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Abstract

The solution to the problem of optimal control of piecewise
affine systems with a bounded disturbance is characterised.
Results that allow one to compute the value function, its
domain (robustly controllable set) and the optimal control
law are presented. The tools that are employed include dy-
namic programming, polytopic set algebra and parametric
programming. When the cost is time (robust time-optimal
control problem) or the stage cost is piecewise affine (robust
optimal and robust receding horizon control problems), the
value function and the optimal control law are both piece-
wise affine and each robustly controllable set is the union
of a finite set of polytopes. Conditions on the cost and con-
straints are also proposed in order to ensure that the optimal
control laws are robustly stabilising.
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1 Introduction

In recent years there has been an increase in the amount of
research on the control of piecewise affine systems (some-
times also called piecewise linear systems). The rise in
interest in this class of systems is due to the fact that
many nonlinear systems can be approximated arbitrarily
closely using piecewise affine models [18] and because of
the equivalence that has been shown to exist between piece-
wise affine systems and a large class of hybrid systems [10].

Though many papers address the analysis and optimal con-
trol of piecewise affine systems (see [1, 17] and the refer-
ences therein), the literature on the robust control of this
class of systems is relatively sparse. Some of the contribu-
tions include reachability-based approaches for the control
of uncertain, piecewise linear hybrid systems [3, 13], and
LMI-based approaches forH2 andH∞ control of piecewise
affine systems [9].
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This paper considers the problems of robust time-optimal
control [4, 16], robust optimal control [5] and robust reced-
ing horizon control [2, 14, 15] of a piecewise affine sys-
tem to a given target set. The results in this paper are an
extension of results on the robust optimal control of linear
systems to the class of piecewise affine systems. The ex-
tension of the results for linear systems presented in [2, 16],
to which this paper is most closely related, is unfortunately
not straight-forward. The system under consideration in this
paper is nonlinear and the resulting domains of attraction
non-convex; some of the linearity and convexity arguments
exploited in [2, 16] do not hold and extra care has to be
taken when computing the control laws.

One of the key results which allow one to compute ro-
bust optimal controllers for piecewise affine systems, is the
fact that one can compute the robustly controllable sets of
the system as the union of a finite set of polytopes, using
standard computational geometry tools [11, 12]. The other
key observation is that, provided the stage cost is piecewise
affine (which includes the case when the cost is`∞ or `1),
one can set up a sequence of parametric programming prob-
lems [7, 8] and compute the explicit solutions to the robust
optimal and robust receding horizon control problems, in a
similar fashion to [1, 2].

Sections 2 and 3 introduce some notation and set up the
optimal feedback control problems that will be considered.
Section 4 provides a dynamic programming solution to the
set of control problems and Section 5 provides some stabil-
ity results for the resulting control laws. Geometric results
that allow one to compute the control laws are given in Sec-
tion 6 and some conclusions are drawn in Section 7.

2 Definitions and Notation

A polyhedron in IRn is a (convex) set given by the inter-
section of a finite number of open and/or closed half-spaces
in IRn. A polytope is a closed and bounded (i.e. compact)
polyhedron. A function is said to be piecewise affine if its
domain can be partitioned into a finite number of mutually
disjoint polyhedra and the function is affine on each poly-
hedron.

If Y ⊂ IRn and Z ⊂ IRn, then 2Y is the power set (set
of all subsets) ofY, the complement ofY is Yc :=
{y∈ IRn |y /∈Y}, the set differenceY\Z := {y∈Y |y /∈ Z},
the Minkowski sumY ⊕ Z := {y+ z|y∈Y,z∈ Z} and



the Pontryagin (or Minkowski) differenceY ∼ Z :=
{y∈ IRn |y+ z∈Y,∀z∈ Z}.

3 Problem Setup

The problem considered in this paper is the robust optimal
control of continuous, discrete-time, piecewise affine sys-
tems of the form

x+ = f (x,u,w) := Aqx+ Bqu+ cq+ w, ∀(x,u) ∈ Pq (1)

wherex, u andw denote, respectively, the state, input and
disturbance at a given time instant andx+ denotes the state
at the next time instant. Each(Aq,Bq,cq)∈ IRn×n× IRn×m×
IRn, q∈ Q (Q a finite set) and{Pq | q∈ Q} is a finite set of
polytopes with mutually disjoint interiors. For eachq∈ Q,
let fq(x,u) := Aqx+ Bqu+ cq and the continuous function
f0(·) be defined byf0(x,u) := fq(x,u) for all (x,u) ∈ Pq,
q∈Q so thatf (x,u,w) = f0(x,u) + w.

