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Abstract

This paper shows how a class of objective functions can be
incorporated into a prioritised, multi-objective optimisation
problem, for which a solution can be obtained by solving a
sequence of single-objective, constrained, convex program-
ming problems. The objective functions considered in this
paper typically arise in Model Predictive Control (MPC) of
constrained, linear systems. The framework presented in
this paper can be used to design a flexible, multi-objective
MPC controller that takes priorities into account during the
on-line computation of the control input.

Keywords: Multi-objective optimization, receding horizon
control, lexicographic programming, prioritized objectives,
constraint handling, convex programming.

1 Introduction

When designing controllers, it is very difficult to express all
the objectives as a single cost function. Assigning a high
weight to the control of an output is not really the same as
assigning it a high priority. For example, by using a sin-
gle cost one cannot express objectives such as “keep out-
put 1 near its set-point only if output 2 can be kept at its
set-point”. Also, sometimes a disturbance or fault occurs
that makes it impossible to satisfy all control objectives
simultaneously and an arbitrary trade-off is not desirable,
since some control actions are preferable to others. As a
result, the control objectives have to be changed to accom-
modate this new information. For example, it might not be
possible to keep both output 1 and output 2 within given
constraints. A control action that guarantees that the con-
straints on output 1 will be satisfied might be preferred over
a control action that satisfies the constraints on output 2.
A multi-objective optimisation formulation makes it possi-
ble to resolve conflicting control objectives in a systematic
fashion [4, Sects. 10.1–10.2]. The paper aims to describe a
multi-objective framework that gives a means for optimally
handling such a problem.

This paper will consider the case where a number of objec-
tives with various priorities are given. The multi-objective
problem is solved via a hierarchy of single-objective optimi-
sation problems; the most important optimisation problem

is solved first and the solution to this problem is then used
to impose additional constraints on the second optimisation,
etc. Section 2 gives a brief description of this procedure,
which is well-known within the academic [5, 7, 8, 10] and
industrial [4, App. A] control community.

Section 3 defines the type of objective functions that will
be considered in this paper. The objectives considered typi-
cally arise in the control of constrained, linear systems and
most of the objectives defined in [2, 3, 5, 7, 8, 9, 10] can be
defined in terms of the functions given in this section. As
such, this paper can be interpreted as a slight generalisation
of these previous approaches to prioritised, multi-objective
controller design.

Section 4 shows, for each type of objective function con-
sidered in Section 3, how each single-valued optimisation
problem needs to be constrained in order to guarantee that
the solution of the final single-valued optimisation problem
is optimal with respect to the original, prioritised, multi-
objective optimisation problem. One of the points made
in Section 4 is that, provided certain convexity conditions
are satisfied, the multi-objective optimisation problem can
be solved using convex programming techniques. Finally,
Section 5 shows, via an example, how the multi-objective
framework discussed in the previous sections can be used
to design a prioritised, model predictive control (MPC)
scheme.

2 Prioritised, Multi-objective Optimisation

Consider the multi-objective optimisation problem

P : min
θ∈Θ

f (θ), (1)

where the admissible set of decision variablesΘ ⊆ Rd, the
vector-valued objective functionf : Θ→Rp,

f (θ) := [ f1(θ), f2(θ), . . . , fp(θ)]T (2)

and the scalar-valued objective functionsfi : Θ→ R for all
i ∈ {1, . . . , p}. It is assumed that all thefi (·) attain their
minima insideΘ 6= /0. The rest of this section is concerned
with reviewing different definitions for what is meant by a
minimiser of problemP . An initial, naive guess at a defini-
tion is the following:



Definition 1 A givenθ∗ ∈Θ is aminimiserand f(θ∗) is the
minimumof problemP iff f (θ∗)≤ f (θ) for all θ ∈Θ.

Note that if a minimiser exists, then the minimum is guaran-
teed to be unique. Unfortunately, in contrast to optimisation
problems with a single objective function, a minimiser to a
multi-objective optimisation problem (as defined above) is
not guaranteed to exist, hence one is forced to compromise.
A commonly-used alternative definition for a minimiser is
the following:

Definition 2 A given θ∗ ∈ Θ is an efficient or Pareto-
optimalminimiser and f(θ∗) is a Pareto-optimalminimum
of P iff there does not exist aθ ∈ Θ and an i such that
f (θ) ≤ f (θ∗) and fi(θ)< fi(θ∗).

In other words, a minimiser is Pareto-optimal if and only
if an objective fi can be reduced only at the expense of in-
creasing at least one of the other objectives.

