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Abstract

The solution to the problem of optimal control of piecewise
affine systems with a bounded disturbance is characterised.
Results that allow one to compute the value function, its
domain (robustly controllable set) and the optimal control
law are presented. The tools that are employed include dy-
namic programming, polytopic set algebra and parametric
programming. When the cost is time (robust time-optimal
control problem) or the stage cost is piecewise affine (robust
optimal and robust receding horizon control problems), the
value function and the optimal control law are both piece-
wise affine and each robustly controllable set is the union
of a finite set of polytopes. Conditions on the cost and con-
straints are also proposed in order to ensure that the optimal
control laws are robustly stabilising.
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1 Introduction

David Q. Mayn&

This paper considers the problems of robust time-optimal
control [4, 16], robust optimal control [5] and robust reced-
ing horizon control [2, 14, 15] of a piecewise affine sys-
tem to a given target set. The results in this paper are an
extension of results on the robust optimal control of linear
systems to the class of piecewise affine systems. The ex-
tension of the results for linear systems presented in [2, 16],
to which this paper is most closely related, is unfortunately
not straight-forward. The system under consideration in this
paper is nonlinear and the resulting domains of attraction
non-convex; some of the linearity and convexity arguments
exploited in [2, 16] do not hold and extra care has to be
taken when computing the control laws.

One of the key results which allow one to compute ro-
bust optimal controllers for piecewise affine systems, is the
fact that one can compute the robustly controllable sets of
the system as the union of a finite set of polytopes, using
standard computational geometry tools [11, 12]. The other
key observation is that, provided the stage cost is piecewise
affine (which includes the case when the cogtisor ¢1),

one can set up a sequence of parametric programming prob-
lems [7, 8] and compute the explicit solutions to the robust
optimal and robust receding horizon control problems, in a

In recent years there has been an increase in the amount of sjmjjar fashion to [1, 2].

research on the control of piecewise affine systems (some-

times also called piecewise linear systems). The rise in Sections 2 and 3 introduce some notation and set up the
interest in this class of systems is due to the fact that optimal feedback control problems that will be considered.
many nonlinear systems can be approximated arbitrarily Section 4 provides a dynamic programming solution to the
closely using piecewise affine models [18] and because of set of control problems and Section 5 provides some stabil-
the equivalence that has been shown to exist between piece-ity results for the resulting control laws. Geometric results
wise affine systems and a large class of hybrid systems [10]. that allow one to compute the control laws are given in Sec-

) _ tion 6 and some conclusions are drawn in Section 7.
Though many papers address the analysis and optimal con-

trol of piecewise affine systems (see [1, 17] and the refer-
ences therein), the literature on the robust control of this
class of systems is relatively sparse. Some of the contribu-
tions include reachability-based approaches for the control A polyhedron in IR is a (convex) set given by the inter-

of uncertain, piecewise linear hybrid systems [3, 13], and section of a finite number of open and/or closed half-spaces

2 Definitions and Notation

LMI-based approaches fét, andH. control of piecewise
affine systems [9].
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in IR". A polytope is a closed and bounded (i.e. compact)
polyhedron. A function is said to be piecewise affine if its
domain can be partitioned into a finite number of mutually
disjoint polyhedra and the function is affine on each poly-
hedron.

If Y CIR"andZ c IR", then 2 is the power set (set
of all subsets) ofY, the complement ofY is Y® :=
{yeR"y¢Y}, the set differenc¥\Z:={yeY|y¢ Z},

the Minkowski sumY & Z := {y+z|lyeY,zeZ} and



the Pontryagin (or Minkowski) differenc&’ ~ Z =
{yeR"ly+zeY,vze Z}.

3 Problem Setup

The problem considered in this paper is the robust optimal
control of continuous, discrete-time, piecewise affine sys-
tems of the form

xt = f(x,u,w) ;= Agx+Bqu+Cq+W, V(X,u) € Py (1)

wherex, u andw denote, respectively, the state, input and
disturbance at a given time instant axtddenotes the state
at the next time instant. Ea¢hq, Bq,cg) € IR™" x IR™M x

IR", g € Q (Q a finite set) and P, | g € Q} is a finite set of
polytopes with mutually disjoint interiors. For eagte Q,

let fq(x,u) := Agx+ Bgu+ cq and the continuous function
fo(-) be defined byfo(x,u) := fq(x,u) for all (x,u) € Py,

g € Q so thatf (x,u,w) = fo(x,u) +w.