It is assumed that the bounded disturbancew is persistent
and satisfiesw ∈W, and that the control and state are re-
quired to satisfy the hard constraintsu∈U andx∈ X; X,U
andW are all polytopes, with 0∈W and 0∈ int(X). The
statex is assumed to be accessible. State, control and distur-
bance sequences of the system being controlled are denoted
by {x(i)}, {u(i)} and{w(i)}.

To determine a suitable control law an optimal control prob-
lem PN (defined below) with horizonN is solved. Let
w := {w(0),w(1), . . . ,w(N−1)} denote the disturbance se-
quence over the interval 0 toN− 1. Effective control in
the presence of the disturbancew requires state feedback,
so that the decision variable in the optimal control problem
(for a given initial state) is a control policyπ defined by

π := {u(0),µ1(·), . . . ,µN−1(·)} , (2)

whereu(0) ∈U andµi : X→U , i ∈ {1, . . . ,N−1}; u(0) is
a controlaction (since the initial state is known) and each
µi(·) is a state feedback controllaw. Let φ(i;x,π,w) denote
the solution to (1) when the initial state isx at time 0, the
control is determined by policyπ (u = µi(x) at event(x, i),
i.e. statex, time i) and the disturbance sequence isw; simi-
larly, φ(i;x,κ,w) denotes the solution to (1) when the initial
state isx at time 0, the disturbance sequence isw and a
time-invariant control lawκ : X→U is employed (u = κ(x)
at statex).

Given a target setT ⊂ X, for each initial statex ∈ X, let
ΠN(x) denote the set ofadmissiblepoliciesπ:

ΠN(x) := {π | u(0) ∈U, µi(φ(i;x,π,w)) ∈U,

φ(i;x,π,w) ∈ X, φ(N;x,π,w) ∈ T,

∀i ∈ {1, . . . ,N−1},∀w ∈WN} . (3)

Conditions on the target set (also called terminal constraint
set)T, together with the stage cost`(·) and terminal cost

F(·), will be given in the subsequent sections in order to
ensure that the solution to the finite horizon optimal control
problems are stabilising.

The cost due to a policyπ, initial statex and an individual
realizationw of the disturbance process is

JN(x,π,w) :=
N−1

∑
i=0

`(xi,ui) + F(xN), (4)

where xi := φ(i;x,π,w) if i ∈ {0,1, . . . ,N}, ui :=
µi(φ(i;x,π,w)) if i ∈ {1, . . . ,N−1} andu0 := u(0). In or-
der to define the optimal control problem, a costVN(·) that
is independent ofw is defined; the conventional choice is

VN(x,π) := max
w

{
JN(x,ψ,w)

∣∣w ∈WN } . (5)

The robust optimal control problemPN can now be defined
as

PN(x) : V0
N(x) := inf

π
{VN(x,π) |π ∈ΠN(x)} . (6)

Let π0
N(x) denote the solution toPN(x) :

π0
N(x) :=

{
u0

0(x),µ0
1(·;x), . . . ,µ0

N−1(·;x)
}

(7)

:= arginf
π
{VN(x,π) |π ∈ΠN(x)} . (8)

The robust time-optimal control problem is defined as

P(x) : N0(x) := min
π,N
{N |(π,N) ∈ΠN(x)×N} , (9)

whereN := {0,1, . . . ,Nmax} andNmax is an upper bound on
the horizon. The solution toP(x) is(

π0(x),N0(x)
)

:= argmin
π,N
{N |(π,N) ∈ΠN(x)×N} . (10)

4 Dynamic Programming Solution

Dynamic programming provides a recursive procedure for
computing sequentially the partial return functionsV0

i (·)
(defined in (6) withN = i), the associated set-valued con-
trol laws κi(·) as well as their domains (herei denotes
‘time-to-go’ so thatκi(·) = µ0

N−i(·) if i ∈ {1, . . . ,N− 1}
andκN(·) = u0

0(·)). The domain ofV0
i (·) and κi(·) is Xi ,

the set of states that can be robustly steered (steered for
all w ∈WN) to the target setT in i steps or less. Stan-
dard optimal control implements the time-varying policy
π0

N(x) = {κN(x),κN−1(·), . . . ,κ1(·)} (u ∈ κN−i(x) at event
(x, i), i.e. at statex, time i), whereas receding horizon con-
trol uses the time-invariant control lawκN(·) (u∈ κN(x) at
statex).