Under the assumptions above, a Pareto-optimal minimiser
is guaranteed to exist. However, the minimiser and mini-
mum are not necessarily unique. As a consequence, unless
a suitably-definedorder [6, Chap. 1] over the decision vari-
ables or objective functions is given, it is not easy to de-
termine which Pareto-optimal solutions are preferred over
others. Fortunately, in many applications it is more impor-
tant to minimise certain objectives and a hierarchy of the
objectives can be formulated. This hierarchy defines an or-
der on the objective functions and makes it possible to give
a definition for a minimum of problemP that results in less
ambiguity than the standard Pareto-optimal definition given
above.

As such, it is assumed that the given objective functions can
be ranked according to a hierarchy ofp distinct priority lev-
els such that the minimisation off1(θ) assumes the high-
est priority and the minimisation off2(θ) the second high-
est priority, etc. The problem now becomes that of finding
the set of minimisers of problemP that take into account
the relative importance of the individual objective functions.
The following definition, adapted from [1, Sect. 3.3.1] and
[6, Sect. 2.3.2], will be used to define such a minimiser:

Definition 3 A givenθ∗ ∈ Θ is a lexicographic minimiser
and f∗ := f (θ∗) is thelexicographic minimumof problemP
iff there does not exist aθ ∈Θ and an i∗ := mini{i | fi(θ) 6=
fi(θ∗)} such that fi∗(θ)< fi∗(θ∗).

An interpretation of the above definition is that a minimiser
is a lexicographic minimiser if and only if an objectivefi
can be reduced only at the expense of increasing at least
one of the higher-prioritised objectives{ f1 (·) , . . . , fi−1 (·)}.
Hence, a lexicographic minimiser is a special type of
Pareto-optimal minimiser that takes into account the order
of the objectives.

Fact 1 A lexicographic minimiser exists and the lexico-
graphic minimum of problemP is unique.

The above observation, especially the fact that the lexico-
graphic minimum is unique, helps to make it less ambigu-
ous in determining whether a givenθ ∈ Θ is optimal in
some sense, than if the original Pareto-optimal definition
was used.

A standard method for finding a lexicographic minimiser
of problemP is to solve a hierarchical sequence of single-
objective, constrained optimisation problems:

Fact 2 f ∗ := [ f ∗1 , f ∗2 , . . . , f ∗p]T is the lexicographic minimum
of problemP if and only if

f ∗1 = min
θ∈Θ

f1(θ) (3)

and for all i∈ {2, . . . , p},

f ∗i = min
θ∈Θ

{
fi(θ)

∣∣ f j (θ)≤ f ∗j , j = 1, . . . , i−1
}
. (4)

θ∗ is a lexicographic minimiser of problemP if and only if

θ∗ ∈
{

θ ∈ Θ
∣∣ f j (θ)≤ f ∗j , j = 1, . . . , p

}
. (5)

Remark 1 Note that(5) is equivalent to

θ∗ ∈ argmin
θ∈Θ

{
fp(θ)

∣∣ f j (θ)≤ f ∗j , j = 1, . . . , p−1
}
. (6)

Remark 2 To improve numerical conditioning, the con-
straints in (4) are often relaxed a little, e.g.(4) can be re-
placed by

f ∗i = min
θ∈Θ

{
fi(θ)

∣∣ f j(θ)≤ f ∗j + ε, j = 1, . . . , i−1
}
, (7)

whereε> 0 is a small tolerance.

As can be seen in (3) and (4), the most important objectives
are minimised before continuing to minimise the lower-
prioritised objectives. The constraints in (4) ensure that the
higher-prioritised objectives are equal to their optimal val-
ues.

As mentioned before, a lexicographic minimiser of problem
P is not guaranteed to be unique. However, one can derive
a sufficient condition for guaranteeing that a lexicographic
minimiser of problemP is unique:

Fact 3 If f i (·) is strictly convex, then the lexicographic
minimiserθ∗ of problemP is unique. If f1 is strictly convex,
then

θ∗ = argmin
θ∈Θ

f1(θ). (8)

If f i (·) is strictly convex and i∈ {2, . . . , p}, then

θ∗ = argmin
θ∈Θ

{
fi(θ)

∣∣ f j (θ)≤ f ∗j , j = 1, . . . , i−1
}
. (9)



This result implies that if thei’th objective function is
strictly convex, then there is no point in solving (4) for
{ f ∗i+1, . . . , f ∗p}, since the unique lexicographic minimiser is
given by (9). In order not to waste computational effort, it
is therefore sensible to ensure that the problemP has been
defined such that the only strictly convex function isfp (·).