It is assumed that the bounded disturbancis persistent
and satisfiesv € W, and that the control and state are re-
quired to satisfy the hard constraints U andx € X; X,U
andW are all polytopes, with @ W and O€ int(X). The

statex is assumed to be accessible. State, control and distur-
bance sequences of the system being controlled are denoted

by {x()}, {u(i)} and{w(i)}.

To determine a suitable control law an optimal control prob-
lem Py (defined below) with horizomN is solved. Let

w = {w(0),w(1),...,w(N — 1)} denote the disturbance se-
guence over the interval 0 td — 1. Effective control in
the presence of the disturbangerequires state feedback,
so that the decision variable in the optimal control problem
(for a given initial state) is a control poliagdefined by

n= {U(O)’ul(')v""uNfl(')}7 (2)

whereu(0) e U andp; : X — U, i€ {1,...,N—1}; u(0) is

a controlaction (since the initial state is known) and each
Li(-) is a state feedback contrdalw. Let @(i; x, 71, w) denote
the solution to (1) when the initial state xsat time 0, the
control is determined by policy (u = p;(x) atevent(x,i),
i.e. statex, timei) and the disturbance sequence&vissimi-
larly, @(i; X, k,w) denotes the solution to (1) when the initial
state isx at time 0, the disturbance sequenceniand a
time-invariant control lav : X — U is employed @ = K(x)

at statex).

Given a target set C X, for each initial statex € X, let
My (x) denote the set afdmissiblepoliciestt

Mn(X) :={m| u(0) e U, w(@(i;x, Ttw)) €U,
o(i;x, Ttw) € X, @N;x,TLW) €T,
Vie{l,...N-1},ywewN}. (3)

F(-), will be given in the subsequent sections in order to
ensure that the solution to the finite horizon optimal control
problems are stabilising.

The cost due to a policy, initial statex and an individual
realizationw of the disturbance process is

N-1
IN(X,TLW) 1= %5(N7Ui)+F(XN), 4)

i=
where x = @(i;x,tw) if i € {0,1,...,N}, u :=

Hi(@(i;x, Ttw)) if i e {1,...,N—1} andup := u(0). In or-
der to define the optimal control problem, a cdgt-) that
is independent olv is defined; the conventional choice is

(5)

VN (X, TD) 1= mwax{JN(x,qJ,W) lwewN}.

The robust optimal control probleRy can now be defined
as

PN(X) : VR(X) = inf (W) [Te TN} (6)

Let 1§, (x) denote the solution tBy(x) :
TR0 = {0 (%, e (X)) (D)
‘=arg iTn[f{VN(x,n) [Tte Nn(X) }. (8)

The robust time-optimal control problem is defined as

P(x): NO(x) := min{N|(TLN) € MN(9) x N}, (9)

wheredt:={0,1,...,Nmax} andNmax is an upper bound on
the horizon. The solution tB(x) is

(T0(x),N°(x)) := argmin{N |(TN) € Min(x) x 91} (10)

4 Dynamic Programming Solution

Dynamic programming provides a recursive procedure for
computing sequentially the partial return functiofd(-)
(defined in (6) withN = i), the associated set-valued con-
trol laws ki(-) as well as their domains (heiedenotes
‘time-to-go’ so thatki(-) = 1§ _;(-) if i € {1,...,N—1}
andkn(-) = u3(-)). The domain oMO(:) andk;(-) is X,

the set of states that can be robustly steered (steered for
all w € WN) to the target seT in i steps or less. Stan-
dard optimal control implements the time-varying policy
T (X) = {KN(X),Kn-1("),- -, K1(-)} (U € Kn-i(X) at event
(x,i), i.e. at state, timei), whereas receding horizon con-
trol uses the time-invariant control laxg (-) (u € kn(X) at
statex).

