounce/pitch
(26)—(28) under the transformations listed in the second colurhalf-car controllers. This scheme is shown in Fig. 12, where the
of Table IlI. signals are defined as follows:

As in the half-car case, under the assumption of simplicity

w = [F87 Ts, Tq57 2y Rrg s Rrgs 31*4]/ (54)
k k t,
_f = C_f = i = E = — (51) wbp = [FS,TQ, (21’)1)[’ (Z,,)bT]/
k. Cr ke, m, ity !
) Wroll = [Tqba (Zr)roll]
and theL » transformation Waarp = (70 )wasp]
1 s - z= [ZS,ZQ,Z s Zurs Rug sy Fu 7Z'IL4]/ (55)
La=rrr |5 7] 52 ’ :
tf +t, 1 1 Zbp = I:Zsa 29, (z'u,)bfa (Z'u,)br]
such that Zroll = [Z¢7 (zu)roll]/
(ai)warp =1 (-T)Pf (53) Fasp i[(z )jvarpé D /
('T)roll 12 (‘T)Pr Yop = I:Zsa 20, ( )bfa ( )b,,]

wherezx can bez,,, z, or z,, strut deflectionD or actuator com-
mand signak:, the roll/warp half-car can be further decoupled ,
into roll and warp quarter-cars under the mapping illustrated in Ubp = [(U)bp (U)bT]
Table IV.

Yroll = [é¢57 (D)roll]
[

and the subscripts, s, ro11, aNdya;p are defined as in (49) and
(53).
The following parameters will be used for the full-car model
In this section, we shall synthesize an active controller forvehich are similar to typical parameters for a sports can{d].=
specific full-car model. As in Section V, the model is chosen600 kg, I, = 1000 kg n?, 1, = 450kg n12,tf =t.=0.75m,
to beleft-right symmetriowhich allows a decoupling into thel; = 1.15m,l, = 1.35 m, ky = k. = 20kN/m, ¢; = ¢, =
bounce/pitchandroll/warp half-cars. Our design approach fors kNs/m,m; = m,. = 50 kg, k;, = k;, = 250 KN/m. As in

VI. A DESIGN EXAMPLE FOR THE FULL-CAR MODEL
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x10° Fa""zs 1!19" TO_)zO

1.4
12 /
08

1
08 06 c
08 0.4 °
04
02}/ . 02

% 05 1 15 2 (] 05 1 15 2

sec sec
k 77774
Fig. 13. Step responses B%. _, . andTﬁﬁge: passive (solid) and active t 2y

control (dashed).
Fig. 14. The warp quarter-car.

the previous examples, the actuator dynamics is represented as

in (11) with Wy = 100 rad/s andd = 0.707. Given the We|ght|ng function

A. Bounce/Pitch Control Wy = 10(s + 80) (61)

Referring to Table Ill, the bounce/pitch half-car corresponds (s +8)

to the half-car of Section IV with the following coefficients:such that the weighted plawfmul~f27r011P22 has a bandwidth of
m, = 1600 kg, I, = 1000 kg m?, my = mo = 100 kg, about 60 rad/s, it is found that tHé., loop shaping controller
k1 = ky = 40kN/m, ¢; = ¢; = 10 kNs/m, k,, = k;, = after model reduction is given by
500 KN/m, Iy = 1.15 m, > = 1.35 m, which is notsimple
and cannot be decoupled into two quarter-cars. Hhg loop Kron = K (62)
shaping controller design will be applied to this half-car modejyhere &, is given by (59). (This controller is the same as the
The essential controller structutg ), is given by (29) as diagonal terms irf;, since the weighted plan¥;onUs zon Pz

N mgl, I 10 is the same as the diagonal elements in the scalar matrix

Uy pp = l Hegothp)Uetly)  2epsth)(otly) ] . (56) WiplUau,Pro, see (30) and Table 1.) This controller gives the

mgl —17, .
2(crs+kr)€lr+l_[) 2(crs+kr)9(lr+l_[) 0 1 steady state gain dF»-(‘th as 2.33x10°°, compared to the

Setting a weighting functiofi, as follows: passive suspension with dc galip, _ . (0) = 2.4 x 107°, a
similar result to Fig. 6.