3 Objective Functions to be Considered

Many objectives that typically arise in the optimal control of
constrained systems can be described in terms of a priori-
tised, multi-objective optimisation problem, such as prob-
lem P . This section suggests a few types of functions that
can be used to define an appropriate set of objective func-
tions{ f1 (·) , . . . , fp (·)}. The functions that will be consid-
ered are based on control objectives that typically arise in
the design of model predictive controllers for constrained,
linear systems [4]. It is possible, however, to extend the
discussion in this paper to a number of functions not con-
sidered here.

Let H andR be positive, semi-definite matrices andh and
r be vectors of suitable dimensions. Letg : Θ→ Rq and
g(θ) := [g1(θ),g2(θ), . . . ,gq(θ)]T , where eachgi : Θ→ R.
The functiong(·) defines a set of constraints onθ in the
sense that it is desired thatθ satisfyg(θ)≤ 0. Also, let

g+
i (θ) := max{0,gi(θ)} (10)

represent the amount of violation of thei’th constraint and
g+(θ) := [g+

1 (θ), . . . ,g+
q (θ)]T .

The functionV (·) is defined below in terms of weights
on the decision variableθ. The functionsL(·), S(·) and
D(·) are defined below in terms of the constraint violations
g+(θ).

Standard cost function: Let

V(θ|H,h) := θTHθ + hTθ. (11)

Equivalently, one could have defined

V(θ|H,h) := ‖H 1
2 θ‖22 +‖diag(h)θ‖1. (12)

Note thatV(·|H,h) is quadratic and convex ifH 6= 0 and
strictly convex ifH is positive definite. The cost function is
linear and convex (but not strictly convex) ifH = 0.

Size of largest constraint violation:Let

L(θ|g) := max
{

0,g1(θ),g2(θ), . . . ,gq(θ)
}
. (13)

Note thatL(θ|g) = ‖g+(θ)‖∞ andg(θ)≤ 0⇔ L(θ|g) = 0.

Weighted sum of constraint violations:Let

S(θ|g,R, r) := g+(θ)TRg+(θ) + rTg+(θ). (14)

Equivalently, one could have defined

S(θ|g,R, r) := ‖R1
2 g+(θ)‖22 +‖diag(r)g+(θ)‖1. (15)

If R is positive definite orr > 0, then g(θ) ≤ 0 ⇔
S(θ|g,R, r) = 0. This equivalence is not guaranteed ifR is
not positive definite andr is not strictly positive.

Remark 3 Note that, in general, S(·|g,R, r) and L(·|g) are
not strictly convex.

Largest element in index set of violated constraints:Let

D(θ|g) :=

{
0 if g(θ)≤ 0

maxi {i|gi(θ)> 0} otherwise
(16)

An application of this function is as follows: Suppose that
g1(·) defines a constraint which applies at step 1 of a pre-
diction horizon (in MPC, say),g2(·) applies at step 2, . . . ,
andgq(·) applies at the last stepq. ThenD(θ|g) indicates
the duration, into the prediction horizon, of constraint re-
laxations. The minimisation ofD(θ|g) can be interpreted
as solving a separate, prioritised, multi-objective problem
where the satisfaction ofgi+1(·) assumes a higher priority
than the satisfaction ofgi (·); gi (·) will not be satisfied until
gi+1(·) has been satisfied.

Remark 4 A function related to D(·) is

E(θ|g) :=

{
0 if g(θ)≤ 0

1+ q−mini {i|gi(θ)> 0} otherwise
(17)

Recalling the time horizon interpretation, E(θ|g) is propor-
tional to the number of constraints between the first violated
constraint and the last constraint. Since E(·) arises less
frequently in applications as a cost to minimise and can be
defined in terms of D(·) after reversing the order of the con-
straints, it will not be considered in this paper as a separate
function.

Obviously, one can define many other useful functions that
can capture a larger set of control objectives. For example,

V(θ|H,h) + S(θ|g,R, r) + sL(θ|g), (18)

wheres is a non-negative scalar, is an objective function that
typically arises in many model predictive control schemes
with so-called “soft constraints” [4, 7]. As another example,
one could define an objective in terms of

max
{

D(θ|g1), . . . ,D(θ|gt)
}
, (19)

where eachgi : Θ→ Rq. However, in order to keep things
simple, only objective functions defined in terms of (11),
(13), (14) and (16) will be studied in the following sections.