4.1 Robust time-optimal problem

For the robust time-optimal control problerR, the

Conditions on the target set (also called terminal constraint value function N°(x) takes the discrete values ¢

set) T, together with the stage coét-) and terminal cost

{0,1,2,...,Nmax}. For each, the robustly controllable set



X = {x| NO(x) < i} is the set of initial states that can be
robustlysteered (steered for all € W') to the target seT,

in i steps or less while satisfying all state and control con-
straints. Thu3\|°(x) =i for all x e X\ Xi_1. The robustly
controllable sefX; and the associated robust time-optimal
control lawk; : X; — 2V are yielded by the following recur-
sion:

Xii={xeX|3ueU: f(x,uW)cCX_1} (11)
Ki(x):={ueU | f(x,uW)C X_1}, YxeX (12)

fori € {1,2,...,Nmax}, with boundary conditiorX, = T.
The control lankg : T — 2V is defined by

Ko(X) :={ueU | f(x,uW)CT}, ¥xeT. (13)

A condition onT that ensuregg(x) # 0 for all x e T is
given in§5.1. Note that the control law; (-) is set-valued;
at event(x,i) (i.e. at state, timei) any control in the set
Kn—i(X) may be employed. The time-invariant control law
KO Xnmax — 27 defined by

Vx e X\ Xi—1, Vi €{1,...,Nmax}
vx e Xo

(14)
robustly steers any € Xy to Xg in N steps or less, while
satisfying state and control constraints, and thereafter main-
tains the state iixg.

Finally, it is useful to note thal; = Proj(S), where
Proj (S) is the orthogonal projection ontospace of the
setS defined by

S={(xu) e XxU|f(x,uW)C X_1}. (15)
4.2 Robust optimal control problem
ProblemPy is embedded in the sequence of probl€iRg
(defined by (6) withN = i), yielding the recursions:
00y *— mi 0
VO(x) = minmaxt£(x,u) + Vi (£ (x,u,w)) |
f(x,uW) C Xi_1}, ¥xe X
— mi 0
= min{¢(x,u) +maxv;_, (f(x,u,w)) |

(x,u) € S}, ¥xe X (16)
Ki(x) :=argmimmax{¢(x,u) + V2 (f(x,u,w)) |
f(,uW) CXi_1}, ¥xe X (17)
Xii={xeX|ueU: f(x,uW)cX_-1} (18)
fori e {1,...,N}, with boundary conditions
Xo =T andV?(x) = F(x), ¥xe T. (19)
The control lankg : T — 2V is defined by
Ko(X) := arglfgbnvrll%&({ﬁ(x, u) + F (f(x,u,w))
| f(x,u,W) C T}, ¥xeT. (20)

Note again that all theg; : X; — 2V are set-valued.

5 Stability

Because of the persistent, additive disturbawceonver-
gence of the state of the controlled system to the origin is
not possible; convergence to a §etontaining the origin
can be proven instead. The corresponding notions of stabil-
ity and attractivity are as follows. U(z,Z) :=infycz|z—Y|

for any setZ C IR", then the sefl is robustly stable iff,

for all € > 0, there exists & > 0 such thad(x(0),T) < o
impliesd(x(i),T) < ¢, for all i > 0 and for all admissible
disturbance sequences. TheEas$ robustly asymptotically
(finite-time) attractive with domain of attractichiff, for all

x(0) € X, d(x(i),T) — 0 asi — o (there exists a timesuch
thatx(i) € T for all i > | for all admissible disturbance se-
quences. The sét is robustly asymptotically (finite-time)
stable with domain of attractiagh iff it is robustly stable and
robustly asymptotically (finite-time) attractive with domain
of attractionX.

A setZ C IR" is said to beobustly controlled invarianf6]
(sometimes called controlled disturbance invariant) for (1)
iff, for all x € Z, there exists @& € U such thatf (x,u,W) C

Z. A setZ is disturbance invarian{sometimes called ro-
bustly positively invariant) for the systert € f(x,W) iff
f(x,W) C Z for all xe Z. A setZ is robustly controlled
invariant iff there exists a control law: Z — U that main-
tains the state iZ if the initial state is inZ (@(i;x,K,w) € Z

for all x € Z, all i > 0 and all admissiblew). In this
caseZ is disturbance invariant for the closed-loop system
xT € fiu((,W) 1= f (X, K(X),W).

5.1 Robust time-optimal control
The following assumption is made:

Al: The sefT is compact, robustly controlled invariant and
contains the origin in its interior.

Proposition 1 The sets{X;} computed using the recur-
sion(11)with boundary condition X=T satisfy % C X3 C

... XNmax C X. Moreover, for each & 1, X is compact, is
robustly controlled invariant, and contains the origin in its
interior.

Using the discontinuous value functidi(-) as a Lyapunov
function, robust stability cannot be established. However,
analogous results (including robust attractivity) can be ob-
tained. The stabilising properties of the set-valued control
law k°(-) defined in (14) are stated next.