10 0| s+80
Wy = [ 0 10} s+8 U Warp Control

means that the weighted plaH, U4, P>, has a bandwidth For the warp quarter-car, we will take a slightly different ap-
b R ach for the design of the active controller. Since the sprung

of about 60 rad/s and has an increased low-frequency g i : e . .
due to the lag compensator terms. By applying #he, loop mass cannot be twisted, i.e., it has no warp motion, there is no

shaping controller design procedure a sixth-order controll§'résponding role for the active controller to make the "sprung
was obtained after balanced truncation as follows: mass” stiffer to the loads. On the other hand, even though the

passive road disturbance responses were designed to be rel-

Ky, = {Igc I? } (58) atively soft, there is no reason why they should not be even
¢ softer in the warp mode. We will therefore abandon the goal of

where keeping the response to the road warp iny) .., invariant
—24.81(s + 27.94)(s + 72.56 £ 73.475) under active control. We also note that there is no accelera-

= - = (59) tion measurement associated with warp and so there is only one
(5 +8.06)(s +101.45 + 114.65]) feedback signal available corresponding to the strut deflections:

It is interesting to note that(,, in (58) is a scalar Matrix (D)yarp = —(2u)warp- FOr this reason there is rié, block for

due to the fact thaWV,,ls ,, P, is itself scalar (see (30)). the warp quarter-car loop in Fig. 12.

This controller gives the dc gainEFS_)zs(O) and Tf9_>29(0) Referring to Table IV, the warp quarter-car reduces to the

as 1.32¢x107° and 8.39x10™ 7, respectively, compared with form illustrated in Fig. 14, with-, = 0 and the coefficients

1.36x10°® and 8.64x10"° using passive control. The stepm, = 200 kg, k, = 80 kN/m, ¢, = 20 kNs/m andk, =

responses using the two controllers are shown in Fig. 13. 1000 kN/m. The dynamic equation then takes the form, using

(13)~(15)

B. Roll Control )
. mMays 7311, = —(CSS + ks)é'u, + kséa + kt(ér - 7311,)
Referring to Table 1V, the roll mode of the full-car corre- _
sponds to a quarter-car with the following coefficients; = which reduces to, using (10) and (11)

450 kg, m,, = 112.5 kg, k., = 45 kN/m, ¢, = 11.25 kNs/m, 2 bt koo — ke K s — ks (63
k. = 562.5 KN/m. The required structure @f, takes the fol- (mus” + cas + ko o ke = kv () Kumap(5)) 20 = ke (63)
lowing form after using Table 1V, (19), and (51) with the correspondences given in Table IV.

We now claim that it is desirable to choo&&,..;,(s) so that

e 1, . . . .
Uz ron = [W 1} : (60)  the dc gairZ: _.-, (0) = 1. We will now give some reasoning
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w z

to justify this. If we consider the case where the full-car model
is in equilibrium with ¥, = 1, = T, = 0, then the (39)—(41) P
are equivalent to

Yy
T Kﬁj

ly Iy -l -l upz =0. (64)
=ty ty —t. i upg Fig. 15. Final controller structure for the full-car model.
P4
Evidently there is one degree of freedom available in the sus- ~ , gx10° Fs 22 Jx10° T2
pension forces, and indeed we can check that
1
[U’T‘l » Upg » Upsg U’m]/ = [tT’ —tr, =15, tf]/ K (65) 0.5 o
for some constank, completely characterizes that freedom. o TTiirTmeos P Altehddeidelsltdnintets
From the point of view of reducing the amount of “twist” on the 0 - 1 2 0 1 2
vehicle chassis which the suspension forces impose, it would x10° 19 2% @wa 2 @ varp
be desirable to achieve a value ©of= 0 in the steady state. 2 e S
The following result shows that the above mentioned condition
achieves this property. 1 05
Proposition 1: Suppose the (linearized) full-car model de- |/
fined in Section V-A is in equilibrium witht, =7 =7, =0 0 0
. . . 0 1 2 0 1 2
andz,, ...,z arbitrary. Then the following equation holds:

Fig. 16. Step responses using active (dashed) and passive (solid) suspensions.
(Zr)warp = (Zu)warp (66)
than the bandwidth of the actuator) and a steady-state gain of

ifand only ifu,, = w,, = up, = up, = 0. one. In order that the controller is proper, we can choose
Proof: Using (49) and (53), we notice that the warp vari- 0.10365 + 1
—U. S

able (x)warp is a combination of variables at the four wheel- Kyarp = ooy —— (67)
stations (300)~*s + 1
The response does not change significantly with this modifica-
T . . .
1 - tion or when the actuator dynamics are included. The step re-
(@) warp = ST [tr, —tr, —t s, )] 2 sponse with the final controller, with improved warp behavior
(& +25) i?’ compared to the passive case, is shown in Fig. 16.
4

where =z can be 2z, or 2z. Using (46) and D. The Full-Car Control
(47) we see that (66) is equivalent to As afinal step we can redraw Fig. 12 in the form of Fig. 15

[tr/ke,, —to ke, —tp ke ty [k V[Fyy Fry Fry F) = 0, where Pis the full-car model represented by (39)—(45). In
which is equivalent to[t,/k;,,—t,/ki,, —ts/ks tr/ks. ] Fig. 15 the measuremengsand control signals are defined
[thpy s Ups s Ups , Up, | = 0O by (42)—(45), which in turn is as follows:
equivalent tax = 0 by (65). O T /

It can be observed that the proposition holds if (66) is replaced y=l% 2o, %, Dl’,DQ’ Ds, D]
by any equation of the form: u = [uy, uz, u3, w4

whereD; andu; represent the strut deflection and control com-
(A=A =] mand signal at each wheel station. The blogks.. ., f5 are
2y = Zugs Zry = Zug s Zrs — Zuss 2y — 2us) =0 defined as follows:

with Ax > 0, i.e., the particular ratios chosen in the definition Ji =diag(1,1,1, Ly,1)
of the warp variable are not critical to the result. fo =diag(1,-1,1,1,1,L; )

Now let us return to the warp quarter-car represented in (63). gls(l;) dfgs) 0 1 0 00
If we choose a simple constant controller and ignore temporarily ml -l g 0 1 0 0
the actuator dynamics, i.e., sets) = 1, then the choice of fa= dz(gs) dz(gs) 0 00 1 0
Kyarp = 7.25 achieves a damping ratio of one, a natural fre- 0 0 L 90 0 1
quency equal to 50 rad/s (which is lower than the bandwidth of ds(s)
the actuator) and a steady-state gain of 2. As shown by Proposi- f1 =diag (1, 1, L;é)

tion 1 we would like to achieve the condition (66) in the steady- £ =L7!
state, which is equivalent to the dc g&in .z, (0) = 1. Setting v AL

Kyarp(s) = —0.1036s + 1 achieves in (63) a damping ratiowhereL,  is definedin (48).L; . isdefinedin (52) and; (s) =
of one, a natural frequency equal to 70.71 rad/s (which is lowfcss + k¢ ) (I + 1), da(s) = 2(crs + k) (I + 1f), d3(s) =
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Nm

5 0 s s 10 s

secC sec

° 04 o.2seco.3 04 05 forward velocity Applied torques

on front wheels

Fig. 17. Response of,, to a step input of 1 cm at., for AutoSimmodel
using active (dashed) and passive (solid) suspension.

2(cys+kyp)ty(t, +1t ). Note thatf; combineds , defined in /
(56) andl/; .. defined in (60), and the third row ifi; reflects =
the fact that there is only one measurement available for warp
control. The controllei( is defined as

ad

K= dlag(Kbp, Kwarpa Kroll) %6 Zs

. Fig. 18. Antidive and antisquat effect iAdutoSim model using active
Where_KbP* Kyarp andqull are given _by (58), (62)_and (67), I'€-suspension (dashed), compared with passive suspension (solid). (a) Forward
spectively. Compared with the passive suspension, the benefiscity. (b) Applied torque on front wheels. (€). (d) z..