4.1 Robust time-optimal problem
For the robust time-optimal control problemP, the
value function N0(x) takes the discrete valuesi ∈
{0,1,2, . . . ,Nmax}. For eachi, the robustly controllable set



Xi := {x | N0(x) ≤ i} is the set of initial states that can be
robustlysteered (steered for allw ∈Wi) to the target setT,
in i steps or less while satisfying all state and control con-
straints. ThusN0(x) = i for all x∈ Xi \Xi−1. The robustly
controllable setXi and the associated robust time-optimal
control lawκi : Xi → 2U are yielded by the following recur-
sion:

Xi := {x∈ X | ∃u∈U : f (x,u,W)⊂ Xi−1} (11)

κi(x) := {u∈U | f (x,u,W)⊂ Xi−1}, ∀x∈ Xi (12)

for i ∈ {1,2, . . . ,Nmax}, with boundary conditionX0 = T.
The control lawκ0 : T→ 2U is defined by

κ0(x) := {u∈U | f (x,u,W)⊂ T}, ∀x∈ T. (13)

A condition onT that ensuresκ0(x) 6= /0 for all x ∈ T is
given in§5.1. Note that the control lawκi(·) is set-valued;
at event(x, i) (i.e. at statex, time i) any control in the set
κN−i(x) may be employed. The time-invariant control law
κ0 : XNmax→ 2U defined by

κ0(x) :=

{
κi(x), ∀x∈ Xi \Xi−1, ∀i ∈ {1, . . . ,Nmax}
κ0(x), ∀x∈ X0

(14)
robustly steers anyx ∈ XN to X0 in N steps or less, while
satisfying state and control constraints, and thereafter main-
tains the state inX0.

Finally, it is useful to note thatXi = ProjX(Si), where
ProjX(Si) is the orthogonal projection ontox-space of the
setSi defined by

Si = {(x,u) ∈ X×U | f (x,u,W)⊂ Xi−1} . (15)

4.2 Robust optimal control problem
ProblemPN is embedded in the sequence of problems{Pi}
(defined by (6) withN = i), yielding the recursions:

V0
i (x) := min

u∈U
max
w∈W
{`(x,u) +V0

i−1( f (x,u,w)) |

f (x,u,W)⊂ Xi−1}, ∀x∈ Xi

= min
u
{`(x,u) + max

w∈W
V0

i−1( f (x,u,w)) |

(x,u) ∈ Si}, ∀x∈ Xi (16)

κi(x) := argmin
u∈U

max
w∈W
{`(x,u) +V0

i−1( f (x,u,w)) |

f (x,u,W)⊂ Xi−1}, ∀x∈ Xi (17)

Xi := {x∈ X |∃u∈U : f (x,u,W)⊂ Xi−1} (18)

for i ∈ {1, . . . ,N}, with boundary conditions

X0 = T andV0
0 (x) = F(x), ∀x∈ T. (19)

The control lawκ0 : T→ 2U is defined by

κ0(x) := argmin
u∈U

max
w∈W
{`(x,u) + F ( f (x,u,w))

| f (x,u,W)⊂ T}, ∀x∈ T. (20)

Note again that all theκi : Xi → 2U are set-valued.

5 Stability

Because of the persistent, additive disturbancew, conver-
gence of the state of the controlled system to the origin is
not possible; convergence to a setT containing the origin
can be proven instead. The corresponding notions of stabil-
ity and attractivity are as follows. Ifd(z,Z) := infy∈Z |z−y|
for any setZ ⊂ IRn, then the setT is robustly stable iff,
for all ε > 0, there exists aδ > 0 such thatd(x(0),T) ≤ δ
implies d(x(i),T) ≤ ε, for all i ≥ 0 and for all admissible
disturbance sequences. The setT is robustly asymptotically
(finite-time) attractive with domain of attractionX iff, for all
x(0)∈X, d(x(i),T)→ 0 asi→∞ (there exists a timeI such
thatx(i) ∈ T for all i ≥ I ) for all admissible disturbance se-
quences. The setT is robustly asymptotically (finite-time)
stable with domain of attractionX iff it is robustly stable and
robustly asymptotically (finite-time) attractive with domain
of attractionX.