Theorem 1 The target set T is robustly finite-time attrac-
tive for the closed-loop systent x f(x,k%(x),W) with

a region of attraction X, .. Any state X in XC Xnpax

(i < Nmay) is robustly steered by the controll&P(-) to T

ini steps or less and, thereafter, remains in T, while satisfy-
ing all state and control constraints.



5.2 Robust optimal and receding horizon control

Robust finite-time attraction oflf for the closed-loop
system with the time-varying, optimal control policy
mQ(X) = {Kn(X),KN-1(-),--,K1(-),Ko(-),Ko("),- ..}, Where
eachk;(-), i € {1,...,N} is defined in (17) an&o(-) is
defined in (20), follows similar arguments as for the ro-
bust time-optimal control problem. The rest of this section
will therefore only consider the stabilising properties of the
time-invariant receding horizon control laky : Xy — 2V
defined in (17) with = N.

A2: The sefl is compact, robustly controlled invariant, and
contains the origin in its interior. The terminal cég(x) :=
Oforallx e T. The path cost(-) is piecewise affine, is zero
in T x U, continuous i X\ T) x U, and satisfieg(x,u) >
C|X|o for all (x,u) € (X\ T) x U, for somec > 0.

The above assumption satisfies axioms A3a and Ada
in [14] for problemPy; T is robustly controlled invari-

ant,T C X and miney max,vew{[E +/(x,u,w)} <0,Vxe

T, where&(x, u,w) := a(f(x,u,w)) —a(x) for any func-
tion a(-). With these assumptions it follows [15] that

VS + £](x,u,w) <0 for all x € Xy \ T, all u € kn(x) and

all we W. 1t follows from A2 thatVQ(x) =0, Vxe T
and thatT is disturbance invariant for the closed-loop sys-
temxt € f(x,ko(X),W) (so thatko(-), which is set-valued,
keeps the state il irrespective of the disturbance). Since
F(x) and{(x,u) are zero if(x,u) € T x U, it follows that
Kn(X) = Ko(x) forallxe T.

Theorem 2 The set T is robustly finite-time stable for the
closed-loop systemxe f(x,kn(x),W) with a region of at-
traction Xy.

6 Geometric Solution

Necessary results are givengid.1 and the sets; andS are
characterised i§6.2; solutions to the robust time-optimal
and robust optimal control problems are giveré3 and
§6.4 respectively. In the subsequent sections it will be as-
sumed thaf is a polytope or is the union of a finite set of
polytopes.

6.1 Preliminary results

Proposition 2 justifies the set operations employegbir2.
Propositions 3 and 4 and Theorem 3 justify the result given
in §6.4.

The next key result establishes a relation between the Pon-
tryagin difference and Minkowski sum. As discussed in [11,
84.5] and [12§3.2], Proposition 2 allows one to develop an
algorithm for computing the Pontryagin difference between
the union of a finite set of polytopes and a polytope.

Proposition 2 If Y ~ Z # 0, where YC IR" and ZcC IR",
then

Y~Z=a(-2)°. (21)

Furthermore, if Y is the union of a finite set of closed (open)
polyhedra and Z is a closed polyhedron, ther-¥ is the
union of a finite set of closed (open) polyhedra.

Proposition 3 characterises the solution to a multi-
parametric linear program (mp-LP), where the cost is an
affine function of the decision variables and a set of pa-
rameters and the constraints on the decision variables and
parameters are given by a polytope. The reader is referred
to [7] for a geometric algorithm for computing the solution

to an mp-LP.

Proposition 3 If

VO(z) := myin{l’z+ my+n|(zy) € C} (22)

Yo(2) := argn;/in{l’z+ my+n|(zy) €C} (23)

where(l,m,n) € IR™ x IR™ x IR, C is a polytope and

Z:={z|]3dy:(zy) eC}, (24)

then\?:Z — IR is a convex, piecewise affine function. Fur-
thermore, there exists a continuous, piecewise affine func-
tion' v : Z — IR™ such that(z) € y°(2) forall z€ Z.

Proposition 4 will be used in Theorems 3 and 6 to charac-
terise the solution to the robust optimal control problem.

Proposition 4 If {fy(-),..., fp(-)} is a finite set of (contin-
uous) piecewise affine functions, where eachXf — IR",

then x— min{ f1(x),..., fp(X)}, xr—= max{ f1(x),..., fp(x)}

and x— fi(X) +... + fp(X) are (continuous) piecewise
affine functions of)”_; X;. Ifg: X —Y and h:Y — Z are
(continuous) piecewise affine functions, then the composite
hog: X — Z is a (continuous) piecewise affine function.