of using active controllers is shown in Fig. 16. The responses to
“bounce,” “pitch,” and “roll” road inputs are not shown since VIl. CONCLUDING REMARKS

these are the same in the passive and active cases. . . . . .
P This paper has considered the vehicle active suspension

design problem with particular regard for the potentially
E. Vehicle Dynamics Simulations conflicting performance requirements from two disturbance

sources: road irregularities and loads applied to the vehicle

In this section we present some simulation results for t%dy_ General theorems (Theorems 1, 2) were derived to

controller designed in Section VI-D using the multibody simparameterize all stabilizing controllers which leave some
ulation packagéutoSim A nonlinear dynamical model of the pregpecified closed-loop transfer function fixed. This allowed
simple full-car shown in Fig. 11 was constructed with the sug- feedhack controller to be designed taking account of only
pension struts constrained to move perpendicularly to the \fa 554 disturbance path objective, given that the controller
hicle boqu. To model arolling wheel of inertia 1 kg'ith tire structure ensured that the road disturbance responses remained
the magic formula[1] was employed to calculate the acceler- atisfactory.

atmg and braking forces. The. control law given in Section Vlf Jhe approach was illustrated for the quarter-car model with
was implemented together with the actuator structure described. ; . .
in Section V-A various different choices of measurements. The required con-

trol structures were derived in parametric form. For a half-car

_The model was first tested at zero velocity for various rOe}gf‘{odel, a parametric control structure was derived for a typ-
disturbance inputs and gave similar results, for small displace-

: . . . iCal measurement set: vertical and angular accelerations of the
ments, to aMatlab simulation of the linearized model. As ex- . "
Spryng mass and strut deflection measurements. The conditions

pected, the bounce, pitch and roll responses were the same in . )
active and passive cases. Fig. 17 shows the effect of applyinﬁnager which the model structure could be decomposed into two

step input to théutoSimmodel at the right front wheel in both uarter-cars was investigated. For the full-car model, decompo-

the passive and active cases. The difference in behavior is §lfen mtq two h.alf—cars was exploited L!nder a mild symmetry
to the “warp” mode being treated differently in the active cas@5SUmption. This enabled the bounce/pitch half-car design to be
as explained in Section VI-C. carried out with the half-car structure previously derived. For the

The AutoSimmodel was then tested under acceleration afg!/warp half-car a further decomposition into two quarter-cars
braking. For acceleration, a torque was applied at each fro¥fS assumed. This allowed the warp quarter-car to be treated
wheel with the opposing reaction torques acting on the vehidlea distinct way, which is necessary since the load disturbance
body. A similar approach was taken for braking but with theath is absent here and it is also reasonable to change (i.e.,
braking torques applied to the front and rear wheels in a 60:30ften) the road disturbance response from the passive case. A
ratio. Fig. 18 shows the “squat” and “dive” of the model undegontroller was designed and demonstrated on a nonlinear ve-
acceleration and deceleration, with the forward velocity givericle dynamics model and showed the effectiveness of the de-
in Fig. 18(a) and the pitch angte given in Fig. 18(c). The sim- sign for reduced dive and squat under acceleration and braking,
ulation shows that the active suspension significantly improvasproved warp response and invariance of other road distur-
the squat and dive performance. bance responses.



406 IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY, VOL. 10, NO. 3, MAY 2002

A key step in the method described in this paper is the com-
putation of the matrixX/> which determines the required con-

Proof of Lemma 2:

troller structure. Throughout the paper it was always possible to1) (<) In this caseB = {QI ﬁ;} = { (QIW) ﬁ2}, which

calculatel, symbolically usingMaple. For more complicated

vehicle models this may not be feasible. In such a case a direct
numerical approach may be possible. Let us consider the case

r3 = my, i.e., the matrix#" in (6) is square. (This condition

applied throughout this paper and seems quite typical in gen-
eral.) Then the following procedure can be taken: 1) partition

T3, = [B’, A'] whereB is square; 2) find a minimal realiza-
tion of L := AB™ L ; and 3) find a left coprime factorization
L = 1A and setU2 = [- A, B] (e.g., see [30, Theorem

12.19]. Such an approach was taken in a trailing-arm vehicle

model in [23].