A setZ⊂ IRn is said to berobustly controlled invariant[6]
(sometimes called controlled disturbance invariant) for (1)
iff, for all x∈ Z, there exists au∈U such thatf (x,u,W) ⊂
Z. A set Z is disturbance invariant(sometimes called ro-
bustly positively invariant) for the systemx+ ∈ f (x,W) iff
f (x,W) ⊂ Z for all x ∈ Z. A set Z is robustly controlled
invariant iff there exists a control lawκ : Z→U that main-
tains the state inZ if the initial state is inZ (φ(i;x,κ,w) ∈ Z
for all x ∈ Z, all i ≥ 0 and all admissiblew). In this
caseZ is disturbance invariant for the closed-loop system
x+ ∈ fκ(x,W) := f (x,κ(x),W).

5.1 Robust time-optimal control
The following assumption is made:

A1: The setT is compact, robustly controlled invariant and
contains the origin in its interior.

Proposition 1 The sets{Xi} computed using the recur-
sion(11)with boundary condition X0 = T satisfy X0⊂X1⊂
. . .XNmax ⊂ X. Moreover, for each i> 1, Xi is compact, is
robustly controlled invariant, and contains the origin in its
interior.

Using the discontinuous value functionN0(·) as a Lyapunov
function, robust stability cannot be established. However,
analogous results (including robust attractivity) can be ob-
tained. The stabilising properties of the set-valued control
law κ0(·) defined in (14) are stated next.

Theorem 1 The target set T is robustly finite-time attrac-
tive for the closed-loop system x+ ∈ f (x,κ0(x),W) with
a region of attraction XNmax. Any state x in Xi ⊂ XNmax

(i ≤ Nmax) is robustly steered by the controllerκ0(·) to T
in i steps or less and, thereafter, remains in T , while satisfy-
ing all state and control constraints.



5.2 Robust optimal and receding horizon control
Robust finite-time attraction ofT for the closed-loop
system with the time-varying, optimal control policy
π0

N(x) = {κN(x),κN−1(·), . . . ,κ1(·),κ0(·),κ0(·), . . .}, where
eachκi(·), i ∈ {1, . . . ,N} is defined in (17) andκ0(·) is
defined in (20), follows similar arguments as for the ro-
bust time-optimal control problem. The rest of this section
will therefore only consider the stabilising properties of the
time-invariant receding horizon control lawκN : XN → 2U

defined in (17) withi = N.

A2: The setT is compact, robustly controlled invariant, and
contains the origin in its interior. The terminal costF(x) :=
0 for all x∈ T. The path cost̀(·) is piecewise affine, is zero
in T×U , continuous in(X \T)×U , and satisfies̀(x,u)≥
c|x|∞ for all (x,u) ∈ (X \T)×U , for somec> 0.

The above assumption satisfies axioms A3a and A4a
in [14] for problemPN; T is robustly controlled invari-

ant,T ⊂ X and minu∈U maxw∈W{[
∗
F + `](x,u,w)} ≤ 0,∀x∈

T, where
∗
α(x,u,w) := α( f (x,u,w))− α(x) for any func-

tion α(·). With these assumptions it follows [15] that

[
∗

V0
N + `](x,u,w) ≤ 0 for all x ∈ XN \T, all u ∈ κN(x) and

all w ∈W. It follows from A2 thatV0
N(x) = 0, ∀x ∈ T

and thatT is disturbance invariant for the closed-loop sys-
temx+ ∈ f (x,κ0(x),W) (so thatκ0(·), which is set-valued,
keeps the state inT irrespective of the disturbance). Since
F(x) and`(x,u) are zero if(x,u) ∈ T ×U , it follows that
κN(x) = κ0(x) for all x∈ T.

Theorem 2 The set T is robustly finite-time stable for the
closed-loop system x+ ∈ f (x,κN(x),W) with a region of at-
traction XN.