Theorem 3 characterises the solution to a multi-parametric
piecewise affine program (mp-PAP) where the cost is a
piecewise affine function of the decision variables and pa-
rameters and the constraints on the decision variables and
parameters are given by the union of a set of (possibly over-
lapping) polytopes. This result will be used§6.4 to char-
acterise the optimal cost and control law.

Theorem 3 Let V: D — IR be a piecewise affine function
with

V(Z7y) = |éZ—|— rréy—"_ Ns, V(Zvy) € DS7 (25)
where{Ds|s € S} is a finite set of polytopes such thatB
UsesDs and each(ls,ms, ns) € IR™ x IR x IR.
If {C;|r € R} is a finite set of polytopes and:€ U<rC:,

Vo(2):= min{V(zy)|(zy) €C} (26)

y(2) = arg min{V(zy)[(zy) € C} (27)

1Recall that, in general?(z) is set-valued for alk € Z.



and
Z:={z|3y:(zy)eCnD}, (28)

then V¥ : Z — IR is a piecewise affine function. Further-
more, there exists a piecewise affine functionz — IR™
such thaw(z) € y°(z) forall z€ Z.

Proof: For each(r,s) € Rx S, let Z s be the orthogonal
projection of the polytop€; N Ds onto thez-space, i.e.

Zis:={z|3y: (zy) € C:NDs} (29)

and let

V&(2) = myin{|;z+ my+ns| (zy) €CNDs}.  (30)

Since the non-empt¥; s are polytopes, by Proposition 3 it
follows that each/,?s: Z;s — R is a convex (hence con-
tinuous) piecewise affine function. Finally, note tat
Ufr,s)erxsZrs @and that for alz e Z,

VO(z) =min{V(zy)|(zy) €G:ND,r R}
. /
= min{lsz+ My +ns|

(zy) € G NDs, (r,8) € Rx S}
=min (V%@ |(r,;s) e Rx S}.

The statement regarding’(-) follows from Proposition 4.
That there exists a piecewise affine functionZ — IR™,
such that(z) € y°(z) for all z € Z, follows from Proposi-
tion 3 by using similar arguments as above. [ |

Remark 1 Note that, unlike the proof of [2, Lem. 1], the
proof of Theorem 3 does not require the introduction of
integer variables and obtaining the solution to a multi-
parametric mixed-integer linear program (mp-MILP) [8];

it is sufficient to compare the solutions to the finite number
of mp-LPs defined b§80). An algorithm for comparing the
solutions to different mp-LPs is described in [8, App. A].

6.2 Characterisation of the sets; and §
The recursions (11) and (18) are employed by noting that

S={(xu) e X xU|fo(x,u) € Xi_1 ~W} (32)

and recalling thaX; = Proj (S). Becausdy(-) is nonlinear,
the setsX; andS are not necessarily convex everxf 1 is.
However, as noted in [11, Chap. 4] and [%2],

Theorem 4 If T is the union of a finite set of polytopes then,
foralli > 1, § and X are each the union of a finite set of
polytopes.

Proof: Suppose Xi_1 := UjeLileij‘l, where each
Q=1 is a closed polyhedronXC , is then the union
of a finite set of open polyhedra. By Proposition 2,

X 1~ W = [X,®(-W)]°, hence, X, & (-W) is
the union of a finite set of open polyhedra akd; ~
W = Ujem, ®j, where each®j is a closed polyhedron.

From (31), § = Ujem {(x,u) eXxU ‘fo(x,u) € dJij }
Since fo(-) = fq(-) on each polytopeP;, S =
Utaieexm (Pq“‘“iq,j) = Ujey, ), each
W= {(x, u) e XxU ‘fq(x, u) € @ } andz! are closed
polyhedra. FinallyQ' := Proj (Z'J) andX; = Uje, Q.

|

where

6.3 Solution to the robust time-optimal control problem
Recalling the discussion 4.1 and5.1, one can now char-
acterise the optimal cost and control law and derive an algo-
rithm for computing the solution to the robust time-optimal
control problem.

Theorem 5 Xy, IS the union of a finite set of polytopes
and, for each x Xy, the valuex®(x) of the set-valued
control lawk®(-) is the union of a finite set of polytopes.