Example 1 In the framework presented in this paper, a QP
in the form

min
θ∈Rd

{
θTHθ + hTθ |Aθ≤ b

}
, (20)

where A∈ Rq×d and b∈Rq, can be interpreted as a priori-
tised, multi-objective optimisation problem where the sat-
isfaction of the constraint Aθ ≤ b is more important than
the minimisation of the objective functionθTHθ + hTθ. In
other words, the above QP is equivalent to the prioritised,
multi-objective problem

lex min
θ∈Rd

[ f1(θ), f2(θ)]T , (21)

where “lex” denotes that the lexicographic minimum is
sought, the objective functions are defined as

f1(θ) := L(θ|g), f2(θ) := V(θ|H,h) (22)

and the constraint function is defined as

g(θ) := Aθ−b. (23)

4 Main Results

This section will show how, provided all the constraint func-
tions andΘ are convex, and the individual objective func-
tions are suitably defined in terms ofV (·), D(·), L(·) and
S(·) as in the previous section, one can compute the lexico-
graphic minimum of problemP iteratively via (3) and (4)
using convex programming solvers, without having to re-
sort to solving a (possibly highly inefficient) mixed-integer
programming problem as in [2, 3, 8].

In the discussion to follow, it will assumed that

F1 := Θ×{0}. (24)

Obviously, (3) is equivalent to

f ∗1 = min
θ,v
{ f1(θ) |(θ,v) ∈ F1} . (25)

Similarly, it will be assumed that anFi ⊆ θ×Rsi has been
given such that

f ∗i = min
θ,v
{ fi(θ) |(θ,v) ∈ Fi } . (26)

The necessity to introduce the above, seemingly unneces-
sary, notation and slack variables, arises when one or more
of the objective functions{ f1 (·) , . . . , fp (·)} of problemP
have been defined in terms of (14). The assumption regard-
ing Fi helps to keep the notation to a minimum, while still
accounting for slack variables that might have arisen from
solving for{ f ∗1 , . . . , f ∗i−1}.

In the next few results, it will be shown how one can define
Fi+1 ⊆ Θ×Rsi+1, wheresi+1 ≥ si , in terms ofFi , f ∗i and

additional slack vectors that might have arisen from solving
for f ∗i , such that

f ∗i+1 = min
θ,w
{ fi+1(θ) |(θ,w) ∈ Fi+1} . (27)

Fact 4 (Weighted sum of constraint violations) If f i (·)
has the same structure as(14), i.e. fi(θ) := S(θ|g,R, r), and
Fi is such that(26)holds, then

f ∗i = min
θ,v,z

{
zTRz+ rTz|(θ,v) ∈ Fi ,g(θ)≤ z,z≥ 0

}
. (28)

If i < p and

Fi+1 := {(θ,v,z) ∈ Fi×Rq | zTRz+ rTz≤ f ∗i ,

g(θ)≤ z,z≥ 0}, (29)

then f∗i+1 = minθ,w{ fi+1(θ) |(θ,w) ∈ Fi+1}, where w:=
(v,z).

Note that a vector-valued slack vectorz is needed to com-
pute f ∗i in (28) when fi (·) has the same structure as (14).
This slack vector needs to be included in{Fi+1, . . . ,Fp}
when computing{ f ∗i+1, . . . , f ∗p}.

Fact 5 (Size of largest constraint violation)If f i (·) has
the same structure as(13), i.e. fi(θ) := L(θ|g), and Fi is
such that(26)holds, then

f ∗i = min
θ,v,z

{
z
∣∣(θ,v) ∈ Fi ,z≥ 0,gj(θ)≤ z, j = 1, . . . ,q

}
.

(30)
If i < p and

Fi+1 :=
{

(θ,v) ∈ Fi
∣∣gj(θ)≤ f ∗i , j = 1, . . . ,q

}
, (31)

then f∗i+1 = minθ,v{ fi+1(θ) |(θ,v) ∈ Fi+1}.

Contrary to the case whenfi (·) has the same structure
as (14), even though a scalar-valued slack vectorz is
needed to computef ∗i in (30), it is not necessary to in-
clude this slack variable in{Fi+1, . . . ,Fp} when computing
{ f ∗i+1, . . . , f ∗p}.