6 Geometric Solution

Necessary results are given in§6.1 and the setsXi andSi are
characterised in§6.2; solutions to the robust time-optimal
and robust optimal control problems are given in§6.3 and
§6.4 respectively. In the subsequent sections it will be as-
sumed thatT is a polytope or is the union of a finite set of
polytopes.

6.1 Preliminary results
Proposition 2 justifies the set operations employed in§6.2.
Propositions 3 and 4 and Theorem 3 justify the result given
in §6.4.

The next key result establishes a relation between the Pon-
tryagin difference and Minkowski sum. As discussed in [11,
§4.5] and [12,§3.2], Proposition 2 allows one to develop an
algorithm for computing the Pontryagin difference between
the union of a finite set of polytopes and a polytope.

Proposition 2 If Y ∼ Z 6= /0, where Y⊂ IRn and Z⊂ IRn,
then

Y ∼ Z = [Yc⊕ (−Z)]c . (21)

Furthermore, if Y is the union of a finite set of closed (open)
polyhedra and Z is a closed polyhedron, then Y∼ Z is the
union of a finite set of closed (open) polyhedra.

Proposition 3 characterises the solution to a multi-
parametric linear program (mp-LP), where the cost is an
affine function of the decision variables and a set of pa-
rameters and the constraints on the decision variables and
parameters are given by a polytope. The reader is referred
to [7] for a geometric algorithm for computing the solution
to an mp-LP.

Proposition 3 If

V0(z) := min
y
{l ′z+ m′y+ n | (z,y) ∈C} (22)

y0(z) := argmin
y
{l ′z+ m′y+ n | (z,y) ∈C} (23)

where(l ,m,n) ∈ IRnz× IRny× IR, C is a polytope and

Z := {z|∃y : (z,y) ∈C} , (24)

then V0 : Z→ IR is a convex, piecewise affine function. Fur-
thermore, there exists a continuous, piecewise affine func-
tion1 υ : Z→ IRny such thatυ(z) ∈ y0(z) for all z∈ Z.

Proposition 4 will be used in Theorems 3 and 6 to charac-
terise the solution to the robust optimal control problem.

Proposition 4 If { f1(·), . . . , fp(·)} is a finite set of (contin-
uous) piecewise affine functions, where each fi : Xi → IRn,
then x7→min{ f1(x), . . . , fp(x)}, x 7→max{ f1(x), . . . , fp(x)}
and x 7→ f1(x) + . . . + fp(x) are (continuous) piecewise
affine functions on

⋂p
i=1Xi. If g : X→Y and h: Y→ Z are

(continuous) piecewise affine functions, then the composite
h◦g : X→ Z is a (continuous) piecewise affine function.

Theorem 3 characterises the solution to a multi-parametric
piecewise affine program (mp-PAP) where the cost is a
piecewise affine function of the decision variables and pa-
rameters and the constraints on the decision variables and
parameters are given by the union of a set of (possibly over-
lapping) polytopes. This result will be used in§6.4 to char-
acterise the optimal cost and control law.

Theorem 3 Let V : D→ IR be a piecewise affine function
with

V(z,y) := l ′sz+ m′sy+ ns, ∀(z,y) ∈ Ds, (25)

where{Ds|s∈ S} is a finite set of polytopes such that D:=
∪s∈SDs and each(ls,ms,ns) ∈ IRnz× IRny× IR.

If {Cr |r ∈ R} is a finite set of polytopes and C:= ∪r∈RCr ,

V0(z) := min
y
{V(z,y) |(z,y) ∈C} (26)

y0(z) := argmin
y
{V(z,y) |(z,y) ∈C} (27)

1Recall that, in general,y0(z) is set-valued for allz∈ Z.



and
Z := {z|∃y : (z,y) ∈C∩D} , (28)

then V0 : Z→ IR is a piecewise affine function. Further-
more, there exists a piecewise affine functionυ : Z→ IRny

such thatυ(z) ∈ y0(z) for all z∈ Z.

Proof: For each(r,s) ∈ R×S, let Zr,s be the orthogonal
projection of the polytopeCr ∩Ds onto thez-space, i.e.