Proof: That Xy,,., iS the union of a finite set of poly-
topes follows from Theorem 4. It also follows from the
proof of Theorem 4 that ik € X; \ X;_1 for an arbitrary

i €{1,2,...Nmax} then

Ki(x) ={ueU|fo(x,u) € Xi_1 ~W}={ul(x,u) €S}
={u|(xu) e Ujer, T} } = {u|Fj eLi: (xu) e =} }
=Ujer; {u|(xu) €2} },

where each Zij is a polytope and hence each

u’(x,u) ezij} is a polytope. The result follows by
recalling (14). [ |

In order to compute&®(x) for a givenx, one first needs to
computeN®(x) = min; {i [x € X;,i € {1,2,...Nmax} }. Since
eachX; is the union of a finite set of polytopes, com-
puting N°(x) amounts to checking a finite number of lin-
ear inequalities. From the proof of TheoremSp ) =

Uietyog er\l()(X

lows thatk®(x) = UjELNO(x) {u‘(x, u) le\IO(x) } Hence, for
a giveny, if the control input is selected from any of the
polytopes{u’(x, u) e Z:-\'O(X) }, j € Lyogy) then the state of

the system will be steered froiyo(, t0 Xyo(y_1 for all
admissible disturbances.

) and from the proof of Theorem 5 it fol-

6.4 Solution to the robust optimal control problem
Recalling the discussion 4.2 and5.2, one can now char-
acterise the optimal cost and control law and derive an algo-
rithm for computing the solutions to the robust optimal and
robust receding horizon control problems.



Theorem 6 For each i> 0, X is the union of a finite set of
polytopes and the value functiof vX; — IR is a piecewise
affine function. Furthermore, there exists a piecewise affine
control lawv; : X; — U such thaw;(x) € k;(x) for all x € X;.

Proof: ThatX; is the union of a finite set of polytopes
follows from Theorem 4. From (16) it follows that if
Vi (%, u) := maxyew VO 4 (f(x,u,w)) for all (x,u) € S, then
VO(x) = miny {£(x,u) +Vi*(x,u) | (x,u) € § } for all x € X;.
Sincef(-) is piecewise affine, ¥/° () is piecewise affine
overX;_1, then by Proposition 4 and Theorem 3 it follows
thatV;*(-) is piecewise affine ovef. Sincel(-) is piece-
wise affine ovelS, by Proposition 4 and Theorem 3 it fol-
lows thatV(-) is piecewise affine oveX;. The statement
regardingV%(-) is completed by recalling that?(x) = 0
for all x € Xo. That there exists a piecewise affine func-
tion v; : Xi — U such thatui(x) € kj(x) for all x € X
follows similar arguments by noting that, for alle X;,
Ki(x) = argmin, {£(x,u) +V;*(x,u) |(x,u) € S }. [ ]

Remark 2 Note that it is sufficient to compute’{k) and
Ki(x) only for all xe X;\ T, since/(x,u) = 0 and F(x) = 0
forall (x,u) € T xU and hence ¥(x) = 0 andk;(x) = Ko(X)
forallxeT.

Remark 3 A typical choice for a piecewise affine stage
cost that satisfies A2 is to ugéx,u) := |QX1 + |Rul1 or
£(x,u) := |QX|e + |RU«, Where Q is a positive definite ma-
trix and R is a positive, semi-definite matrix. Since it is
assumed that(x,u) = 0forall (x,u) € T x U, continuity of

the value function and control law over ¥annot be guar-
anteed. However, the optimal cost is still piecewise affine
on X and it is still possible to compute an optimal control
law that is piecewise affine on.X

7 Conclusions

The solutions to the problems of robust time-optimal, robust
optimal and robust receding horizon control of a piecewise
affine system with a persistent, but bounded, disturbance
have been characterised. For the robust time-optimal con-
trol problem, the robustly controllable sets were shown to
be finite unions of polytopes that can be computed using
the results given above; the time-optimal control is deter-
mined by simple optimization over these sets. For the robust
optimal and robust receding horizon control problems, the
optimal value functions and control laws were shown to be
piecewise affine (provided the stage cost is piecewise affine)
and their domains the union of a finite set of polytopes; the
optimal control is determined by simply checking a finite
number of inequalities at each time step. Finally, it is worth
mentioning that algorithms based directly on the results pre-
sented here might be too inefficient to be realisable for large

or complex systems. As such, current research is aimed at [1g]

finding more efficient algorithms for the computation and
implementation of the control laws discussed in this paper.
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