Fact 6 (Standard cost function) If f i (·) has the same
structure as(11), i.e. fi(θ) := V(θ|H,h), and Fi is such
that (26)holds, then

f ∗i = min
θ,v

{
θTHθ + hTθ |(θ,v) ∈ Fi

}
(32)

If H is positive definite then the lexicographic minimiserθ∗
of problemP is unique and is given by

(θ∗,v∗) = argmin
θ,v

{
θTHθ + hTθ |(θ,v) ∈ Fi

}
. (33)

If H is not positive definite, i< p and

Fi+1 :=
{

(θ,v) ∈ Fi
∣∣θTHθ + hTθ≤ f ∗i

}
, (34)

then f∗i+1 = minθ,v{ fi+1(θ) |(θ,v) ∈ Fi+1}.



Recalling the comment at the end of Section 2, the above
uniqueness observation implies that it is sensible to ensure
that fp (·) is the only objective function defined in terms
of (11) with a positive definite Hessian.

Fact 7 (Largest element in index set of violations)If
fi (·) has the same structure as(16), i.e. fi(θ) := D(θ|g), Fi

is such that(26)holds and

0<min
θ,v,z

{
z
∣∣(θ,v) ∈ Fi ,z≥ 0,gq(θ)≤ z

}
, (35)

then f∗i = q. If (35)does not hold, then

f ∗i = min
j∈{1,...,q−1}

{
j−1

∣∣C j(g,Fi) = 0
}
, (36)

where

C j(g,Fi) := min
θ,v,z
{z | (θ,v) ∈ Fi,z≥ 0,gj(θ)≤ z,

gk(θ)≤ 0,k = j + 1, . . . ,q}. (37)

If f ∗i = q, then let
Fi+1 := Fi , (38)

otherwise let

Fi+1 := {(θ,v) ∈ Fi | gk(θ)≤ 0,k = f ∗i +1, . . . ,q}. (39)

If i < p, then f∗i+1 = minθ,v{ fi+1(θ) |(θ,v) ∈ Fi+1}.

Note that (35) is equivalent to

0< min
(θ,v)∈Fi

L(θ|gq). (40)

and that

C j(g,Fi) = 0⇔ min
(θ,v)∈Fi

L(θ|gj) = 0, (41)

wheregj(θ) := [gj(θ), . . . ,gq(θ)]T .

To summarise, an algorithm for computing a lex-
icographic minimiser of problem P , is as fol-
lows:

Inputs: f (·) := [ f1 (·) , . . . , fp (·)]T andΘ.
Outputs: θ∗ ∈ arg lexminθ∈Θ f (θ).

1: Let F1 := Θ×{0} and seti← 1.
2: while i < p do
3: Based on the structure offi (·), use one of the

results given in this section to computef ∗i =
minθ,v{ fi(θ) |(θ,v) ∈ Fi } andFi+1.

4: Seti← i + 1.
5: end while
6: Based on the structure offp (·), use one of the

results given in this section to computeθ∗ ∈
argminθ,v{ fp(θ) |(θ,v) ∈ Fp}.

Observe that ifΘ and the constraint functions are defined
by linear and/or convex, quadratic functions, steps 3 and 6
can be implemented by solving a number of linearly- and/or
quadratically-constrained LPs and QPs.

The following example illustrates the use of the above re-
sults and notation.

Example 2 Let f1(θ) := S(θ|g,0, r), f2(θ) := L(θ|g) and
f3(θ) := S(θ|g,R,0). For simplicity of notation1, let F1 := Θ
and hence f∗1 = minθ,v

{
rTv|θ ∈ F1,g(θ)≤ v,v≥ 0

}
. If

F2 := {(θ,v)∈F1×Rq | rTv≤ f ∗1 ,g(θ)≤ v,v≥0} then f∗2 =
minθ,v,w

{
w
∣∣(θ,v) ∈ F2,w≥ 0,gj(θ)≤ w, j = 1, . . . ,q

}
.

Defining F3 :=
{

(θ,v) ∈ F2
∣∣gj(θ)≤ f ∗2 , j = 1, . . . ,q

}
it fol-

lows that f∗3 = minθ,v,w
{

wTRw|(θ,v) ∈ F3,g(θ)≤ w,w≥ 0
}

.

5 Application to Model Predictive Control

This section demonstrates, via an example, how the multi-
objective framework developed in this paper can be applied
to Model Predictive Control (MPC) of constrained, linear
systems [4].