Zr,s := {z|∃y : (z,y) ∈Cr ∩Ds} (29)

and let

V0
r,s(z) := min

y
{l ′sz+ m′sy+ ns | (z,y) ∈Cr ∩Ds}. (30)

Since the non-emptyZr,s are polytopes, by Proposition 3 it
follows that eachV0

r,s : Zr,s→ IR is a convex (hence con-
tinuous) piecewise affine function. Finally, note thatZ =
∪(r,s)∈R×SZr,s and that for allz∈ Z,

V0(z) = min
y,r
{V(z,y) |(z,y) ∈Cr ∩D, r ∈ R}

= min
y,r,s
{l ′sz+ m′sy+ ns |

(z,y) ∈Cr ∩Ds,(r,s) ∈ R×S}
= min

r,s

{
V0

r,s(z) |(r,s) ∈ R×S
}
.

The statement regardingV0(·) follows from Proposition 4.
That there exists a piecewise affine functionυ : Z→ IRny,
such thatυ(z) ∈ y0(z) for all z∈ Z, follows from Proposi-
tion 3 by using similar arguments as above. �

Remark 1 Note that, unlike the proof of [2, Lem. 1], the
proof of Theorem 3 does not require the introduction of
integer variables and obtaining the solution to a multi-
parametric mixed-integer linear program (mp-MILP) [8];
it is sufficient to compare the solutions to the finite number
of mp-LPs defined by(30). An algorithm for comparing the
solutions to different mp-LPs is described in [8, App. A].

6.2 Characterisation of the setsXi and Si

The recursions (11) and (18) are employed by noting that

Si = {(x,u) ∈ X×U | f0(x,u) ∈ Xi−1∼W} (31)

and recalling thatXi = ProjX(Si). Becausef0(·) is nonlinear,
the setsXi andSi are not necessarily convex even ifXi−1 is.
However, as noted in [11, Chap. 4] and [12,§4],

Theorem 4 If T is the union of a finite set of polytopes then,
for all i ≥ 1, Si and Xi are each the union of a finite set of
polytopes.

Proof: Suppose Xi−1 :=
⋃

j∈Li−1
Ωi−1

j , where each

Ωi−1
j is a closed polyhedron;Xc

i−1 is then the union
of a finite set of open polyhedra. By Proposition 2,

Xi−1 ∼ W =
[
Xc

i−1⊕ (−W)
]c

, hence, Xc
i−1 ⊕ (−W) is

the union of a finite set of open polyhedra andXi−1 ∼
W :=

⋃
j∈Mi

Φi
j , where eachΦi

j is a closed polyhedron.

From (31), Si =
⋃

j∈Mi

{
(x,u) ∈ X×U

∣∣∣ f0(x,u) ∈Φi
j

}
.

Since f0(·) = fq(·) on each polytope Pq, Si =⋃
(q, j)∈Q×Mi

(
Pq∩Ψi

q, j

)
=

⋃
j∈Li

Σi
j , where each

Ψi
q, j :=

{
(x,u) ∈ X×U

∣∣∣ fq(x,u) ∈Φi
j

}
andΣi

j are closed

polyhedra. Finally,Ωi
j := ProjX

(
Σi

j

)
andXi =

⋃
j∈Li

Ωi
j .

�

6.3 Solution to the robust time-optimal control problem
Recalling the discussion in§4.1 and§5.1, one can now char-
acterise the optimal cost and control law and derive an algo-
rithm for computing the solution to the robust time-optimal
control problem.

Theorem 5 XNmax is the union of a finite set of polytopes
and, for each x∈ XNmax, the valueκ0(x) of the set-valued
control lawκ0(·) is the union of a finite set of polytopes.

Proof: That XNmax is the union of a finite set of poly-
topes follows from Theorem 4. It also follows from the
proof of Theorem 4 that ifx ∈ Xi \Xi−1 for an arbitrary
i ∈ {1,2, . . .Nmax} then

κi(x) = {u∈U | f0(x,u) ∈ Xi−1∼W}= {u|(x,u) ∈ Si }
=
{

u
∣∣(x,u) ∈ ∪ j∈Li Σ

i
j

}
=
{

u
∣∣∃ j ∈ Li : (x,u) ∈ Σi

j

}
= ∪ j∈Li

{
u
∣∣(x,u) ∈ Σi

j

}
,

where each Σi
j is a polytope and hence each{

u
∣∣∣(x,u) ∈ Σi

j

}
is a polytope. The result follows by

recalling (14). �

In order to computeκ0(x) for a givenx, one first needs to
computeN0(x) = mini {i |x∈ Xi , i ∈ {1,2, . . .Nmax}}. Since
each Xi is the union of a finite set of polytopes, com-
puting N0(x) amounts to checking a finite number of lin-
ear inequalities. From the proof of Theorem 4,SN0(x) :=⋃

j∈LN0(x)
ΣN0(x)

j and from the proof of Theorem 5 it fol-

lows thatκ0(x) =
⋃

j∈LN0(x)