APPENDIX

Proof of Lemma 1:7° can be decomposed in terms of its

Smith formover RH., [21]: T = UHV, whereU € RHLX",
V € RHZ“ are unimodulard € RHZ“. Suppose thall has
r1 nonzero diagonal elements. Then we can write

_ H
"= <0(7‘—7‘1)><7‘1 ) (ITI X 07’1 X(C—Tl))

I1 X7
U Y (HL 00 o
<0(1 71)><71 >( L 1><( ))

whereH; € RHZ.*™ ., We also partitior/ andV’ conformably:
U = (U,Uy), V = (V],V}) whereU; € RH.™, U, €
RH2X—m) v e RH™XC, V, € RHE™%¢, We therefore
obtain

(68)

(69)

T=(UiH\)V, = EV;
:l/vl(Hl‘/l) = lle

whereE € RHJ™, F € RH".*¢ are full column normal rank
and full row normal rank, respectively. O

Proof of Theorem 1:A stabilizing controller in
the form (3) leavesTy, .z, = (T1)11 if and only if
(1,QT3)1, = EVIQUF = 0. This is equivalent to
V1QU, = 0 sinceF (respectively,F") has full column (respec-
tively, row) normal rank. We now show that it requirésto
take the form given in (7). Clearly

‘/IQ(UlvUQ) = (01’2><1‘37Q1) (70)
for someQ; € RH2*@:=7%) This gives
ViQ = (0,Q)U™* = Q. Us.
Next we see that
Vi Q1ﬁ2>
= 71
<%)Q <Q2 (71)

for someQ, € RH™s~2)*Ps which establishes (7).
Conversely, if (7) holds for somg; € R[H]"zx(rs "3) and

means any element @ is also an element ofl.

(=) SupposeB C A, then for anyQ] € RH.X* there
exist someR; € RH™X¢ such thatQTUT Q1U2 Let
us now choose the first row @i?T to be|0, 1,...,0]
(with the one in theth place), and all other rows to be
zero, and define; to be the first row of the corresponding

Q1. Then[o,. . 01§ = ¢;Us, from which we
conclude thaU2 WU2 whereW = [ql,qQ, .. .,q(,] .
2) From 1) we know thaB = A if and only if U2 WU,

andU, = WQU2 for somelv;, Wy € RHZ °. Hence we
haveU] = W,W,UJ which gives(I — W,W,)UJ =
0. SinceU; is full row normal rank, it is equivalent to
W,oW; = I, which is equivalent td¥; and W5 being
unimodular and inverses of each other drét,,. O

Proof of Theorem 2:

1) 2) These conditions allow us to chood€ = I, M = I,
N=N=Py, X=I,X=I1,Y=0Y =0and
V1 = 1. Then (8) follows directly from (3) and (7).

3) Consider U, and U] such that all stabilizing
controllers can be parameterized ak =

(I — QlﬁQPQQ) U, Q1 € RH’;X(I’S_TS)
- -1 .
- Q[UiPn) QUL Ql e
respectively. We can check that
K = KT ifand only if @, U, = Q{UJ. From Lemma
2, this means there exits a unimodular matfixsuch
thatUj = WU,.

4) SinceﬁQ, P> have elements iRH., it follows from
[30, Corollary 5.5] that(; stabilized/; P if and only
if (I — K1UzPo) Ky € RHZZ @~ which is
equivalent to(I — KIUQPQQ) 1K1U2 € IR[H]’”SXJ”3
since (72 is right invertible overRH,, which is the
necessary and sufficient condition thh’tlfo stabi-
lizes P,;. To complete the proof, le®y = —(7 —
KlﬁQPQQ) lKl € RHrngX(pg r3) and nOtethaKl
—(I — QlUQPQQ) 1Q1 ThereforeK = KlUQ will
take the form of (8), from which the result follows.

5) Any stabilizing controllerK” for which 7y, .z, =
(T1)11 takes the form of (8). We can then define a
controller K1 = —({ — QlﬁQPQQ) Loy for some
Q1 € RH™e*s=7s) gych thatk = K;Us. It can
also be shown directly that(1 — K, U>Py2) LK, =
Q. € RH*(Ps=73) which means thak; stabilizes
Us Pss. O

and Kt =
RH?‘Z x(p3—r3) ,

Proof of Corollary 1: Using the parameterization

of Theorem 2(2), it follows from (4) that the closed-loop
transfer function (T)4,—:; remains the same as when
Ky =
(11 + 12Q13)1,

—(I — QPy»)~'Q is applied if and only if
= (11 + TQQTg)l 1, Which is equiva-

Q2 € RH(™~"2)xP2 then so does (71), from which followslent to (75(Q — @)73)1.. = 0, which results in (9) by using

ViQ = (0,Q)U! WhICh again implied; QU; = 0.

0 Theorem 1 wher&5, (), are empty. O
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