A brief overview of the idea behind MPC is as follows:
Given an estimate of the current statex and a linear model
of the plant

xk+1 = Axk + Buk, x0 = x

yk = Cxk
(42)

whereuk ∈ Rm, xk ∈ Rn andyk ∈ Rl , the objective in MPC
is to compute on-line an open-loop sequence ofN control
inputs

θ := [uT
0 ,u

T
1 , . . . ,u

T
N−1]T (43)

that guarantees that constraints on the input and output of
the plant, e.g.

u≤ uk ≤ u, yk ≤ yk ≤ yk, (44)

are satisfied over some finite time horizon, while minimis-
ing the deviation of the input and output trajectory from
a desired reference trajectory. The first control input in
the optimal open-loop control sequence is implemented, the
state at the next time instant is estimated from new output
data and a new open-loop control sequence is computed.

Typically, the constraints on the input represent physical
constraints that cannot be violated (also known as “hard”
constraints) and constraints on the output represent per-
formance constraints that may be violated (also known as
“soft” constraints). As such, it is sensible to choose

Θ :=
{

θ ∈ RmN|u≤ uk≤ u,k = 0, . . . ,N−1
}
. (45)

1To be consistent with (24) one should haveF1 := Θ×{0}, in which
casef ∗1 = minθ,v,w

{
rTw|(θ,v) ∈ F1,g(θ)≤ w,w≥ 0

}
.



To illustrate how one can design a multi-objective MPC
controller using the framework presented in this paper, let
l = 2 and the prediction horizon be equal to the control hori-
zonN. Given the current statex and a sequence of control
inputsθ, one can easily show that

yk(θ,x) = C

(
Akx+

k−1

∑
j=0

AjBuk−1− j

)
(46)

or, equivalently,

yk(θ,x) = C
(

Akx+
[
Ak−1B . . . B 0 . . . 0

]
θ
)
.

(47)
Let yi(θ,x) := [yi

1(θ,x), . . . ,yi
N(θ,x)]T be the resulting pre-

dicted sequence of values for outputi. Finally, let

gi
k(θ,x) :=

[
1
−1

]
yi

k(θ,x)−
[

yk
i

−yk
i

]
(48)

and gi(θ,x) := [gi
1(θ,x), . . . ,gi

N(θ,x)]T define the con-
straints on outputi over the whole prediction horizon.

The control objectives to minimise, in order of importance,
are as follows:

1: Duration of constraint relaxations for Output 1.
2: Duration of constraint relaxations for Output 2.
3: Size of the largest constraint violation of Output 1.
4: `1 norm of constraint violations of Output 2.
5: Quadratic norm of deviations of the outputs from 0.
6: Quadratic norm of deviations of the inputs from 0.

Minimising the above control objectives can be achieved by
solving for the lexicographic minimum of problemP with
the objective functions2:

1: f1(θ,x) := D(θ|g1(·,x))
2: f2(θ,x) := D(θ|g2(·,x))
3: f3(θ,x) := L(θ|g1(·,x))
4: f4(θ,x) := S(θ|g2(·,x),0, [1, . . . ,1]T)
5: f5(θ,x) := V(θ|H,h(x))
6: f6(θ,x) := V(θ|I ,0)

where theH andh(x) are found by a standard process [4,
Chap. 3] of substituting (47) into∑N

k=1‖yk(θ,x)‖22, rearrang-
ing and ignoring terms that are not dependent onθ.

In other words, given the current statex, a multi-objective
MPC controller that aims to minimise the above prioritised
objectives, only implements the first partu∗0(x) of θ∗(x),
which is given by

θ∗(x) = arg lexmin
θ∈Θ

[ f1(θ,x), . . . , f6(θ,x)]T . (49)

Remark 5 In the above example, f6(·,x) is strictly convex,
hence the lexicographic minimiserθ∗(x) is unique.

2Note that the objective functions are dependent on the current statex.

6 Concluding Remarks

This paper presented a multi-objective framework that al-
lows one to design an MPC controller that can handle a large
class of prioritised objectives and constraints in an optimal
fashion. Under certain convexity assumptions, it is possible
to compute the MPC control action by solving a sequence
of convex programs, without having to resort to a mixed-
integer approach, as in [2, 3, 8].

The framework presented in this paper is more general and
flexible than the parametric programming approach pre-
sented in [9, 10]. The internal model, objectives and their
relative priorities can be changed on-line without the need
for redesigning the controller off-line. However, this in-
crease in flexibility also demands an increase in the amount
of on-line computational power that is required. It would be
interesting to see whether a parametric programming equiv-
alent of the framework in this paper can be developed, in or-
der to decrease the amount of on-line computational power
required.
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