{
u
∣∣∣(x,u) ∈ ΣN0(x)

j

}
. Hence, for

a givenx, if the control input is selected from any of the

polytopes
{

u
∣∣∣(x,u) ∈ ΣN0(x)

j

}
, j ∈ LN0(x) then the state of

the system will be steered fromXN0(x) to XN0(x)−1 for all
admissible disturbances.

6.4 Solution to the robust optimal control problem
Recalling the discussion in§4.2 and§5.2, one can now char-
acterise the optimal cost and control law and derive an algo-
rithm for computing the solutions to the robust optimal and
robust receding horizon control problems.



Theorem 6 For each i≥ 0, Xi is the union of a finite set of
polytopes and the value function V0

i : Xi→ IR is a piecewise
affine function. Furthermore, there exists a piecewise affine
control lawυi : Xi→U such thatυi(x)∈ κi(x) for all x∈Xi.

Proof: That Xi is the union of a finite set of polytopes
follows from Theorem 4. From (16) it follows that if
V∗i (x,u) := maxw∈WV0

i−1( f (x,u,w)) for all (x,u) ∈ Si, then
V0

i (x) = minu{`(x,u) +V∗i (x,u) |(x,u) ∈ Si } for all x∈ Xi .
Since f (·) is piecewise affine, ifV0

i−1(·) is piecewise affine
overXi−1, then by Proposition 4 and Theorem 3 it follows
thatV∗i (·) is piecewise affine overSi. Since`(·) is piece-
wise affine overSi, by Proposition 4 and Theorem 3 it fol-
lows thatV0

i (·) is piecewise affine overXi . The statement
regardingV0

i (·) is completed by recalling thatV0
0 (x) = 0

for all x ∈ X0. That there exists a piecewise affine func-
tion υi : Xi → U such thatυi(x) ∈ κi(x) for all x ∈ Xi

follows similar arguments by noting that, for allx ∈ Xi ,
κi(x) = argminu{`(x,u) +V∗i (x,u) |(x,u) ∈ Si }. �

Remark 2 Note that it is sufficient to compute V0
i (x) and

κi(x) only for all x∈ Xi \T, sincè (x,u) = 0 and F(x) = 0
for all (x,u)∈T×U and henceV0i (x) = 0 andκi(x) = κ0(x)
for all x ∈ T.

Remark 3 A typical choice for a piecewise affine stage
cost that satisfies A2 is to use`(x,u) := |Qx|1 + |Ru|1 or
`(x,u) := |Qx|∞ + |Ru|∞, where Q is a positive definite ma-
trix and R is a positive, semi-definite matrix. Since it is
assumed that̀(x,u) = 0 for all (x,u) ∈ T×U, continuity of
the value function and control law over Xi cannot be guar-
anteed. However, the optimal cost is still piecewise affine
on Xi and it is still possible to compute an optimal control
law that is piecewise affine on Xi.

7 Conclusions

The solutions to the problems of robust time-optimal, robust
optimal and robust receding horizon control of a piecewise
affine system with a persistent, but bounded, disturbance
have been characterised. For the robust time-optimal con-
trol problem, the robustly controllable sets were shown to
be finite unions of polytopes that can be computed using
the results given above; the time-optimal control is deter-
mined by simple optimization over these sets. For the robust
optimal and robust receding horizon control problems, the
optimal value functions and control laws were shown to be
piecewise affine (provided the stage cost is piecewise affine)
and their domains the union of a finite set of polytopes; the
optimal control is determined by simply checking a finite
number of inequalities at each time step. Finally, it is worth
mentioning that algorithms based directly on the results pre-
sented here might be too inefficient to be realisable for large
or complex systems. As such, current research is aimed at
finding more efficient algorithms for the computation and
implementation of the control laws discussed in this paper.
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